Micro-Spectrometer-Based Interferometric Spectroscopy and Environmental Sensing with Zinc Oxide Thin Film
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thin Film Preparation
2.2. Micro-Spectrometer Specificition
2.3. Optical System Setup
2.3.1. Optical Interference Principle
2.3.2. Optical Measurement System Setup
3. Results and Discussion
3.1. Characterization of ZnO Thin Films
3.2. Interference Spectroscopy of ZnO
3.3. Environmental Monitoring
3.3.1. Temperature
3.3.2. Special Gas
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laurenti, M.; Cauda, V. Porous Zinc Oxide Thin Films: Synthesis Approaches and Applications. Coatings 2018, 8, 67. [Google Scholar] [CrossRef]
- Txintxurreta, J.; G-Berasategui, E.; Ortiz, R.; Hernández, O.; Mendizábal, L.; Barriga, J. Indium Tin Oxide Thin Film Deposition by Magnetron Sputtering at Room Temperature for the Manufacturing of Efficient Transparent Heaters. Coatings 2021, 11, 92. [Google Scholar] [CrossRef]
- Thanka Rajan, S.; Subramanian, B.; Arockiarajan, A. A comprehensive review on biocompatible thin films for biomedical application. Ceram. Int. 2022, 48, 4377–4400. [Google Scholar] [CrossRef]
- Prieto-Cortés, P.; Álvarez-Tamayo, R.I.; García-Méndez, M.; Durán-Sánchez, M. Lossy Mode Resonance Generation on Sputtered Aluminum-Doped Zinc Oxide Thin Films Deposited on Multimode Optical Fiber Structures for Sensing Applications in the 1.55 µm Wavelength Range. Sensors 2019, 19, 4189. [Google Scholar] [CrossRef] [PubMed]
- Buonomenna, M.G. Inorganic Thin-Film Solar Cells: Challenges at the Terawatt-Scale. Symmetry 2023, 15, 1718. [Google Scholar] [CrossRef]
- Sabzi, M.; Mousavi Anijdan, S.H.; Shamsodin, M.; Farzam, M.; Hojjati-Najafabadi, A.; Feng, P.; Park, N.; Lee, U. A Review on Sustainable Manufacturing of Ceramic-Based Thin Films by Chemical Vapor Deposition (CVD): Reactions Kinetics and the Deposition Mechanisms. Coatings 2023, 13, 188. [Google Scholar] [CrossRef]
- Panjan, P.; Drnovšek, A.; Gselman, P.; Čekada, M.; Panjan, M. Review of Growth Defects in Thin Films Prepared by PVD Techniques. Coatings 2020, 10, 447. [Google Scholar] [CrossRef]
- Joshi, S.; Hegde, G.M.; Nayak, M.M.; Rajanna, K. A novel piezoelectric thin film impact sensor: Application in non-destructive material discrimination. Sens. Actuators A Phys. 2013, 199, 272–282. [Google Scholar] [CrossRef]
- Buchberger, A.; Peterka, S.; Coclite, A.M.; Bergmann, A. Fast Optical Humidity Sensor Based on Hydrogel Thin Film Expansion for Harsh Environment. Sensors 2019, 19, 999. [Google Scholar] [CrossRef]
- Ablekim, T.; Duenow, J.N.; Zheng, X.; Moutinho, H.; Moseley, J.; Perkins, C.L.; Johnston, S.W.; O’Keefe, P.; Colegrove, E.; Albin, D.S.; et al. Thin-Film Solar Cells with 19% Efficiency by Thermal Evaporation of CdSe and CdTe. ACS Energy Lett. 2020, 5, 892–896. [Google Scholar] [CrossRef]
- Colin, J.; Jamnig, A.; Furgeaud, C.; Michel, A.; Pliatsikas, N.; Sarakinos, K.; Abadias, G. In Situ and Real-Time Nanoscale Monitoring of Ultra-Thin Metal Film Growth Using Optical and Electrical Diagnostic Tools. Nanomaterials 2020, 10, 2225. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Quezada, A.; Aiglinger, M.; Ghanbari, E.; Wagner, T.; Zeppenfeld, P. Polarization-dependent differential reflectance spectroscopy for real-time monitoring of organic thin film growth. Rev. Sci. Instrum. 2015, 86, 113108. [Google Scholar] [CrossRef] [PubMed]
- Losurdo, M.; Bergmair, M.; Bruno, G.; Cattelan, D.; Cobet, C.; de Martino, A.; Fleischer, K.; Dohcevic-Mitrovic, Z.; Esser, N.; Galliet, M.; et al. Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: State-of-the-art, potential, and perspectives. J. Nanoparticle Res. 2009, 11, 1521–1554. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Q.; Liu, X.; Ren, Z.; Dong, B.; Xia, J.; Sun, H.; Lee, C.; Zhou, G. MEMS-Enabled On-Chip Computational Mid-Infrared Spectrometer Using Silicon Photonics. ACS Photonics 2022, 9, 2367–2377. [Google Scholar] [CrossRef]
- Eltagoury, Y.M.; Sabry, Y.M.; Khalil, D.A. All-Silicon Double-Cavity Fourier-Transform Infrared Spectrometer on-Chip. Adv. Mater. Technol. 2019, 4, 1900441. [Google Scholar] [CrossRef]
- Marvi, F.; Jafari, K.; Shahabadi, M.; Tabarzad, M.; Ghorbani-Bidkorpeh, F.; Azad, T. Ultrasensitive detection of vital biomolecules based on a multi-purpose BioMEMS for Point of care testing: Digoxin measurement as a case study. Sci. Rep. 2024, 14, 1633. [Google Scholar] [CrossRef]
- Chen, C.; Hu, H.; Li, X.; Zheng, Z.; Wang, Z.; Wang, X.; Zheng, P.; Cui, F.; Li, G.; Wang, Y.; et al. Rapid Detection of Anti-SARS-CoV-2 Antibody Using a Selenium Nanoparticle-Based Lateral Flow Immunoassay. IEEE Trans. NanoBioscience 2022, 21, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Chiu, W.H.; Kong, W.Y.; Chueh, Y.H.; Wen, J.W.; Tsai, C.M.; Hong, C.; Chen, P.Y.; Ko, C.H. Using an ultra-compact optical system to improve lateral flow immunoassay results quantitatively. Heliyon 2022, 8, e12116. [Google Scholar] [CrossRef] [PubMed]
- Tamaekong, N.; Liewhiran, C.; Wisitsoraat, A.; Phanichphant, S. Flame-Spray-Made Undoped Zinc Oxide Films for Gas Sensing Applications. Sensors 2010, 10, 7863–7873. [Google Scholar] [CrossRef]
- Gartner, M.; Stroescu, H.; Mitrea, D.; Nicolescu, M. Various Applications of ZnO Thin Films Obtained by Chemical Routes in the Last Decade. Molecules 2023, 28, 4674. [Google Scholar] [CrossRef]
- Hu, S.-H.; Lin, Y.-S.; Su, S.-H.; He, J.-S.; Ai, Y.-Z. Improving Surface Structures of Al-Doped Zinc Oxide Thin Films to Apply in CO Gas-Sensing Property by Designing Processes through RF Magnetron Sputtering. J. Electron. Mater. 2024, 53, 2410–2420. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, N.; Mehra, R.; Kapoor, A.; Purohit, L.; Swart, H. Role of film thickness on the properties of ZnO thin films grown by sol-gel method. Thin Solid Film. 2013, 539, 161–165. [Google Scholar] [CrossRef]
- Shariffudin, S.; Salina, M.; Herman, S.; Rusop, M. Effect of film thickness on structural, electrical, and optical properties of sol-gel deposited layer-by-layer ZnO nanoparticles. Trans. Electr. Electron. Mater. 2012, 13, 102–105. [Google Scholar] [CrossRef]
- Regmi, G.; Velumani, S. Impact of target power on the properties of sputtered intrinsic zinc oxide (i-ZnO) thin films and its thickness dependence performance on CISe solar cells. Opt. Mater. 2021, 119, 111350. [Google Scholar] [CrossRef]
- Sugianto, S.; Astuti, B.; Firmahaya, N.A.; Aryanto, D. The effect of annealing on ZnO:Al thin film growth on preparatory glass substrate by dc magnetron sputtering. J. Phys. Conf. Ser. 2019, 1387, 012007. [Google Scholar] [CrossRef]
- Ko, C.-H.; Tsai, S.-Y.; Tsai, J.-R.; Wang, B.-J. Design and verification of a flat-field aberration-corrected concave blaze grating for hyperspectral imaging. In Proceedings of the 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), Singapore, 31 July–4 August 2017; pp. 1–4. [Google Scholar]
- Ko, C.-H.; Wu, Y.-H.; Chakraborty, S.; Shah, K.J.; Tsai, J.-R.; Wang, B.-J.; Lin, S.-F.; Hsiao, C.-D. Two-dimensional modeling with experimental verification of a linear variable filter for spectral order sorting of 400–1000 nm. In Proceedings of the 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), Singapore, 31 July–4 August 2017; pp. 1–5. [Google Scholar]
- Sebők, D.; Szabó, T.; Dékány, I. Optical properties of zinc peroxide and zinc oxide multilayer nanohybrid films. Appl. Surf. Sci. 2009, 255, 6953–6962. [Google Scholar] [CrossRef]
- Janovák, L.; Dékány, I.; Sebők, D. The Theoretical Concept of Polarization Reflectometric Interference Spectroscopy (PRIFS): An Optical Method to Monitor Molecule Adsorption and Nanoparticle Adhesion on the Surface of Thin Films. Photonics 2019, 6, 76. [Google Scholar] [CrossRef]
- Amakali, T.; Daniel, L.S.; Uahengo, V.; Dzade, N.Y.; de Leeuw, N.H. Structural and Optical Properties of ZnO Thin Films Prepared by Molecular Precursor and Sol–Gel Methods. Crystals 2020, 10, 132. [Google Scholar] [CrossRef]
- Barth, J.; Johnson, R.L.; Cardona, M. Spectroscopic Ellipsometry in the 6–35 eV Region. In Handbook of Optical Constants of Solids; Palik, E.D., Ed.; Academic Press: Boston, MA, USA, 1998; Chapter 10; pp. 213–246. [Google Scholar]
- Gonçalves, R.S.; Barrozo, P.; Brito, G.L.; Viana, B.C.; Cunha, F. The effect of thickness on optical, structural and growth mechanism of ZnO thin film prepared by magnetron sputtering. Thin Solid Film. 2018, 661, 40–45. [Google Scholar] [CrossRef]
- Schinke, C.; Christian Peest, P.; Schmidt, J.; Brendel, R.; Bothe, K.; Vogt, M.R.; Kröger, I.; Winter, S.; Schirmacher, A.; Lim, S.; et al. Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon. AIP Adv. 2015, 5. [Google Scholar] [CrossRef]
- Sulka, G.D. Electrochemistry of Thin Films and Nanostructured Materials. Molecules 2023, 28, 4040. [Google Scholar] [CrossRef] [PubMed]
- Teimoori, F.; Khojier, K.; Dehnavi, N.Z. On the Dependence of H2 Gas Sensitivity of ZnO thin Films on Film Thickness. Procedia Mater. Sci. 2015, 11, 474–479. [Google Scholar] [CrossRef]
Specification | Micro-Spectrometer |
---|---|
Module Size (mm3) | 44.2 × 34.5 × 20.1 |
Spectral Range (nm) | 350–930 |
Spectral Resolution (nm) | 5 |
Spectral Accuracy (nm) | ±0.375 nm |
A/D (bit) | 8 |
SNRmax | 38 dB |
Simulated Peaks Positions (nm) | Interference Spectrum Peaks Positions (nm) | Bias (nm) |
---|---|---|
563.67 | 563.67 | 0 |
580.79 | 580.53 | 0.26 |
599.96 | 598.93 | 1.03 |
618.58 | 618.32 | 0.26 |
638.46 | 638.72 | 0.26 |
663.44 | 661.12 | 2.32 |
684.76 | 684.5 | 0.26 |
710.63 | 709.61 | 1.02 |
738.72 | 737.19 | 1.53 |
MAE | 0.771 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, C.-M.; Hsu, Y.-C.; Yang, C.-T.; Kong, W.-Y.; Hong, C.; Ko, C.-H. Micro-Spectrometer-Based Interferometric Spectroscopy and Environmental Sensing with Zinc Oxide Thin Film. Micro 2024, 4, 305-317. https://doi.org/10.3390/micro4020019
Tsai C-M, Hsu Y-C, Yang C-T, Kong W-Y, Hong C, Ko C-H. Micro-Spectrometer-Based Interferometric Spectroscopy and Environmental Sensing with Zinc Oxide Thin Film. Micro. 2024; 4(2):305-317. https://doi.org/10.3390/micro4020019
Chicago/Turabian StyleTsai, Ciao-Ming, Yu-Chen Hsu, Chang-Ting Yang, Wei-Yi Kong, Chitsung Hong, and Cheng-Hao Ko. 2024. "Micro-Spectrometer-Based Interferometric Spectroscopy and Environmental Sensing with Zinc Oxide Thin Film" Micro 4, no. 2: 305-317. https://doi.org/10.3390/micro4020019
APA StyleTsai, C. -M., Hsu, Y. -C., Yang, C. -T., Kong, W. -Y., Hong, C., & Ko, C. -H. (2024). Micro-Spectrometer-Based Interferometric Spectroscopy and Environmental Sensing with Zinc Oxide Thin Film. Micro, 4(2), 305-317. https://doi.org/10.3390/micro4020019