Immunogenicity and Reactogenicity of CoronaVac: A Cohort Study
Abstract
:1. Introduction
2. Materials & Methods
2.1. Subject Recruitment and Sample Collection
2.2. Anti SARS-CoV-2 Antibody Quantification
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fadlyana, E.; Rusmil, K.; Tarigan, R.; Rahmadi, A.R.; Prodjosoewojo, S.; Sofiatin, Y.; Khrisna, C.V.; Sari, R.M.; Setyaningsih, L.; Surachman, F.; et al. A phase III, observer-blind, randomized, placebo-controlled study of the efficacy, safety, and immunogenicity of SARS-CoV-2 inactivated vaccine in healthy adults aged 18–59 years: An interim analysis in Indonesia. Vaccine 2021, 39, 6520–6528. [Google Scholar] [CrossRef] [PubMed]
- Tanriover, M.D.; Doğanay, H.L.; Akova, M.; Güner, H.R.; Azap, A.; Akhan, S.; Köse, Ş.; Erdinç, F.Ş.; Akalın, E.H.; Tabak, Ö.F.; et al. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): Interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet 2021, 398, 213–222. [Google Scholar] [CrossRef]
- Palacios, R.; Batista, A.P.; Albuquerque, C.S.N.; Patiño, E.G.; Santos, J.D.P.; Tilli Reis Pessoa Conde, M.; Piorelli, R.D.O.; Pereira Júnior, L.C.; Raboni, S.M.; Ramos, F.; et al. Efficacy and safety of a COVID-19 inactivated vaccine in healthcare professionals in Brazil: The PROFISCOV study. SSRN 2021, 66. [Google Scholar] [CrossRef]
- Schuchat, A.; Bell, B.P. Monitoring the impact of vaccines postlicensure: New challenges, new opportunities. Expert Rev. Vaccines 2008, 7, 437–456. [Google Scholar] [CrossRef] [PubMed]
- Hitchings, M.D.; Ranzani, O.T.; Torres, M.S.S.; de Oliveira, S.B.; Almiron, M.; Said, R.; Borg, R.; Schulz, W.L.; de Oliveira, R.D.; da Silva, P.V.; et al. Effectiveness of CoronaVac among healthcare workers in the setting of high SARS-CoV-2 Gamma variant transmission in Manaus, Brazil: A test-negative case-control study. Lancet Reg. Health Am. 2021, 1, 100025. [Google Scholar] [CrossRef] [PubMed]
- Ranzani, O.T.; Hitchings, M.D.T.; Dorion, M.; D’agostini, T.L.; de Paula, R.C.; de Paula, O.F.P.; Villela, E.F.D.M.; Torres, M.S.S.; de Oliveira, S.B.; Schulz, W.; et al. Effectiveness of the CoronaVac vaccine in older adults during a gamma variant associated epidemic of COVID-19 in Brazil: Test negative case-control study. BMJ 2021, 374, n2015. [Google Scholar] [CrossRef] [PubMed]
- Jara, A.; Undurraga, E.A.; González, C.; Paredes, F.; Fontecilla, T.; Jara, G.; Pizarro, A.; Acevedo, J.; Leo, K.; Leon, F.; et al. Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile. N. Engl. J. Med. 2021, 385, 875–884. [Google Scholar] [CrossRef]
- Victora, C.G.; Castro, M.C.; Gurzenda, S.; Medeiros, A.C.; França, G.V.A.; Barros, A.J.D. Estimating the early impact of vaccination against COVID-19 on deaths among elderly people in Brazil: Analyses of routinely-collected data on vaccine coverage and mortality. EClinicalMedicine 2021, 38, 101036. [Google Scholar] [CrossRef]
- Toniasso, S.D.C.C.; Fernandes, F.S.; Joveleviths, D.; Dantas Filho, F.F.; Takahasi, A.Y.; Baldin, C.P.; Pereira, R.M.; da Silva, L.P.; Brum, M.C.B. Reduction in COVID-19 prevalence in healthcare workers in a university hospital in southern Brazil after the start of vaccination. Int. J. Infect. Dis. 2021, 109, 283–285. [Google Scholar] [CrossRef]
- Riad, A.; Sağıroğlu, D.; Üstün, B.; Pokorná, A.; Klugarová, J.; Attia, S.; Klugar, M. Prevalence and Risk Factors of CoronaVac Side Effects: An Independent Cross-Sectional Study among Healthcare Workers in Turkey. J. Clin. Med. 2021, 10, 2629. [Google Scholar] [CrossRef]
- Soysal, A.; Gönüllü, E.; Karabayır, N.; Alan, S.; Atıcı, S.; Yıldız, İ.; Engin, H.; Çivilibal, M.; Karaböcüoğlu, M. Comparison of immunogenicity and reactogenicity of inactivated SARS-CoV-2 vaccine (CoronaVac) in previously SARS-CoV-2 infected and uninfected health care workers. Hum. Vaccines Immunother. 2021, 17, 3876–3880. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.X.; Zhang, T.T.; Shi, G.F.; Cheng, F.M.; Zheng, Y.M.; Tung, T.H.; Chen, H.X. Safety of an inactivated SARS-CoV-2 vaccine among healthcare workers in China. Expert Rev. Vaccines 2021, 20, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Cucunawangsih, C.; Wijaya, R.S.; Lugito, N.P.H.; Suriapranata, I. Antibody response to the inactivated SARS-CoV-2 vaccine among healthcare workers, Indonesia. Int. J. Infect. Dis. 2021, 113, 15–17. [Google Scholar] [CrossRef] [PubMed]
- Sauré, D.; O’Ryan, M.; Torres, J.P.; Zuniga, M.; Santelices, E.; Basso, L.J. Dynamic IgG seropositivity after rollout of CoronaVac and BNT162b2 COVID-19 vaccines in Chile: A sentinel surveillance study. Lancet Infect. Dis. 2022, 22, 56–63. [Google Scholar] [CrossRef]
- Medeiros-Ribeiro, A.C.; Aikawa, N.E.; Saad, C.G.S.; Yuki, E.F.N.; Pedrosa, T.; Fusco, S.R.G.; Rojo, P.T.; Pereira, R.M.R.; Shinjo, S.K.; Andrade, D.C.O.; et al. Immunogenicity and safety of the CoronaVac inactivated vaccine in patients with autoimmune rheumatic diseases: A phase 4 trial. Nat. Med. 2021, 27, 1744–1751. [Google Scholar] [CrossRef]
- Seyahi, E.; Bakhdiyarli, G.; Oztas, M.; Kuskucu, M.A.; Tok, Y.; Sut, N.; Ozcifci, G.; Ozcaglayan, A.; Balkan, I.I.; Saltoglu, N.; et al. Antibody response to inactivated COVID-19 vaccine (CoronaVac) in immune-mediated diseases: A controlled study among hospital workers and elderly. Rheumatol. Int. 2021, 41, 1429–1440. [Google Scholar] [CrossRef]
- Karacin, C.; Eren, T.; Zeynelgil, E.; Imamoglu, G.I.; Altinbas, M.; Karadag, I.; Basal, F.B.; Bilgetekin, I.; Sutcuoglu, O.; Yazici, O.; et al. Immunogenicity and safety of the CoronaVac vaccine in patients with cancer receiving active systemic therapy. Future Oncol. 2021, 17, 4447–4456. [Google Scholar] [CrossRef]
- Bichara, C.D.A.; Queiroz, M.A.F.; da Silva Graça Amoras, E.; Vaz, G.L.; Vallinoto, I.M.V.C.; Bichara, C.N.C.; Amaral, I.P.C.D.; Ishak, R.; Vallinoto, A.C.R. Assessment of anti-SARS-CoV-2 antibodies post-Coronavac vaccination in the Amazon region of Brazil. Vaccines 2021, 9, 1169. [Google Scholar] [CrossRef]
- Wu, Z.; Hu, Y.; Xu, M.; Chen, Z.; Yang, W.; Jiang, Z.; Li, M.; Jin, H.; Cui, G.; Chen, P.; et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect. Dis. 2021, 21, 803–812. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, G.; Pan, H.; Li, C.; Hu, Y.; Chu, K.; Han, W.; Chen, Z.; Tang, R.; Yin, W.; et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect. Dis. 2021, 21, 181–192. [Google Scholar] [CrossRef]
- Bayram, A.; Demirbakan, H.; Günel Karadeniz, P.; Erdoğan, M.; Koçer, I. Quantitation of antibodies against SARS-CoV-2 spike protein after two doses of CoronaVac in healthcare workers. J. Med. Virol. 2021, 93, 5560–5567. [Google Scholar] [CrossRef]
- Lapić, I.; Rogić, D.; Šegulja, D.; Zaninović, L. Antibody response and self-reported adverse reactions following vaccination with Comirnaty: A pilot study from a Croatian university hospital. J. Clin. Pathol. 2021, 1–5. [Google Scholar] [CrossRef]
- Takeuchi, M.; Higa, Y.; Esaki, A.; Nabeshima, Y.; Nakazono, A. Does reactogenicity after a second injection of the BNT162b2 vaccine predict spike IgG antibody levels in healthy Japanese subjects? PLoS ONE 2021, 16, e0257668. [Google Scholar] [CrossRef]
- Coggins, S.A.; Laing, E.D.; Olsen, C.H.; Goguet, E.; Moser, M.; Jackson-Thompson, B.M.; Samuels, E.C.; Pollett, S.D.; Tribble, D.R.; Davies, J.; et al. Adverse effects and antibody titers in response to the BNT162b2 mRNA COVID-19 vaccine in a prospective study of healthcare workers. Open Forum Infect. Dis. 2021, 9, ofab575. [Google Scholar] [CrossRef]
- Infantino, M.; Pieri, M.; Nuccetelli, M.; Grossi, V.; Lari, B.; Tomassetti, F.; Calugi, G.; Pancani, S.; Benucci, M.; Casprini, P.; et al. The WHO International Standard for COVID-19 serological tests: Towards harmonization of anti-spike assays. Int. Immunopharmacol. 2021, 100, 108095. [Google Scholar] [CrossRef] [PubMed]
- Riester, E.; Findeisen, P.; Hegel, J.K.; Kabesch, M.; Ambrosch, A.; Rank, C.M.; Pessl, F.; Laengin, T.; Niederhauser, C. Performance evaluation of the Roche Elecsys Anti-SARS-CoV-2 S immunoassay. J. Virol. Methods 2021, 297, 114271. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Phillips, D.J.; White, T.; Sayal, H.; Aley, P.K.; Bibi, S.; Dold, C.; Fuskova, M.; Gilbert, S.C.; Hirsch, I.; et al. Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 2032–2040. [Google Scholar] [CrossRef]
- Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 1205–1211. [Google Scholar] [CrossRef] [PubMed]
- Min, L.; Sun, Q. Antibodies and Vaccines Target RBD of SARS-CoV-2. Front. Mol. Biosci. 2021, 8, 671633. [Google Scholar] [CrossRef] [PubMed]
- Resman Rus, K.; Korva, M.; Knap, N.; Avšič Županc, T.; Poljak, M. Performance of the rapid high-throughput automated electrochemiluminescence immunoassay targeting total antibodies to the SARS-CoV-2 spike protein receptor binding domain in comparison to the neutralization assay. J. Clin. Virol. 2021, 139, 104820. [Google Scholar] [CrossRef] [PubMed]
- Muecksch, F.; Wise, H.; Batchelor, B.; Squires, M.; Semple, E.; Richardson, C.; McGuire, J.; Clearly, S.; Furrie, E.; Greig, N.; et al. Longitudinal Serological Analysis and Neutralizing Antibody Levels in Coronavirus Disease 2019 Convalescent Patients. J. Infect. Dis. 2021, 223, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.; Shin, S.; Nam, M.; Hong, Y.J.; Roh, E.Y.; Park, K.U.; Song, E.Y. Performance evaluation of three automated quantitative immunoassays and their correlation with a surrogate virus neutralization test in coronavirus disease 19 patients and pre-pandemic controls. J. Clin. Lab. Anal. 2021, 35, e23921. [Google Scholar] [CrossRef] [PubMed]
Parameter | Overall | Male | Female |
---|---|---|---|
Gender, n (%) | 91 (100%) | 51 (56.6%) | 40 (44.4%) |
Age, median (IQR) | 42.9 (28.1–55.4) | 50.2 (29.6–57.1) | 33.2 (26.6–51.7) |
BMI 1, median (IQR) | 25.4 (22.5–27.5) | 26.1 (24.2–28.0) | 23.6 (21.4–25.9) |
Comorbidity, n (%) | |||
Autoimmune Disease | 1 (1.1%) | 1 (2.0%) | 0 (0.0%) |
Hypertension | 2 (2.2%) | 0 (0.0%) | 2 (5.0%) |
Malignancy | 1 (1.1%) | 0 (0.0%) | 1 (2.5%) |
Adverse Events, n (%) | |||
Any symptom | 33 (36.3%) | 16 (31.3%) | 17 (42.5%) |
Fatigue | 21 (23.1%) | 13 (25.5%) | 8 (20.0%) |
Fever | 3 (3.3%) | 1 (2.0%) | 2 (5.0%) |
Runny nose | 1 (1.1%) | 0 (0.0%) | 1 (2.5%) |
Headache | 7 (7.7%) | 1 (2.0%) | 6 (15.0%) |
Muscle pain | 3 (3.3%) | 1 (2.0%) | 2 (5.0%) |
Pain at Injection site | 2 (2.2%) | 2 (3.9%) | 0 (0.0%) |
Paresthesia | 1 (1.1%) | 1 (2.0%) | 0 (0.0%) |
Overall | Gender | Age Group | |||||
---|---|---|---|---|---|---|---|
Male | Female | 18–29 | 30–39 | 40–49 | 50–59 | ||
Spike RBD Ab (−) Before Vaccination | |||||||
n | 73 | 39 | 34 | 21 | 11 | 10 | 27 |
Day 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Day 28 | 61.7 ± 84.2 | 54.8 ± 79.8 | 69.6 ± 89.6 | 69.9 ± 85.5 | 89.1 ± 92.9 | 117.9 ± 119.9 | 32.1 ± 51.9 |
Day 56 | 99.3 ± 91.9 | 76.1 ± 79.0 | 125.8 ± 99.3 | 133.2 ± 92.9 | 87.8 ± 81.0 | 155.9 ± 109.0 | 50.1 ± 65.0 |
Day 84 | 77.5 ± 78.5 | 57.9 ± 69.8 | 100.0 ± 82.8 | 103.8 ± 84.2 | 70.2 ± 69.9 | 127.9 ± 98.2 | 37.2 ± 42.7 |
Spike RBD Ab (+) Before Vaccination | |||||||
n | 18 | 12 | 6 | 7 | 3 | 1 | 4 |
Day 0 | 139.0 ± 101.0 | 139.4 ± 102.3 | 138.1 ± 108.1 | 127.6 ± 107.0 | 37.2 ± 29.8 | 111.7 | 160.4 ± 104.7 |
Day 28 | 206.7 ± 77.4 | 201.8 ± 87.7 | 216.6 ± 57.1 | 210.8 ± 59.1 | 159.4 ± 103.8 | 251.0 | 190.8 ± 120.5 |
Day 56 | 209.7 ± 79.6 | 205.0 ± 83.4 | 219.1 ± 78.0 | 206.8 ± 70.8 | 184.4 ± 115.4 | 251.0 | 192.6 ± 116.9 |
Day 84 | 207.2 ± 81.0 | 199.2 ± 88.3 | 223.1 ± 68.4 | 203.4 ± 66.7 | 178.9 ± 124.9 | 251.0 | 191.5 ± 119.0 |
Adverse Events | Pre-Existing Antibody | Age Group | |||||
---|---|---|---|---|---|---|---|
Positive | Negative | 18–29 | 30–39 | 40–49 | 50–59 | 60–65 | |
Sample Size | 18 | 73 | 28 | 14 | 11 | 31 | 7 |
Count, n (%) | 7 (38.9%) | 26 (35.6%) | 12 (42.9%) | 6 (42.9%) | 5 (45.5%) | 7 (22.6%) | 3 (42.9%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masyeni, S.; Johar, E.; Budhitresna, A.A.G.; Mahardika, N.; Dewi, N.R.K.; Widiana, I.G.R.; Yudhaputri, F.A.; Myint, K.S.A. Immunogenicity and Reactogenicity of CoronaVac: A Cohort Study. COVID 2022, 2, 485-491. https://doi.org/10.3390/covid2040035
Masyeni S, Johar E, Budhitresna AAG, Mahardika N, Dewi NRK, Widiana IGR, Yudhaputri FA, Myint KSA. Immunogenicity and Reactogenicity of CoronaVac: A Cohort Study. COVID. 2022; 2(4):485-491. https://doi.org/10.3390/covid2040035
Chicago/Turabian StyleMasyeni, Sri, Edison Johar, Anak Agung Gede Budhitresna, Nyoman Mahardika, Nyoman Ratna Kartika Dewi, I Gde Raka Widiana, Frilasita Aisyah Yudhaputri, and Khin Saw Aye Myint. 2022. "Immunogenicity and Reactogenicity of CoronaVac: A Cohort Study" COVID 2, no. 4: 485-491. https://doi.org/10.3390/covid2040035
APA StyleMasyeni, S., Johar, E., Budhitresna, A. A. G., Mahardika, N., Dewi, N. R. K., Widiana, I. G. R., Yudhaputri, F. A., & Myint, K. S. A. (2022). Immunogenicity and Reactogenicity of CoronaVac: A Cohort Study. COVID, 2(4), 485-491. https://doi.org/10.3390/covid2040035