Soft-Microstructured Transparent Electrodes for Photonic-Enhanced Flexible Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate Preparation
2.2. Deposition of PS Colloidal Monolayer
2.3. Shaping of Colloidal Mask
2.4. IZO Deposition
2.5. Lift-Off of Colloidal Mask
2.6. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashok, S. Solar Energy. Available online: https://www.britannica.com/science/solar-energy (accessed on 20 December 2020).
- Svarc, J. Most Efficient Solar Panels. 2021. Available online: https://www.cleanenergyreviews.info/blog/most-efficient-solar-panels (accessed on 10 March 2021).
- Solar Energy Technologies Office. Solar Photovoltaic Cell Basics. Available online: https://www.energy.gov/eere/solar/solar-photovoltaic-cell-basics (accessed on 5 January 2021).
- Ding, Y.; Chen, P.; Fan, Q.H.; Hou, G. Photonic structures for light trapping in thin film silicon solar cells: Design and experiment. Coatings 2017, 7, 236. [Google Scholar] [CrossRef] [Green Version]
- Karg, M.; König, T.A.F.; Retsch, M.; Stelling, C.; Reichstein, P.M.; Honold, T.; Thelakkat, M.; Fery, A. Colloidal self-assembly concepts for light management in photovoltaics. Mater. Today 2014, 18, 185–205. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Sobrado, O.; Mendes, M.J.; Haque, S.; Mateus, T.; Araujo, A.; Aguas, H.; Fortunato, E.; Martins, R. Colloidal-lithographed TiO2 photonic nanostructures for solar cell light trapping. J. Mater. Chem. C 2017, 5, 6852–6861. [Google Scholar] [CrossRef]
- Mendes, M.J.; Sanchez-Sobrado, O.; Haque, S.; Mateus, T.; Águas, H.; Fortunato, E.; Martins, R. Wave-optical front structures on silicon and perovskite thin-film solar cells. In Solar Cells and Light Management; Elsevier: Amsterdam, The Netherlands, 2020; pp. 315–354. [Google Scholar]
- Thangavel, N.R.; Adhyaksa, G.W.P.; Dewi, H.A.; Tjahjana, L.; Bruno, A.; Birowosuto, M.D.; Wang, H.; Mathews, N.; Mhaisalkar, S. Disordered polymer antireflective coating for improved perovskite photovoltaics. ACS Photonics 2020, 7, 1971–1977. [Google Scholar] [CrossRef]
- Dudem, B.; Heo, J.H.; Leem, J.W.; Yu, J.S.; Im, S.H. CH3NH3PbI3planar perovskite solar cells with antireflection and self-cleaning function layers. J. Mater. Chem. A 2016, 4, 7573–7579. [Google Scholar] [CrossRef]
- Mendes, M.J.; Haque, S.; Sanchez-Sobrado, O.; Araújo, A.; Águas, H.; Fortunato, E.; Martins, R. Optimal-enhanced solar cell ultra-thinning with broadband nanophotonic light capture. iScience 2018, 3, 238–254. [Google Scholar] [CrossRef]
- Heifetz, A.; Kong, S.-C.; Sahakian, A.V.; Taflove, A.; Backman, V. Photonic Nanojets. J. Comput. Theor. Nanosci. 2009, 6, 1979–1992. [Google Scholar] [CrossRef] [PubMed]
- Centeno, P.; Alexandre, M.; Chapa, M.; Pinto, J.V.; Deuermeier, J.; Mateus, T.; Fortunato, E.; Martins, R.; Águas, H.; Mendes, M.J. Self-cleaned photonic-enhanced solar cells with nanostructured Parylene-C. Adv. Mater. Interfaces 2020, 7, 2000264. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, P.; Zhou, X.; Li, C.; Li, H.; Hu, X.; Li, F.; Liu, X.; Li, M.; Song, Y. Diffraction-grated perovskite induced highly efficient solar cells through nanophotonic light trapping. Adv. Energy Mater. 2018, 8, 1702960. [Google Scholar] [CrossRef]
- Li, K.; Haque, S.; Martins, A.; Fortunato, E.; Martins, R.; Mendes, M.J.; Schuster, C. Simple, yet mighty, principles to maximise photon absorption in thin media. Optica 2020, 7, 1377–1384. [Google Scholar] [CrossRef]
- Deng, K.; Liu, Z.; Wang, M.; Li, L. Nanoimprinted grating-embedded perovskite solar cells with improved light management. Adv. Funct. Mater. 2019, 29, 1900830. [Google Scholar] [CrossRef]
- Haque, S.; Mendes, M.J.; Sanchez-Sobrado, O.; Águas, H.; Fortunato, E.; Martins, R. Photonic-structured TiO2 for high-efficiency, flexible and stable Perovskite solar cells. Nano Energy 2019, 59, 91–101. [Google Scholar] [CrossRef]
- Alexandre, M.; Chapa, M.; Haque, S.; Mendes, M.J.; Águas, H.; Fortunato, E.; Martins, R. Optimum luminescent down-shifting properties for high efficiency and stable perovskite solar cells. ACS Appl. Energy Mater. 2019, 2, 2930–2938. [Google Scholar] [CrossRef]
- Brongersma, M.L.; Cui, Y.; Fan, S. Light management for photovoltaics using high-index nanostructures. Nat. Mater. 2014, 13, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Garnett, E.C.; Ehrler, B.; Polman, A.; Alarcon-Llado, E. Photonics for photovoltaics: Advances and opportunities. ACS Photonics 2021, 8, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Mendes, M.J.; Araujo, A.; Vicente, A.; Águas, H.; Ferreira, I.; Fortunato, E.; Martins, R. Design of optimized wave-optical spheroidal nanostructures for photonic-enhanced solar cells. Nano Energy 2016, 26, 286–296. [Google Scholar] [CrossRef]
- Grandidier, J.; Deceglie, M.G.; Callahan, D.M.; Atwater, H.A. Simulations of solar cell absorption enhancement using resonant modes of a nanosphere array. In Spie Opto; SPIE: London, UK, 2012; Volume 8256, p. 825603. [Google Scholar]
- Liu, H.; Ding, Y.; Jiang, W.; Lian, Q.; Yin, L.; Shi, Y.; Lu, B. Novel imprint lithography process used in fabrication of micro/nanostructures in organic photovoltaic devices. J. Micro/Nanolithogr. MEMS MOEMS 2009, 8, 021170. [Google Scholar] [CrossRef]
- Oliveira, R.; Mouquinho, A.; Centeno, P.; Alexandre, M.; Haque, S.; Martins, R.; Fortunato, E.; Águas, H.; Mendes, M. Colloidal lithography for photovoltaics: An attractive route for light management. Nanomaterials 2021, 11, 1665. [Google Scholar] [CrossRef]
- Chen, H.L.; Chuang, S.Y.; Lin, C.H.; Lin, Y.H. Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells. Opt. Express 2007, 15, 14793–14803. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-S.; Yu, J.-H.; Hwang, K.-H.; Nam, S.-H.; Boo, J.-H.; Yun, S.H. Patterning ITO by template-assisted colloidal-lithography for enhancing power conversion efficiency in organic photovoltaic. J. Nanosci. Nanotechnol. 2016, 16, 5024–5028. [Google Scholar] [CrossRef]
- Vinckx, W.; Vanacken, J.; Moshchalkov, V.V. Vortex pinning in Nb thin films modulated by nanospheres. J. Appl. Phys. 2006, 100, 044307. [Google Scholar] [CrossRef]
- Lin, W.-Y.; Ho, C.-C.; Hsu, W.-K. Large-scale production of ferromagnetic nanorings by a modified hole-mask colloidal lithography: Controlled creation of flux-closure vortex state. AIP Adv. 2016, 6, 025102. [Google Scholar] [CrossRef]
- Parchine, M.; Kohoutek, T.; Bardosova, M.; Pemble, M.E. Large area colloidal photonic crystals for light trapping in flexible organic photovoltaic modules applied using a roll-to-roll Langmuir-Blodgett method. Sol. Energy Mater. Sol. Cells 2018, 185, 158–165. [Google Scholar] [CrossRef]
- Khan, S.B.; Irfan, S.; Zhuanghao, Z.; Lee, S.L. Influence of refractive index on antireflectance efficiency of thin films. Materials 2019, 12, 1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boarino, L.; Laus, M. Colloidal Lithography. In Handbook of Porous Silicon; Gabler: Wiesbaden, Germany, 2014; pp. 541–550. [Google Scholar]
- Sanchez-Sobrado, O.; Mendes, M.J.; Haque, S.; Mateus, T.; Águas, H.; Fortunato, E.; Martins, R. Lightwave trapping in thin film solar cells with improved photonic-structured front contacts. J. Mater. Chem. C 2019, 7, 6456–6464. [Google Scholar] [CrossRef]
- Sanchez-Sobrado, O.; Mendes, M.J.; Mateus, T.; Costa, J.; Nunes, D.; Águas, H.; Fortunato, E.; Martins, R. Photonic-structured TCO front contacts yielding optical and electrically enhanced thin-film solar cells. Sol. Energy 2020, 196, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Torrisi, G.; Luis, J.S.; Sanchez-Sobrado, O.; Raciti, R.; Mendes, M.J.; Águas, H.; Fortunato, E.; Martins, R.; Terrasi, A. Colloidal-structured metallic micro-grids: High performance transparent electrodes in the red and infrared range. Sol. Energy Mater. Sol. Cells 2019, 197, 7–12. [Google Scholar] [CrossRef]
- Gao, T.; Wang, B.; Ding, B.; Lee, J.-K.; Leu, P.W. Uniform and ordered copper nanomeshes by microsphere lithography for transparent electrodes. Nano Lett. 2014, 14, 2105–2110. [Google Scholar] [CrossRef]
- Haque, S.; Alexandre, M.; Mendes, M.J.; Águas, H.; Fortunato, E.; Martins, R. Design of wave-optical structured substrates for ultra-thin perovskite solar cells. Appl. Mater. Today 2020, 20, 100720. [Google Scholar] [CrossRef]
- Corkery, R.W. Langmuir−Blodgett (L−B) Multilayer Films. Langmuir 1997, 13, 3591–3594. [Google Scholar] [CrossRef]
- Cho, Y.-S.; Yi, G.-R.; Moon, J.H.; Kim, D.-C.; Lee, B.-J.; Yang, S.-M. Dry etching of colloidal crystal films. J. Colloid Interface Sci. 2010, 341, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Wang, F.; Song, K.; Yang, G.; Tung, C.-H. Oxygen plasma etching-induced crystalline lattice transformation of colloidal photonic crystals. J. Am. Chem. Soc. 2010, 132, 17340–17342. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Shi, D.; Chen, Y.; Chen, X.; Gao, J.; Zhao, N.; Wong, C.-P. A facile, low-cost plasma etching method for achieving size controlled non-close-packed monolayer arrays of polystyrene nano-spheres. Nanomaterials 2019, 9, 605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
RIE Atmosphere | Etched Material | Time, tRIE (s) | RIE Power (W) | Gas Pressure (mTorr) | Plasma Flow (sccm) |
---|---|---|---|---|---|
O2 | Polystyrene | 90–450 | 50 | 50 | 50 |
Ar/CF4 | IZO | 180 | 100 | 150 | 4/16 |
Fabrication Parameter | Analyzed Sets | Resulting Property |
---|---|---|
Spheres’ diameter, D | 1.3 and 2.0 µm | Array pitch |
O2 RIE time, tRIE | 0, 90, 180, 270, 360 and 450 s | Mesh line width |
IZO thickness, h | 175, 250, 325 and 500 nm | Feature’s height |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boane, J.L.N.; Centeno, P.; Mouquinho, A.; Alexandre, M.; Calmeiro, T.; Fortunato, E.; Martins, R.; Mendes, M.J.; Águas, H. Soft-Microstructured Transparent Electrodes for Photonic-Enhanced Flexible Solar Cells. Micro 2021, 1, 215-227. https://doi.org/10.3390/micro1020016
Boane JLN, Centeno P, Mouquinho A, Alexandre M, Calmeiro T, Fortunato E, Martins R, Mendes MJ, Águas H. Soft-Microstructured Transparent Electrodes for Photonic-Enhanced Flexible Solar Cells. Micro. 2021; 1(2):215-227. https://doi.org/10.3390/micro1020016
Chicago/Turabian StyleBoane, Jenny L. N., Pedro Centeno, Ana Mouquinho, Miguel Alexandre, Tomás Calmeiro, Elvira Fortunato, Rodrigo Martins, Manuel J. Mendes, and Hugo Águas. 2021. "Soft-Microstructured Transparent Electrodes for Photonic-Enhanced Flexible Solar Cells" Micro 1, no. 2: 215-227. https://doi.org/10.3390/micro1020016
APA StyleBoane, J. L. N., Centeno, P., Mouquinho, A., Alexandre, M., Calmeiro, T., Fortunato, E., Martins, R., Mendes, M. J., & Águas, H. (2021). Soft-Microstructured Transparent Electrodes for Photonic-Enhanced Flexible Solar Cells. Micro, 1(2), 215-227. https://doi.org/10.3390/micro1020016