Fe-Doped ZnS Quantum Dot Photocatalysts for the Degradation of Cefalexin in Water
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Pure and Doped Quantum Dots
2.3. Characterization of Pure and Doped Quantum Dots
2.4. Photocatalytic Experiments of Cefalexin
2.5. Adsorption Experiments
3. Results and Discussion
3.1. Morphology and Crystalline Structure
3.2. Optical Characterization
3.3. Photodegradation of Cefalexin
3.4. Adsorption Studies and Nanoscale Interaction
3.5. Mass Spectrometric Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, H.M.; Graber, C.J. A Critical Review of Cephalexin and Cefadroxil for the Treatment of Acute Uncomplicated Lower Urinary Tract Infection in the Era of “Bad Bugs, Few Drugs”. Int. J. Antimicrob. Agents 2020, 56, 106085. [Google Scholar] [CrossRef] [PubMed]
- Plöger, G.F.; Quizon, P.M.; Abrahamsson, B.; Cristofoletti, R.; Groot, D.W.; Parr, A.; Langguth, P.; Polli, J.E.; Shah, V.P.; Tajiri, T.; et al. Biowaiver Monographs for Immediate Release Solid Oral Dosage Forms: Cephalexin Monohydrate. J. Pharm. Sci. 2020, 109, 1846–1862. [Google Scholar] [CrossRef] [PubMed]
- Bush, K.; Bradford, P.A. β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harb. Perspect. Med. 2016, 6, a025247. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Jia, Z.; Kryszczuk, K.; Chen, D.; Wang, L.; Holyst, R.; Feng, X. Joint Effect of Surfactants and Cephalexin on the Formation of Escherichia coli Filament. Ecotoxicol. Environ. Saf. 2020, 199, 110750. [Google Scholar] [CrossRef]
- Rhodes, G.; Chuang, Y.-H.; Hammerschmidt, R.; Zhang, W.; Boyd, S.A.; Li, H. Uptake of Cephalexin by Lettuce, Celery, and Radish from Water. Chemosphere 2021, 263, 127916. [Google Scholar] [CrossRef]
- Cordeiro, S.G.; Ziem, R.; Schweizer, Y.A.; Costa, B.; Kuhn, D.; Haas, P.; Weber, A.C.; Heidrich, D.; Ethur, E.M.; Steffens, C.; et al. Degradation of Micropollutant Cephalexin by Ultraviolet (UV) and Assessment of Residual Antimicrobial Activity of Transformation Products. Water Sci. Technol. 2021, 84, 374–383. [Google Scholar] [CrossRef]
- Ribeiro, A.R.; Sures, B.; Schmidt, T.C. Cephalosporin Antibiotics in the Aquatic Environment: A Critical Review of Occurrence, Fate, Ecotoxicity and Removal Technologies. Environ. Pollut. 2018, 241, 1153–1166. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, S.; An, Y.; Wang, Y.; Lei, Y.; Song, L. Antibiotics and Antibiotic Resistance Genes in Landfills: A Review. Sci. Total Environ. 2022, 806, 150647. [Google Scholar] [CrossRef]
- Klein, A.R.; Sarri, E.; Kelch, S.E.; Basinski, J.J.; Vaidya, S.; Aristilde, L. Probing the Fate of Different Structures of Beta-Lactam Antibiotics: Hydrolysis, Mineral Capture, and Influence of Organic Matter. ACS Earth Space Chem. 2021, 5, 1511–1524. [Google Scholar] [CrossRef]
- Schmidt, M.P.; Ashworth, D.J.; Ibekwe, A.M. Cephalexin Interaction with Biosolids-Derived Dissolved Organic Matter: Binding Mechanism and Implications for Adsorption by Biochar and Clay. Environ. Sci. Water Res. Technol. 2024, 10, 949–959. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, C.; Lian, K.; Liu, C. Effects of Chronic Exposure of Antibiotics on Microbial Community Structure and Functions in Hyporheic Zone Sediments. J. Hazard. Mater. 2021, 416, 126141. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.-W.; Li, X.-K.; Wang, S.-T.; Liu, L.-L.; Ma, K.-L.; Zhang, J. The Long-Term Impact of Cefalexin on Organic Substrate Degradation and Microbial Community Structure in EGSB System. Chemosphere 2017, 184, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Ali Noman, E.; Al-Gheethi, A.; Saphira Radin Mohamed, R.M.; Talip, B.A.; Hossain, M.S.; Ali Hamood Altowayti, W.; Ismail, N. Sustainable Approaches for Removal of Cephalexin Antibiotic from Non-Clinical Environments: A Critical Review. J. Hazard. Mater. 2021, 417, 126040. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Montes, I.; Santos, G.O.S.; dos Santos, A.J.; Fernandes, C.H.M.; Souto, R.S.; Chelme-Ayala, P.; El-Din, M.G.; Lanza, M.R.V. Toxicological Aspect of Water Treated by Chlorine-Based Advanced Oxidation Processes: A Review. Sci. Total Environ. 2023, 878, 163047. [Google Scholar] [CrossRef]
- Nannou, C.; Maroulas, K.N.; Tsamtzidou, C.; Ladomenou, K.; Kyzas, G.Z. Photocatalytic Degradation of Veterinary Antibiotics in Wastewaters: A Review. Sci. Total Environ. 2025, 966, 178765. [Google Scholar] [CrossRef]
- Sakthivel, P.; Krishnamoorthy, A.; Devadoss, I. Influence of Fe3+ Ions on the Crystallographic, Optical and Electrochemical Performance of ZnS Quantum Dots. Indian J. Phys. 2024, 98, 937–946. [Google Scholar] [CrossRef]
- He, J.; Zhang, Y.; Guo, Y.; Rhodes, G.; Yeom, J.; Li, H.; Zhang, W. Photocatalytic Degradation of Cephalexin by ZnO Nanowires under Simulated Sunlight: Kinetics, Influencing Factors, and Mechanisms. Environ. Int. 2019, 132, 105105. [Google Scholar] [CrossRef]
- Bailón-Ruiz, S.J.; Cedeño-Mattei, Y.; Núñez-Colón, A.M.; Torres-Torres, K. Fast One-Step Microwave-Assisted Synthesis of Iron-Doped ZnS for Photocatalytic Applications. Crystals 2024, 14, 699. [Google Scholar] [CrossRef]
- Bailón-Ruiz, S.J.; Núñez-Colón, A.M.; Torres-Torres, K.N.; Cedeño-Mattei, Y. Fast Microwave-Irradiation Assisted Synthesis of Pure and Iron-Doped Zinc Sulfide Nanoparticles. MRS Adv. 2025, 1–6. [Google Scholar] [CrossRef]
- Sutherland, C. Adsorption of Cephalexin: A Decade of Progress in Adsorbent Development and Mechanistic Insights. Desalin. Water Treat. 2024, 318, 100357. [Google Scholar] [CrossRef]
- Soltani, N.; Saion, E.; Hussein, M.Z.; Erfani, M.; Abedini, A.; Bahmanrokh, G.; Navasery, M.; Vaziri, P. Visible Light-Induced Degradation of Methylene Blue in the Presence of Photocatalytic ZnS and CdS Nanoparticles. Int. J. Mol. Sci. 2012, 13, 12242–12258. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Zahra, S.T.; Noor, H.; Naseem, S.; Riaz, S.; Khan, M.E.; Ali, W.; Alomar, M.S.; Khan, A.U.; Ali, S.K.; et al. Excellent Photocatalytic Performance Against Amoxicillin Antibiotic and Pt-Free Hydrogen Production Using Fe-Doped ZnS Nanostructures: Reaction Kinetics and Mechanistic Insights. Catalysts 2025, 15, 165. [Google Scholar] [CrossRef]
- Ali, A.H.; Hashem, H.A.; Elfalaky, A. Preparation, Properties, and Characterization of ZnS Nanoparticles. Eng. Proc. 2022, 31, 74. [Google Scholar] [CrossRef]
- Basak, S.; Nath, D.; Das, R. Analysis of Dominant and Intense XRD Peak of (111) Plane of ZnS Nanocrystals for Microstructural Study through Single Line Voigt Method: Calculated Low Dislocation Density Value Emphasizes Larger Stacking of (111) Plane. J. Mol. Struct. 2023, 1293, 136273. [Google Scholar] [CrossRef]
- Kusrini, E.; Wilson, L.D.; Padmosoedarso, K.M.; Mawarni, D.P.; Sufyan, M.; Usman, A. Synthesis of Chitosan Capped Zinc Sulphide Nanoparticle Composites as an Antibacterial Agent for Liquid Handwash Disinfectant Applications. J. Compos. Sci. 2023, 7, 52. [Google Scholar] [CrossRef]
- Alhassan, S.; Alshammari, A.H.; Alotibi, S.; Alshammari, K.; Mohamed, W.S.; Hadia, N.M.A. Structural and Optical Properties of Nickel-Doped Zinc Sulfide. Nanomaterials 2024, 14, 1599. [Google Scholar] [CrossRef]
- Zafar, S.; Zubair, M.; Shah, S.M.; Khan, M.I.; Khan, A.A.; Iqbal, M.F.; Hassan, A.; Din, M.F.U. Effect of Fe Doping on the Structural and Optical Properties of ZnS Macro-Spheres. Optik 2022, 262, 169342. [Google Scholar] [CrossRef]
- Dixit, N.; Vaghasia, J.V.; Soni, S.S.; Sarkar, M.; Chavda, M.; Agrawal, N.; Soni, H.P. Photocatalytic Activity of Fe Doped ZnS Nanoparticles and Carrier Mediated Ferromagnetism. J. Environ. Chem. Eng. 2015, 3, 1691–1701. [Google Scholar] [CrossRef]
- Mintcheva, N.; Gicheva, G.; Panayotova, M.; Wunderlich, W.; Kuchmizhak, A.A.; Kulinich, S.A. Preparation and Photocatalytic Properties of CdS and ZnS Nanomaterials Derived from Metal Xanthate. Materials 2019, 12, 3313. [Google Scholar] [CrossRef]
- Alwany, A.B.; Youssef, G.M.; Samir, O.M.; Algradee, M.A.; Yahya, N.A.A.; Swillam, M.A.; Humaidi, S.; Abd-Shukor, R. Annealing Temperature Effects on the Size and Band Gap of ZnS Quantum Dots Fabricated by Co-Precipitation Technique without Capping Agent. Sci. Rep. 2023, 13, 10314. [Google Scholar] [CrossRef]
- Baig, A.; Siddique, M.; Panchal, S. A Review of Visible-Light-Active Zinc Oxide Photocatalysts for Environmental Application. Catalysts 2025, 15, 100. [Google Scholar] [CrossRef]
- Ovhal, M.M.; Santhosh Kumar, A.; Khullar, P.; Kumar, M.; Abhyankar, A.C. Photoluminescence Quenching and Enhanced Spin Relaxation in Fe Doped ZnO Nanoparticles. Mater. Chem. Phys. 2017, 195, 58–66. [Google Scholar] [CrossRef]
- Habba, Y.G.; Capochichi-Gnambodoe, M.; Leprince-Wang, Y. Enhanced Photocatalytic Activity of Iron-Doped ZnO Nanowires for Water Purification. Appl. Sci. 2017, 7, 1185. [Google Scholar] [CrossRef]
- Yu, X.; Tang, X.; Zuo, J.; Zhang, M.; Chen, L.; Li, Z. Distribution and Persistence of Cephalosporins in Cephalosporin Producing Wastewater Using SPE and UPLC–MS/MS Method. Sci. Total Environ. 2016, 569–570, 23–30. [Google Scholar] [CrossRef]
- Kareem, M.A.; Bello, I.T.; Shittu, H.A.; Sivaprakash, P.; Adedokun, O.; Arumugam, S. Synthesis, Characterization, and Photocatalytic Application of Silver Doped Zinc Oxide Nanoparticles. Clean. Mater. 2022, 3, 100041. [Google Scholar] [CrossRef]
- Lefatshe, K.; Mola, G.T.; Muiva, C.M. Reduction of Hazardous Reactive Oxygen Species (ROS) Production of ZnO through Mn Inclusion for Possible UV-Radiation Shielding Application. Heliyon 2020, 6, e04186. [Google Scholar] [CrossRef]
- Almasi, A.; Esmaeilpoor, R.; Hoseini, H.; Abtin, V.; Mohammadi, M. Photocatalytic Degradation of Cephalexin by UV Activated Persulfate and Fenton in Synthetic Wastewater: Optimization, Kinetic Study, Reaction Pathway and Intermediate Products. J. Environ. Health Sci. Eng. 2020, 18, 1359–1373. [Google Scholar] [CrossRef]
- Masmoudi, R.; Khettaf, S.; Soltani, A.; Dibi, A.; Messaadia, L.; Benamira, M. Cephalexin Degradation Initiated by OH Radicals: Theoretical Prediction of the Mechanisms and the Toxicity of Byproducts. J. Mol. Model. 2022, 28, 141. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bailon-Ruiz, S.J.; Cedeño-Mattei, Y.; Alamo-Nole, L. Fe-Doped ZnS Quantum Dot Photocatalysts for the Degradation of Cefalexin in Water. Micro 2025, 5, 31. https://doi.org/10.3390/micro5030031
Bailon-Ruiz SJ, Cedeño-Mattei Y, Alamo-Nole L. Fe-Doped ZnS Quantum Dot Photocatalysts for the Degradation of Cefalexin in Water. Micro. 2025; 5(3):31. https://doi.org/10.3390/micro5030031
Chicago/Turabian StyleBailon-Ruiz, Sonia J., Yarilyn Cedeño-Mattei, and Luis Alamo-Nole. 2025. "Fe-Doped ZnS Quantum Dot Photocatalysts for the Degradation of Cefalexin in Water" Micro 5, no. 3: 31. https://doi.org/10.3390/micro5030031
APA StyleBailon-Ruiz, S. J., Cedeño-Mattei, Y., & Alamo-Nole, L. (2025). Fe-Doped ZnS Quantum Dot Photocatalysts for the Degradation of Cefalexin in Water. Micro, 5(3), 31. https://doi.org/10.3390/micro5030031