Machine Learning-Augmented Micro-Defect Detection on Plastic Straw
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Analysis
3.1. Introduction of Straw Defects and Binarization Method
3.2. Defect Detection for Sealing Wrinkles, Head Problems, and Pressure Tube Defects
3.3. Defect Detection for Black Spot Defects
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hasan, D.; Zhu, J.; Wang, H.; Bin Sulaiman, O.; Yazici, M.S.; Grzebyk, T.; Walczak, R.D.; A Dziuban, J.; Lee, C. Feasibility Study of High-Voltage Ion Mobility for Gas Identification Based on Triboelectric Power Source; IEEE: Krakow, Poland, 2019; pp. 1–5. [Google Scholar]
- Zhu, J.; Ren, Z.; Lee, C. Toward Healthcare Diagnoses by Machine-Learning-Enabled Volatile Organic Compound Identification. ACS Nano 2021, 15, 894–903. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Sun, Z.; Xu, J.; Walczak, R.D.; Dziuban, J.A.; Lee, C. Volatile organic compounds sensing based on Bennet doubler-inspired triboelectric nanogenerator and machine learning-assisted ion mobility analysis. Sci. Bull. 2021, 66, 1176–1185. [Google Scholar] [CrossRef] [PubMed]
- Yasheng, C.; Weiku, W. Text recognition in radiographic weld images. Insight Non-Destr. Test. Cond. Monit. 2019, 61, 597–602. [Google Scholar] [CrossRef]
- Wang, J.; Fu, P.; Gao, R.X. Machine vision intelligence for product defect inspection based on deep learning and Hough transform. J. Manuf. Syst. 2019, 51, 52–60. [Google Scholar] [CrossRef]
- Xiao, G.; Li, Y.; Xia, Q.; Cheng, X.; Chen, W. Research on the on-line dimensional accuracy measurement method of conical spun workpieces based on machine vision technology. Measurement 2019, 148, 106881. [Google Scholar] [CrossRef]
- Rui, W.; Feng, H.; Yi, J.; Wenfu, W. Correlation between moisture content and machine vision image characteristics of corn kernels. Int. J. Food Prop. 2020, 23, 319–328. [Google Scholar] [CrossRef]
- Li, J.B.; Huang, W.Q.; Zhao, C.J. Machine vision technology for detecting the external defects of fruits—A review. Imaging Sci. J. 2014, 63, 241–251. [Google Scholar] [CrossRef]
- Zhang, L.; Duan, X.; Huang, L. Application of the Machine Vision Inspection Technology in the High-efficiency Food Quality Inspection. Basic Clin. Pharmacol. Toxicol. 2020, 127, 218. [Google Scholar]
- Unnikrishnan, S.; Donovan, J.; Macpherson, R.; Tormey, D. Machine Learning for Automated Quality Evaluation in Pharmaceutical Manufacturing of Emulsions. J. Pharm. Innov. 2019, 15, 392–403. [Google Scholar] [CrossRef]
- Galata, D.L.; Mészáros, L.A.; Kállai-Szabó, N.; Szabó, E.; Pataki, H.; Marosi, G.; Nagy, Z.K. Applications of machine vision in pharmaceutical technology: A review. Eur. J. Pharm. Sci. 2021, 159, 105717. [Google Scholar] [CrossRef]
- Ficzere, M.; Meszaros, L.A.; Madarasz, L.; Novak, M.; Nagy, Z.K.; Galata, D.L. Indirect monitoring of ultralow dose API content in continuous wet granulation and tableting by machine vision. Int. J. Pharm. 2021, 607, 121008. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Mashwani, W.K.; Tahir, M.H.; Belhaouari, S.B.; Alrabaiah, H.; Naeem, S.; Nasir, J.A.; Jamal, F.; Chesneau, C. Statistical features analysis and discrimination of maize seeds utilizing machine vision approach. J. Intell. Fuzzy Syst. 2021, 40, 703–714. [Google Scholar] [CrossRef]
- Vrochidou, E.; Bazinas, C.; Manios, M.; Papakostas, G.A.; Pachidis, T.P.; Kaburlasos, V.G. Machine Vision for Ripeness Estimation in Viticulture Automation. Horticulturae 2021, 7, 282. [Google Scholar] [CrossRef]
- Tu, K.-L.; Li, L.-J.; Yang, L.-M.; Wang, J.-H.; Sun, Q. Selection for high quality pepper seeds by machine vision and classifiers. J. Integr. Agric. 2018, 17, 1999–2006. [Google Scholar] [CrossRef]
- Aksoy, G.; Nar, F. Multiplicative-additive despeckling in SAR images. Turk. J. Electr. Eng. Comput. Sci. 2020, 28, 1871–1885. [Google Scholar] [CrossRef]
- Li, Z.; Zhong, P.; Tang, X.; Chen, Y.; Su, S.; Zhai, T. A New Method to Evaluate Yarn Appearance Qualities Based on Machine Vision and Image Processing. IEEE Access 2020, 8, 30928–30937. [Google Scholar] [CrossRef]
- Sikander, G.; Anwar, S. A Novel Machine Vision-Based 3D Facial Action Unit Identification for Fatigue Detection. IEEE Trans. Intell. Transp. Syst. 2021, 22, 2730–2740. [Google Scholar] [CrossRef]
- Zhu, J.; Cho, M.; Li, Y.; He, T.; Ahn, J.; Park, J.; Ren, T.-L.; Lee, C.; Park, I. Machine learning-enabled textile-based graphene gas sensing with energy harvesting-assisted IoT application. Nano Energy 2021, 86, 106035. [Google Scholar] [CrossRef]
- Bahaghighat, M.; Abedini, F.; Xin, Q.; Zanjireh, M.M.; Mirjalili, S. Using machine learning and computer vision to estimate the angular velocity of wind turbines in smart grids remotely. Energy Rep. 2021, 7, 8561–8576. [Google Scholar] [CrossRef]
- Zhang, Z.; He, T.; Zhu, M.; Sun, Z.; Shi, Q.; Zhu, J.; Dong, B.; Yuce, M.R.; Lee, C. Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications. npj Flex. Electron. 2020, 4, 29. [Google Scholar] [CrossRef]
- Xu, Q.; Zhou, L. Straw Defect Detection Algorithm Based on Pruned YOLOv3. In Proceedings of the 2021 4th International Conference on Control and Computer Vision, Macau, China, 13–15 August 2021; pp. 64–69. [Google Scholar]
- Sun, J.; Li, C.; Wu, X.-J.; Palade, V.; Fang, W. An Effective Method of Weld Defect Detection and Classification Based on Machine Vision. IEEE Trans. Ind. Inform. 2019, 15, 6322–6333. [Google Scholar] [CrossRef]
- Liu, J.; Huang, Y.; Zou, Q.; Zhang, X.; Wang, S.; Zhao, X. Rail Fastener Defect Detection Method for Multi Railways Based on Machine Vision. Zhongguo Tiedao Kexue/China Railw. Sci. 2019, 40, 27–35, (In English Chinese). [Google Scholar] [CrossRef]
- Harnsoongnoen, S.; Jaroensuk, N. The grades and freshness assessment of eggs based on density detection using machine vision and weighing sensor. Sci. Rep. 2021, 11, 16640. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Cai, X.; Miao, P.; Li, S.; Shu, C.; Li, P.; Li, W.; Li, Z. A feasibility research on the application of machine vision technology in appearance quality inspection of Xuesaitong dropping pills. Acta Part A Mol. Biomol. Spectrosc. 2021, 258, 119787. [Google Scholar] [CrossRef]
- Tong, J.H.; Li, J.B.; Jiang, H.Y. Machine vision techniques for the evaluation of seedling quality based on leaf area. Biosyst. Eng. 2013, 115, 369–379. [Google Scholar] [CrossRef]
- Wang, L.-H.; Ding, L.-J.; Xie, C.-X.; Jiang, S.-Y.; Kuo, I.-C.; Wang, X.-K.; Gao, J.; Huang, P.-C.; Abu, P.A.R. Automated Classification Model With OTSU and CNN Method for Premature Ventricular Contraction Detection. IEEE Access 2021, 9, 156581–156591. [Google Scholar] [CrossRef]
- Xiao, L.; Fan, C.; Ouyang, H.; Abate, A.F.; Wan, S. Adaptive trapezoid region intercept histogram based Otsu method for brain MR image segmentation. J. Ambient. Intell. Humaniz. Comput. 2021, 13, 2161–2176. [Google Scholar] [CrossRef]
- Mustafa, W.A.; Khairunizam, W.; Yazid, H.; Ibrahim, Z.; Shahriman, A.B.; Razlan, Z.M. Image Correction Based on Homomorphic Filtering Approaches: A Study; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar]
- Kaur, K.; Jindal, N.; Singh, K. Improved homomorphic filtering using fractional derivatives for enhancement of low contrast and non-uniformly illuminated images. Multimed. Tools Appl. 2019, 78, 27891–27914. [Google Scholar] [CrossRef]
- Sung-Jea, K.; Morales, A.; Kyung-Hoon, L. A fast implementation algorithm and a bit-serial realization method for grayscale morphological opening and closing. IEEE Trans. Signal Process. 1995, 43, 3058–3061. [Google Scholar] [CrossRef]
- Salazar-Colores, S.; Ramos-Arreguín, J.-M.; Echeverri, C.J.O.; Cabal-Yepez, E.; Pedraza-Ortega, J.-C.; Rodriguez-Resendiz, J. Image dehazing using morphological opening, dilation and Gaussian filtering. Signal Image Video Process. 2018, 12, 1329–1335. [Google Scholar] [CrossRef]
- Hosny, K.M.; Hamza, H.M.; Lashin, N.A. Copy-move forgery detection of duplicated objects using accurate PCET moments and morphological operators. Imaging Sci. J. 2018, 66, 330–345. [Google Scholar] [CrossRef]
- Wang, D.; Fu, Y.; Yang, G.; Yang, X.; Liang, D.; Zhou, C.; Zhang, N.; Wu, H.; Zhang, D. Combined Use of FCN and Harris Corner Detection for Counting Wheat Ears in Field Conditions. IEEE Access 2019, 7, 178930–178941. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, X.; Shi, Q.; He, T.; Sun, Z.; Guo, X.; Liu, W.; Sulaiman, O.B.; Dong, B.; Lee, C. Development Trends and Perspectives of Future Sensors and MEMS/NEMS. Micromachines 2019, 11, 7. [Google Scholar] [CrossRef]
- Liang, S.; Li, Y.; Lv, Z. Using Camshift and Kalman Algorithm to Trajectory Characteristic Matching of Basketball Players. Complexity 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Heuer, S. The influence of image characteristics on image recognition: A comparison of photographs and line drawings. Aphasiology 2015, 30, 943–961. [Google Scholar] [CrossRef]
- Xiao, H.; Guo, B.; Zhang, H.; Li, C. A Parallel Algorithm of Image Mean Filtering Based on OpenCL. IEEE Access 2021, 9, 65001–65016. [Google Scholar] [CrossRef]
- Li, H.; Tang, J. Dairy Goat Image Generation Based on Improved-Self-Attention Generative Adversarial Networks. IEEE Access 2020, 8, 62448–62457. [Google Scholar] [CrossRef]
- An, F.-P.; Liu, J.-E. Medical image segmentation algorithm based on multilayer boundary perception-self attention deep learning model. Multimed. Tools Appl. Int. J. 2021, 80, 15017–15039. [Google Scholar] [CrossRef]
- Yu, J.; Yang, Y.; Zhang, H.; Sun, H.; Zhang, Z.; Xia, Z.; Zhu, J.; Dai, M.; Wen, H. Spectrum Analysis Enabled Periodic Feature Reconstruction Based Automatic Defect Detection System for Electroluminescence Images of Photovoltaic Modules. Micromachines 2022, 13, 332. [Google Scholar] [CrossRef]
- Varshney, M.; Singh, P. Optimizing nonlinear activation function for convolutional neural networks. Signal Image Video Process. 2021, 15, 1323–1330. [Google Scholar] [CrossRef]
- Sun, H.; Yang, Y.; Yu, J.; Zhang, Z.; Xia, Z.; Zhu, J.; Zhang, H. Artificial Intelligence of Manufacturing Robotics Health Monitoring System by Semantic Modeling. Micromachines 2022, 13, 300. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y. Multiple predictingK-fold cross-validation for model selection. J. Nonparametric Stat. 2017, 30, 197–215. [Google Scholar] [CrossRef]
Defect | Number of Samples | Correct Number of Samples | Recognition Rate (%) |
---|---|---|---|
Head problems | 100 | 98 | 98 |
Pressure tube defects | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Meng, P.; Yang, Y.; Zhu, J. Machine Learning-Augmented Micro-Defect Detection on Plastic Straw. Micro 2023, 3, 484-495. https://doi.org/10.3390/micro3020032
Zhang Z, Meng P, Yang Y, Zhu J. Machine Learning-Augmented Micro-Defect Detection on Plastic Straw. Micro. 2023; 3(2):484-495. https://doi.org/10.3390/micro3020032
Chicago/Turabian StyleZhang, Zhisheng, Peng Meng, Yaxin Yang, and Jianxiong Zhu. 2023. "Machine Learning-Augmented Micro-Defect Detection on Plastic Straw" Micro 3, no. 2: 484-495. https://doi.org/10.3390/micro3020032
APA StyleZhang, Z., Meng, P., Yang, Y., & Zhu, J. (2023). Machine Learning-Augmented Micro-Defect Detection on Plastic Straw. Micro, 3(2), 484-495. https://doi.org/10.3390/micro3020032