A Method for 3D Modeling of Chemical Separation in Microfabricated Gas Chromatography Columns: Case Studies in Temperature Gradients and Stationary Phase Topologies
Abstract
:1. Introduction
2. Model Development
2.1. Modeled Geometries
2.2. Modeling of the Gas Flow
2.3. Modeling of the Chemical Transport
2.4. Modeling of the Temperature Effects
2.5. Simulation Setup
2.6. Mesh Development
3. Results and Discussion
3.1. Velocity Profile
3.2. Concentration Profile
3.3. Mesh Convergence and Experimental Verification
3.4. Stationary Phase Topologies in Microfabricated Columns
3.5. Impact of Temperature Gradients
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grob, R.L.; Barry, E.F. Theory of Gas Chromatography. In Modern Practice of Gas Chromatography, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Qin, Y.; Gianchandani, Y.B. A fully electronic microfabricated gas chromatograph with complementary capacitive detectors for indoor pollutants. Microsyst. Nanoeng. 2016, 2, 15049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whiting, J.J.; Myers, E.; Manginell, R.P.; Moorman, M.W.; Anderson, J.; Fix, C.S.; Washburn, C.; Staton, A.; Porter, D.; Graf, D.; et al. A high-speed, high-performance, microfabricated comprehensive two-dimensional gas chromatograph. Lab Chip 2019, 19, 1633–1643. [Google Scholar] [CrossRef] [PubMed]
- Zampolli, S.; Elmi, I.; Cardinali, G.C.; Masini, L.; Bonafè, F.; Zardi, F. Compact-GC platform: A flexible system integration strategy for a completely microsystems-based gas-chromatograph. Sens. Actuators B Chem. 2020, 305, 127444. [Google Scholar] [CrossRef]
- Wang, J.; Nuñovero, N.; Nidetz, R.; Peterson, S.J.; Bookover, B.M.; Steinecker, W.H.; Zellers, E.T. Belt-Mounted Micro-Gas-Chromatograph Prototype for Determining Personal Exposure to Volatile-Organic-Compound Mixture Components. Anal. Chem. 2019, 91, 4747–4754. [Google Scholar] [CrossRef]
- Regmi, B.P.; Agah, M. Micro Gas Chromatography: An Overview of Critical Components and Their Integration. Anal. Chem. 2018, 90, 13133–13150. [Google Scholar] [CrossRef] [Green Version]
- Chan, R.; Agah, M. Semi-Packed Gas Chromatography Columns with Density Modulated Pillars. J. Microelectromech. Syst. 2019, 28, 114–124. [Google Scholar] [CrossRef]
- Ghosh, A.; Foster, A.R.; Johnson, J.C.; Vilorio, C.R.; Tolley, L.T.; Iverson, B.D.; Hawkins, A.R.; Tolley, H.D.; Lee, M.L. Stainless-Steel Column for Robust, High-Temperature Microchip Gas Chromatography. Anal. Chem. 2019, 91, 792–796. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Gianchandani, Y.B. iGC2: An architecture for micro gas chromatographs utilizing integrated bi-directional pumps and multi-stage preconcentrators. J. Micromech. Microeng. 2014, 24, 65011. [Google Scholar] [CrossRef] [Green Version]
- Stadermann, M.; McBrady, A.D.; Dick, B.; Reid, V.R.; Noy, A.; Synovec, A.R.E.; Bakajin, O. Ultrafast Gas Chromatography on Single-Wall Carbon Nanotube Stationary Phases in Microfabricated Channels. Anal. Chem. 2006, 78, 5639–5644. [Google Scholar] [CrossRef]
- Reid, V.R.; Stadermann, M.; Bakajin, O.; Synovec, R.; E Synovec, R. High-speed, temperature programmable gas chromatography utilizing a microfabricated chip with an improved carbon nanotube stationary phase. Talanta 2009, 77, 1420–1425. [Google Scholar] [CrossRef]
- Shakeel, H.; Rice, G.W.; Agah, M. Semipacked columns with atomic layer-deposited alumina as a stationary phase. Sens. Actuators B Chem. 2014, 203, 641–646. [Google Scholar] [CrossRef]
- Akbar, M.; Shakeel, H.; Agah, M. GC-on-Chip: Integrated Column and Photo Ionization Detector. Lab Chip 2015, 15, 1748–1758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shakeel, H.; Agah, M. High density semipacked separation columns with optimized atomic layer deposited phases. Sens. Actuators B Chem. 2017, 242, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Breshike, C.J.; Furstenberg, R.; Dominguez, D.; Kusterbeck, A.; Kozak, D.; Stievater, T.; McGill, R.A. Gas chromatography using a spin-coated stationary phase and a molded elastomer microfabricated-channel. J. Chromatogr. A 2020, 1610, 460555. [Google Scholar] [CrossRef]
- Barry, E.F. Columns: Packed and capillary; Column selection in gas chromatography. In Modern Practice of Gas Chromatography, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Spangler, G.E. Height Equivalent to a Theoretical Plate Theory for Rectangular GC Columns. Anal. Chem. 1998, 70, 4805–4816. [Google Scholar] [CrossRef]
- Poppe, H. Mass transfer in rectangular chromatographic channels. J. Chromatogr. A 2002, 948, 3–17. [Google Scholar] [CrossRef]
- Rubey, W.A. A different operational mode for addressing the general elution problem in rapid analysis gas chromatography. J. High Resolut. Chromatogr. 1991, 14, 542–548. [Google Scholar] [CrossRef]
- Rubey, W.A. Operational theory and instrumental implementation of the thermal gradient programmed gas chromatography (TGPGC) mode of analysis. J. High Resolut. Chromatogr. 1992, 15, 795–799. [Google Scholar] [CrossRef]
- Phillips, J.B.; Jain, V. On-Column Temperature Programming in Gas Chromatography Using Temperature Gradients along the Capillary Column. J. Chromatogr. Sci. 1995, 33, 541–550. [Google Scholar] [CrossRef]
- Jain, V.; Phillips, J.B. High-Speed Gas Chromatography Using Simultaneous Temperature Gradients in Both Time and Distance along Narrow-Bore Capillary Columns. J. Chromatogr. Sci. 1995, 33, 601–605. [Google Scholar] [CrossRef]
- Nerheim, A.G. Gas-Liquid Chromathermography. Anal. Chem. 1960, 32, 436–437. [Google Scholar] [CrossRef]
- Blumberg, L.M. Outline of a theory of focusing in linear chromatography. Anal. Chem. 1992, 64, 2459–2460. [Google Scholar] [CrossRef] [PubMed]
- Blumberg, L.M. Variance of a zone migrating in a linear medium: II. Time-varying non-uniform medium. J. Chromatogr. 1993, 637, 119–128. [Google Scholar] [CrossRef]
- Blumberg, L.M. Focusing Cannot Enhance Resolution or Speed Limit of a GC Column. J. Chromatogr. Sci. 1997, 35, 451–454. [Google Scholar]
- Blumberg, L.M.; Berger, T.A. Variance of a zone migrating in a non-uniform time-invariant linear medium. J. Chromatogr. A 1992, 596, 1–13. [Google Scholar] [CrossRef]
- Blumberg, L.M. Limits of resolution and speed of analysis in linear chromatography with and without focusing. Chromatographia 1994, 39, 719–728. [Google Scholar] [CrossRef]
- Chanson, H. Fundamentals of open channel flows. In Environmental Hydraulics of Open Channel Flows; Butterworth-Heinemann: Oxford, UK, 2004; pp. 11–34. [Google Scholar]
- Fuller, E.N.; Schettler, P.D.; Giddings, J.C. New method for prediction of binary gas-phase diffusion coefficients. Ind. Eng. Chem. 1966, 58, 18–27. [Google Scholar] [CrossRef]
- Lugg, G.A. Diffusion coefficients of some organic and other vapors in air. Anal. Chem. 1968, 40, 1072–1077. [Google Scholar] [CrossRef]
- Arrhenius, S. Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte. Z. Phys. Chem. 1889, 4U, 96–116. [Google Scholar] [CrossRef] [Green Version]
- Abdellah, M.H.; Scholes, C.; Freeman, B.; Liu, L.; Kentish, S. Transport of terpenes through composite PDMS/PAN solvent resistant nanofiltration membranes. Sep. Purif. Technol. 2018, 207, 470–476. [Google Scholar] [CrossRef]
- Chao, K.-P.; Wang, V.-S.; Hong, G.-M. Development of an in-cell SPME method to determine the chemical resistance of polymeric membranes to permeation by organic solvents. Polym. Test. 2012, 31, 1–6. [Google Scholar] [CrossRef]
- Poole, C. Handbook of Methods and Instrumentation in Separation Science; Elsevier Science: Burlington, NJ, USA, 2009; p. 300. [Google Scholar]
- Kloskowski, A.; Chrzanowski, W.; Pilarczyk, M.; Namieśnik, J. Partition coefficients of selected environmentally important volatile organic compounds determined by gas–liquid chromatography with polydimethylsiloxane stationary phase. J. Chem. Thermodyn. 2005, 37, 21–29. [Google Scholar] [CrossRef]
- Nevers, N. Appendix A: Useful Tables and Charts. In Physical and Chemical Equilibrium for Chemical Engineers, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Jensen, J.L.W.V. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 1906, 30, 175–193. [Google Scholar] [CrossRef]
Mesh Data | Time-Step (s) | Performance Parameters | Error (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mesh Cases | nL | (0-2) s | (2-34) s | tR (s) | PWHH (s) | N | Rs | ||||
Hex. | Ben. | Hex. | Ben. | Hex. | Ben. | ||||||
(i) | 2000 | 0.05 | 0.1 | 19.34 | 31.04 | 1.6 | 2.3 | 810 | 1009 | 3.54 | 72.93 |
(ii) | 2500 | 0.05 | 0.1 | 19.34 | 31.04 | 1.5 | 2.1 | 921 | 1211 | 3.83 | 57.90 |
(iii) | 3000 | 0.05 | 0.1 | 19.44 | 31.14 | 1.5 | 2.1 | 931 | 1218 | 3.83 | 57.90 |
(iv) | 3000 | 0.02 | 0.07 | 19.30 | 30.99 | 1.33 | 1.96 | 1167 | 1385 | 4.19 | 47.37 |
(v) | 3500 | 0.02 | 0.07 | 19.30 | 30.99 | 1.26 | 1.89 | 1300 | 1490 | 4.38 | 42.10 |
(vi) | 4000 | 0.02 | 0.07 | 19.30 | 31.06 | 1.26 | 1.75 | 1300 | 1745 | 4.61 | 31.58 |
(vii) | 4500 | 0.02 | 0.07 | 19.30 | 31.06 | 1.26 | 1.75 | 1300 | 1745 | 4.61 | 31.58 |
(viii) | 4500 | 0.02 | 0.04 | 19.18 | 30.90 | 1.12 | 1.68 | 1624 | 1874 | 4.94 | 26.32 |
(ix) | 5000 | 0.02 | 0.04 | 19.18 | 30.94 | 1.08 | 1.64 | 1747 | 1971 | 5.10 | 23.31 |
(x) | 5500 | 0.02 | 0.04 | 19.18 | 30.94 | 1.08 | 1.6 | 1747 | 2071 | 5.18 | 20.30 |
(xi) | 6000 | 0.02 | 0.04 | 19.18 | 30.94 | 1.08 | 1.52 | 1747 | 2295 | 5.34 | 14.29 |
(xii) | 6500 | 0.02 | 0.04 | 19.18 | 30.94 | 1.00 | 1.52 | 2037 | 2295 | 5.51 | 14.29 |
(xiii) | 6500 | 0.01 | 0.02 | 19.11 | 30.85 | 0.98 | 1.5 | 2106 | 2343 | 5.59 | 12.78 |
(xiv) | 7000 | 0.01 | 0.02 | 19.11 | 30.85 | 0.96 | 1.46 | 2195 | 2473 | 5.72 | 9.77 |
(xv) | 8000 | 0.01 | 0.02 | 19.11 | 30.87 | 0.94 | 1.42 | 2289 | 2618 | 5.88 | 6.77 |
Ana. | - | - | - | 16.44 | 26.46 | 0.86 | 1.17 | 2040 | 2823 | 5.82 | - |
Exp. | - | - | - | 21.48 | 30.36 | 1.32 | 1.56 | 1467 | 2098 | 3.64 | - |
Stationary Phase Cases | Performance Parameters | ||||||
---|---|---|---|---|---|---|---|
tR (s) | PWHH (s) | N | Rs | ||||
Hexane | Benzene | Hexane | Benzene | Hexane | Benzene | ||
1 | 24.59 | 42.07 | 2.26 | 3.32 | 656 | 890 | 3.70 |
2 | 23.73 | 40.51 | 1.90 | 2.80 | 864 | 1160 | 4.21 |
3 | 23.71 | 40.51 | 2.94 | 4.14 | 360 | 530 | 2.80 |
Temp. Cases | Performance Parameters | ||||||
---|---|---|---|---|---|---|---|
tR (s) | PWHH (s) | N | Rs | ||||
Hexane | Benzene | Hexane | Benzene | Hexane | Benzene | ||
I | 16.95 | 26.69 | 0.86 | 1.26 | 2152 | 2486 | 5.42 |
II | 16.95 | 26.69 | 0.86 | 1.26 | 2152 | 2486 | 5.42 |
III | 16.61 | 25.97 | 0.84 | 1.20 | 2166 | 2594 | 5.41 |
Temp. Cases | Performance Parameters | ||||||
---|---|---|---|---|---|---|---|
tR (s) | PWHH (s) | N | Rs | ||||
Hexane | Benzene | Hexane | Benzene | Hexane | Benzene | ||
IV | 20.62 | 34.56 | 2.66 | 3.70 | 333 | 483 | 2.59 |
V | 20.60 | 34.52 | 2.66 | 3.72 | 332 | 477 | 2.57 |
VI | 20.10 | 33.45 | 2.60 | 3.58 | 330 | 484 | 2.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S.; Qin, Y.; Gianchandani, Y.B. A Method for 3D Modeling of Chemical Separation in Microfabricated Gas Chromatography Columns: Case Studies in Temperature Gradients and Stationary Phase Topologies. Micro 2022, 2, 589-604. https://doi.org/10.3390/micro2040039
Singh S, Qin Y, Gianchandani YB. A Method for 3D Modeling of Chemical Separation in Microfabricated Gas Chromatography Columns: Case Studies in Temperature Gradients and Stationary Phase Topologies. Micro. 2022; 2(4):589-604. https://doi.org/10.3390/micro2040039
Chicago/Turabian StyleSingh, Shrutika, Yutao Qin, and Yogesh B. Gianchandani. 2022. "A Method for 3D Modeling of Chemical Separation in Microfabricated Gas Chromatography Columns: Case Studies in Temperature Gradients and Stationary Phase Topologies" Micro 2, no. 4: 589-604. https://doi.org/10.3390/micro2040039
APA StyleSingh, S., Qin, Y., & Gianchandani, Y. B. (2022). A Method for 3D Modeling of Chemical Separation in Microfabricated Gas Chromatography Columns: Case Studies in Temperature Gradients and Stationary Phase Topologies. Micro, 2(4), 589-604. https://doi.org/10.3390/micro2040039