Abraham Model Descriptors for Vitamin K4: Prediction of Solution, Biological and Thermodynamic Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Solvent | c | e | s | a | b | l | v |
---|---|---|---|---|---|---|---|
Equation (1) Coefficients | |||||||
1-Octanol (wet) | 0.088 | 0.562 | −1.054 | 0.034 | −3.460 | 0.000 | 3.814 |
Cyclohexane (both) | 0.159 | 0.784 | −1.678 | −3.740 | −4.929 | 0.000 | 4.577 |
Methylcyclohexane (both) | 0.246 | 0.782 | −1.982 | −3.517 | −4.293 | 0.000 | 4.528 |
Methanol (dry) | 0.276 | 0.334 | −0.714 | 0.243 | −3.320 | 0.000 | 3.549 |
Ethanol (dry) | 0.222 | 0.471 | −1.035 | 0.326 | −3.596 | 0.000 | 3.857 |
1-Propanol (dry) | 0.139 | 0.405 | −1.029 | 0.247 | −3.767 | 0.000 | 3.986 |
1-Butanol (dry) | 0.165 | 0.401 | −1.011 | 0.056 | −3.958 | 0.000 | 4.044 |
1-Pentanol (dry) | 0.150 | 0.536 | −1.229 | 0.141 | −3.864 | 0.000 | 4.077 |
1-Heptanol (dry) | 0.035 | 0.398 | −1.063 | 0.002 | −4.342 | 0.000 | 4.317 |
2-Propanol (dry) | 0.099 | 0.344 | −1.049 | 0.406 | −3.827 | 0.000 | 4.033 |
2-Butanol (dry) | 0.127 | 0.253 | −0.976 | 0.158 | −3.882 | 0.000 | 4.114 |
2-Methyl-1-propanol (dry) | 0.188 | 0.354 | −1.127 | 0.016 | −3.568 | 0.000 | 3.986 |
3-Methyl-1-butanol (dry) | 0.073 | 0.360 | −1.273 | 0.090 | −3.770 | 0.000 | 4.273 |
2-Pentanol (dry) | 0.115 | 0.455 | −1.331 | 0.206 | −3.745 | 0.000 | 4.201 |
2-Methyl-1-butanol (dry) | 0.143 | 0.388 | −1.173 | −0.024 | −3.817 | 0.000 | 4.129 |
4-Methyl-2-pentanol (dry) | 0.096 | 0.301 | −1.100 | 0.039 | −4.081 | 0.000 | 4.242 |
Cyclopentanol (dry) | 0.332 | 0.522 | −1.034 | −0.106 | −3.756 | 0.000 | 3.892 |
Methyl acetate (dry) | 0.351 | 0.223 | −0.150 | −1.035 | −4.527 | 0.000 | 3.972 |
Ethyl acetate (dry) | 0.328 | 0.314 | −0.348 | −0.847 | −4.899 | 0.000 | 4.142 |
Propyl acetate (dry) | 0.362 | 0.280 | −0.390 | −0.975 | −4.928 | 0.000 | 4.183 |
Butyl acetate (dry) | 0.289 | 0.336 | −0.501 | −0.913 | −4.964 | 0.000 | 4.262 |
Pentyl acetate (dry) | 0.182 | 0.261 | −0.474 | −1.017 | −4.952 | 0.000 | 4.388 |
Gas-to-water | −0.994 | 0.577 | 2.549 | 3.813 | 4.841 | 0.000 | −0.869 |
Equation (2) Coefficients | |||||||
1-Octanol (wet) | −0.198 | 0.002 | 0.709 | 3.519 | 1.429 | 0.858 | 0.000 |
Cyclohexane (both) | 0.163 | −0.110 | 0.000 | 0.000 | 0.000 | 1.013 | 0.000 |
Methylcyclohexane (both) | 0.318 | −0.215 | 0.000 | 0.000 | 0.000 | 1.012 | 0.000 |
Methanol (dry) | −0.039 | −0.338 | 1.317 | 3.826 | 1.396 | 0.773 | 0.000 |
Ethanol (dry) | 0.017 | −0.232 | 0.867 | 3.894 | 1.192 | 0.846 | 0.000 |
1-Propanol (dry) | −0.042 | −0.246 | 0.749 | 3.888 | 1.076 | 0.874 | 0.000 |
1-Butanol (dry) | −0.004 | −0.285 | 0.768 | 3.705 | 0.879 | 0.890 | 0.000 |
1-Pentanol (dry) | −0.002 | −0.161 | 0.535 | 3.778 | 0.960 | 0.900 | 0.000 |
1-Heptanol (dry) | −0.056 | −0.216 | 0.554 | 3.596 | 0.803 | 0.933 | 0.000 |
2-Propanol (dry) | −0.048 | −0.324 | 0.713 | 4.036 | 1.055 | 0.884 | 0.000 |
2-Butanol (dry) | −0.034 | −0.387 | 0.719 | 3.736 | 1.088 | 0.905 | 0.000 |
2-Methyl-1-propanol (dry) | −0.003 | −0.357 | 0.699 | 3.595 | 1.247 | 0.881 | 0.000 |
3-Methyl-1-butanol (dry) | −0.052 | −0.430 | 0.628 | 3.661 | 0.932 | 0.937 | 0.000 |
2-Pentanol (dry) | −0.031 | −0.325 | 0.496 | 4.792 | 1.024 | 0.934 | 0.000 |
2-Methyl-1-butanol (dry) | −0.055 | −0.348 | 0.601 | 3.565 | 0.996 | 0.925 | 0.000 |
4-Methyl-2-pentanol (dry) | −0.013 | −0.606 | 0.687 | 3.622 | 0.436 | 0.985 | 0.000 |
Cyclopentanol (dry) | −0.151 | −0.314 | 0.693 | 3.549 | 0.914 | 0.956 | 0.000 |
Methyl acetate (dry) | 0.134 | −0.477 | 1.749 | 2.678 | 0.000 | 0.876 | 0.000 |
Ethyl acetate (dry) | 0.171 | −0.403 | 1.428 | 2.726 | 0.000 | 0.914 | 0.000 |
Propyl acetate (dry) | 0.246 | −0.346 | 1.318 | 2.537 | 0.000 | 0.916 | 0.000 |
Butyl acetate (dry) | 0.154 | −0.439 | 1.223 | 2.586 | 0.000 | 0.953 | 0.000 |
Pentyl acetate (dry) | 0.154 | −0.424 | 1.172 | 2.506 | 0.000 | 0.962 | 0.000 |
Gas-to-water | −1.271 | 0.822 | 2.743 | 3.904 | 4.814 | −0.213 | 0.000 |
4. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Avdeef, A.; Kansy, M. Trends in PhysChem properties of newly approved drugs over the last six years; Predicting solubility of drugs approved in 2021. J Solut. Chem. 2022, 51, 1455–1481. [Google Scholar] [CrossRef]
- Avdeef, A.; Kansy, M. Predicting solubility of newly-approved drugs (2016–2020) with a simple ABSOLV and GSE(flexible-acceptor) consensus model outperforming random forest regression. J. Solut. Chem. 2022, 51, 1020–1055. [Google Scholar] [CrossRef] [PubMed]
- Avdeef, A. Cocrystal solubility product prediction using an in combo model and simulations to improve design of experiments. Pharm. Res. 2018, 35, 40. [Google Scholar] [CrossRef] [PubMed]
- Shu, C.-C.; Lin, S.-T. Prediction of drug solubility in mixed solvent systems using the COSMO-SAC activity coefficient model. Ind. Eng. Chem. Res. 2011, 50, 142–147. [Google Scholar] [CrossRef]
- Klamt, A.; Eckert, F.; Hornig, M.; Beck, M.E.; Burger, T. Prediction of aqueous solubility of drugs and pesticides with COSMO-RS. J. Comput. Chem. 2002, 23, 275–281. [Google Scholar] [CrossRef]
- Silva, F.; Veiga, F.; Rodrigues, S.P.J.; Cardoso, C.; Paiva-Santos, A.C. COSMO models for the pharmaceutical development of parenteral drug formulations. Eur. J. Pharm. Biopharm. 2023, 187, 156–165. [Google Scholar] [CrossRef]
- Mahmoudabadi, S.Z.; Pazuki, G. A predictive PC-SAFT EOS based on COSMO for pharmaceutical compounds. Sci. Rep. 2021, 11, 6405. [Google Scholar] [CrossRef]
- Lusci, A.; Pollastri, G.; Baldi, P. Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules. J. Chem. Inf. Model. 2013, 53, 1563–1575. [Google Scholar] [CrossRef]
- Boobier, S.; Hose, D.R.J.; Blacker, A.J.; Nguyen, B.N. Machine learning with physicochemical relationships: Solubility prediction in organic solvents and water. Nat. Commun. 2020, 11, 5753. [Google Scholar] [CrossRef]
- Cysewski, P.; Jeliński, T.; Przybyłek, M. Application of COSMO-RS-DARE as a tool for testing consistency of solubility data: Case of coumarin in neat alcohols. Molecules 2022, 27, 5274. [Google Scholar] [CrossRef]
- Rahimpour, E.; Xu, R.; Zhao, H.; Acree, W.E., Jr.; Jouyban, A. Simulation of clozapine solubility in mono- and mixed solvents at different temperatures. J. Solut. Chem. 2022, 51, 1540–1570. [Google Scholar] [CrossRef]
- Jouyban, A. Review of the cosolvency models for predictiong drug solubility in solvent mixtures: An update. J. Pharm. Pharm. Sci. 2019, 22, 466–485. [Google Scholar] [CrossRef]
- Bergström, C.A.S.; Larsson, P. Computational prediction of drug solubility in water-based systems: Qualitative and quantitative approaches used in the current drug discovery and development setting. Int. J. Pharm. 2018, 540, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Benavides, D.; Longacre, L.; Varadharajan, A.; Acree, W.E., Jr. Calculation of Abraham model solute descriptors for 2-naphthoxyacetic acid. Phys. Chem. Liq. 2023, 61, 264–274. [Google Scholar] [CrossRef]
- Yao, E.; Zhou, A.; Wu, S.; Shanmugam, N.; Varadharajan, A.; Sinha, S.; Wu, E.; Acree, W.E., Jr. Determination of Abraham model solute descriptors for N-hydroxyphthalimide: An organic compound having a N-hydroxy (N-OH) functional group. J. Solut. Chem. 2023, 52, 895–909. [Google Scholar] [CrossRef]
- Sinha, S.; Varadharajan, A.; Xu, A.; Wu, E.; Acree, W.E., Jr. Determination of Abraham model solute descriptors for hippuric acid from measured molar solubilities in several organic mono-solvents of varying polarity and hydrogen-bonding ability. Phys. Chem. Liq. 2022, 60, 563–571. [Google Scholar] [CrossRef]
- Lee, G.; Che, M.; Qian, E.; Wang, L.; Gupta, A.; Neal, R.; Yue, D.; Downs, S.; Mayes, T.; Rose, O.; et al. Determination of Abraham model solute descriptors for o-acetoacetanisidide based on experimental solubility data in organic mono-solvents. Phys. Chem. Liq. 2019, 57, 528–535. [Google Scholar] [CrossRef]
- Yao, X.; Wang, Z.; Geng, Y.; Zhao, H.; Rahimpour, E.; Acree, W.E., Jr.; Jouyban, A. Hirshfeld surface and electrostatic potential surface analysis of clozapine and its solubility and molecular interactions in aqueous blends. J. Mol. Liq. 2022, 360, 119328. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, H.; Farajtabar, A.; Zhu, P.; Rahimpour, E.; Acree, W.E., Jr.; Jouyban, A. Acetamiprid in several binary aqueous solutions: Solubility, intermolecular interactions and solvation behavior. J. Chem. Thermodyn. 2022, 172, 106828. [Google Scholar] [CrossRef]
- Liu, F.; Zhao, H.; Farajtabar, A.; Zhu, P.; Jouyban, A.; Acree, W.E., Jr. Quantitative surface analysis of paclobutrazol molecule and comprehensive insight into its solubility in aqueous co-solvent solutions. J. Chem. Thermodyn. 2022, 170, 106787. [Google Scholar] [CrossRef]
- Akay, S.; Kayan, B.; Coskun, S.; Jouyban, A.; Martinez, F.; Acree, W.E., Jr. Equilibrium solubility of 6-methylcoumarin in some (ethanol + water) mixtures: Determination, correlation, thermodynamics and preferential solvation. Phys. Chem. Liq. 2022, 60, 707–727. [Google Scholar] [CrossRef]
- Cardenas-Torres, R.E.; Ortiz, C.P.; Acree, W.E., Jr.; Jouyban, A.; Martinez, F.; Delgado, D.R. Thermodynamic study and preferential solvation of sulfamerazine in acetonitrile + methanol cosolvent mixtures at different temperatures. J. Mol. Liq. 2022, 349, 118172. [Google Scholar] [CrossRef]
- Varadharajan, A.; Sinha, S.; Xu, A.; Daniel, A.; Kim, K.; Shanmugam, N.; Wu, E.; Yang, C.; Zhang, M.; Acree, W.E., Jr. Development of Abraham model correlations for describing solute transfer into transcutol based on molar solubility ratios for pharmaceutical and other organic compounds. J. Solut. Chem. 2023, 52, 70–90. [Google Scholar] [CrossRef]
- Xu, A.; Varadharajan, A.; Shanmugam, N.; Kim, K.; Huang, E.; Cai, S.K.; Acree, W.E., Jr. Abraham model description of the solubilising properties of the isopropyl acetate organic mono-solvent. Phys. Chem. Liq. 2022, 60, 312–324. [Google Scholar] [CrossRef]
- Cai, S.K.; Huang, E.; Kim, K.; Shanmugam, N.; Varadharajan, A.; Xu, A.; Acree, W.E., Jr. Development of Abraham model correlations for solute transfer into cyclopentanol from both water and the gas phase based on measured solubility ratios. Phys. Chem. Liq. 2022, 60, 287–296. [Google Scholar] [CrossRef]
- Strickland, S.; Ocon, L.; Zhang, A.; Wang, S.; Eddula, S.; Liu, G.; Tirumala, P.; Huang, J.; Dai, J.; Jiang, C.; et al. Abraham model correlations for describing dissolution of organic solutes and inorganic gases in dimethyl carbonate. Phys. Chem. Liq. 2021, 59, 181–195. [Google Scholar] [CrossRef]
- Sedov, I.A.; Salikov, T.M.; Qian, E.; Wadawadigi, A.; Zha, O.; Acree, W.E., Jr.; Abraham, M.H. Abraham model correlations for solute transfer into 2-methyl-2-butanol based on measured activity coefficient and solubility data at 298.15 K. J. Mol. Liq. 2019, 293, 111454. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, M.; Scriba, G.K.E.; Abraham, M.H.; Fahr, A.; Liu, X. Human skin permeation of neutral species and ionic species: Extended linear free-energy relationship analyses. J. Pharm. Sci. 2012, 101, 2034–2044. [Google Scholar] [CrossRef]
- Abraham, M.H.; Martins, F. Human skin permeation and partition: General linear free-energy relationship analyses. J. Pharm. Sci. 2004, 93, 1508–1523. [Google Scholar] [CrossRef]
- Sprunger, L.M.; Gibbs, J.; Acree, W.E., Jr.; Abraham, M.H. Correlation of human and animal air-to-blood partition coefficients with a single linear free energy relationship model. QSAR Comb. Sci. 2008, 27, 1130–1139. [Google Scholar] [CrossRef]
- Abraham, M.H.; Ibrahim, A.; Acree, W.E., Jr. Air to lung partition coefficients for volatile organic compounds and blood to lung partition coefficients for volatile organic compounds and drugs. Eur. J. Med. Chem. 2008, 43, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.H.; Ibrahim, A.; Acree, W.E., Jr. Air to muscle and blood/plasma to muscle distribution of volatile organic compounds and drugs: Linear free energy analyses. Chem. Res. Toxicol. 2006, 19, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.H.; Hassanisadi, M.; Jalali-Heravi, M.; Ghafourian, T.; Cain, W.S.; Cometto-Muniz, J.E. Draize rabbit eye test compatibility with eye irritation thresholds in humans: A quantitative structure-activity relationship analysis. Toxicol. Sci. 2003, 76, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.H. Human intestinal absorption-neutral molecules and ionic species. J. Pharm. Sci. 2014, 103, 1956–1966. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Le, J.; Abraham, M.H.; Hersey, A.; Eddershaw, P.J.; Luscombe, C.N.; Boutina, D.; Beck, G.; Sherborne, B.; Cooper, I.; et al. Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors. J. Pharm. Sci. 2001, 90, 749–784. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.H.; Ibrahim, A. Air to fat and blood to fat distribution of volatile organic compounds and drugs: Linear free energy analyses. Eur. J. Med. Chem. 2006, 41, 1430–1438. [Google Scholar] [CrossRef]
- Abraham, M.H.; Ibrahim, A.; Zhao, Y.; Acree, W.E., Jr. A data base for partition of volatile organic compounds and drugs from blood/plasma/serum to brain, and an LFER analysis of the data. J. Pharm. Sci. 2006, 95, 2091–2100. [Google Scholar] [CrossRef]
- Abraham, M.H.; Ibrahim, A.; Acree, W.E., Jr. Air to brain, blood to brain and plasma to brain distribution of volatile organic compounds: Linear free energy analyses. Eur. J. Med. Chem. 2006, 41, 494–502. [Google Scholar] [CrossRef]
- He, J.; Abraham, M.H.; Acree, W.E., Jr.; Zhao, Y.H. A linear free energy analysis of PAMPA models for biological systems. Int. J. Pharm. 2015, 496, 717–722. [Google Scholar] [CrossRef]
- Soriano-Meseguer, S.; Fuguet, E.; Port, A.; Rosés, M. Evaluation of the ability of PAMPA membranes to emulate biological processes through the Abraham solvation parameter model. Membranes 2023, 13, 640. [Google Scholar] [CrossRef]
- Henneberger, L.; Goss, K.-U.; Endo, S. Partitioning of organic ions to muscle protein: Experimental data, modeling, and implications for in Vivo distribution of organic ions. Environ. Sci. Technol. 2016, 50, 7029–7036. [Google Scholar] [CrossRef] [PubMed]
- Endo, S.; Goss, K.-U. Serum albumin binding of structurally diverse neutral organic compounds: Data and models. Chem. Res. Toxicol. 2011, 24, 2293–2301. [Google Scholar] [CrossRef] [PubMed]
- Li, J. Evaluation of blood simulating solvents in extractables and leachables testing for chemical characterization of medical devices based on Abraham general solvation model. J. Mol. Liq. 2022, 345, 116995. [Google Scholar] [CrossRef]
- Li, J. Evaluation of fatty tissue representative solvents in extraction of medical devices for chromatographic analysis of devices’ extractables and leachables based on Abraham general solvation model. J. Chromatogr. A 2022, 1676, 463240. [Google Scholar] [CrossRef]
- Ulrich, N.; Endo, S.; Brown, T.N.; Watanabe, N.; Bronner, G.; Abraham, M.H.; Goss, K.-U. UFZ-LSER Database v 3.2.1 Internet. Leipzig, Germany, Helmholtz Centre for Environmental Research-UFZ. 2017. Available online: http://www.ufz.de/lserd (accessed on 27 May 2023).
- Chung, Y.; Vermeire, F.H.; Wu, H.; Walker, P.J.; Abraham, M.H.; Green, W.H. Group contribution and machine learning approaches to predict Abraham solute parameters, solvation free energy, and solvation enthalpy. J. Chem. Inf. Model. 2022, 62, 433–446. [Google Scholar] [CrossRef]
- Solvation Tools. Available online: https://rmg.mit.edu/database/solvation/search/ (accessed on 1 August 2023).
- Acree, W.E., Jr.; Smart, K.; Abraham, M.H. Abraham model solute descriptors reveal strong intramolecular hydrogen bonding in 1,4-dihydroxyanthraquinone and 1,8-dihydroxyanthraquinone. Phys. Chem. Liq. 2018, 56, 416–420. [Google Scholar] [CrossRef]
- Sinha, S.; Yang, C.; Wu, E.; Acree, W.E., Jr. Abraham solvation parameter model: Examination of possible intramolecular hydrogen-bonding using calculated solute descriptors. Liquids 2022, 2, 131–146. [Google Scholar] [CrossRef]
- Yao, E.; Acree, W.E., Jr. Abraham model solute descriptors for favipiravir: Case of tautomeric equilibrium and intramolecular hydrogen-bond formation. Thermo 2023, 3, 443–451. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, J.; Yang, C.; Meng, F.; Zhou, Y.; Yu, B.; Khan, M.; Yang, H. Vitamin K4 induces tumor cytotoxicity in human prostate carcinoma PC-3 cells via the mitochondria-related apoptotic pathway. Pharmazie 2013, 68, 442–448. [Google Scholar] [CrossRef]
- Di, W.; Khan, M.; Gao, Y.; Cui, J.; Wang, D.; Qu, M.; Feng, L.; Maryam, A.; Gao, H. Vitamin K4 inhibits the proliferation and induces apoptosis of U2OS osteosarcoma cells via mitochondrial dysfunction. Mol. Med. Rep. 2017, 15, 277–284. [Google Scholar] [CrossRef]
- Lu, X.; Yang, X.; Wu, X.; Wang, J.; Zhao, Z. Determination and simulation of menadiol diacetate solubility in 14 solvents at temperatures from 283.15 to 323.15 K. J. Chem. Eng. Data 2023, 68, 977–993. [Google Scholar] [CrossRef]
- Charlton, A.K.; Daniels, C.R.; Acree, W.E., Jr.; Abraham, M.H. Solubility of crystalline nonelectrolyte solutes in organic solvents: Mathematical correlation of acetylsalicylic acid solubilities with the Abraham general solvation model. J. Solut. Chem. 2003, 32, 1087–1102. [Google Scholar] [CrossRef]
- De Fina, K.M.; Ezell, C.; Acree, W.E., Jr. Solubility of ferrocene in organic nonelectrolyte solvents. Comparison of observed versus predicted values based upon mobile order theory. Phys. Chem. Liq. 2001, 39, 699–710. [Google Scholar] [CrossRef]
- Jalan, A.; Ashcraft, R.W.; West, R.H.; Green, W.H. Predicting solvation energies for kinetic modeling. Annu. Rep. Prog. Chem. Sec. C Phys. Chem. 2010, 106, 211–258. [Google Scholar] [CrossRef]
- Clarke, E.D.; Mallon, L. The determination of Abraham descriptors and their application to crop protection research. In Modern Methods in Crop Protection Research; Jeschke., P., Krämer, W., Schirmer, U., Witschel, M., Eds.; Wiley: New York, NY, USA, 2012. [Google Scholar]
- Clarke, E.D. Beyond physical properties–application of Abraham descriptors and LFER analysis in agrochemical research. Bioorg. Med. Chem. 2010, 17, 4153–4159. [Google Scholar] [CrossRef]
- Poole, C.F.; Ariyasena, T.C.; Lenca, N. Estimation of the environmental properties of compounds from chromatographic properties and the solvation parameter method. J. Chromatogr. A 2013, 1317, 85–104. [Google Scholar] [CrossRef]
- Poole, C.F.; Atapattu, S.N. Recent advances for estimating environmental properties for small molecules from chromatographic measurements and the solvation parameter model. J. Chromatogr. A 2023, 1687, 463682. [Google Scholar] [CrossRef]
- Endo, S.; Goss, K.-U. Applications of polyparameter linear free energy relationships in environmental chemistry. Environ. Sci. Technol. 2014, 48, 12477–12491. [Google Scholar] [CrossRef]
- Jiang, B.; Horton, M.Y.; Acree, W.E., Jr.; Abraham, M.H. Ion-specific equation coefficient version of the abraham model for ionic liquid solvents: Determination of coefficients for tributylethylphosphonium, 1-butyl-1-methylmorpholinium, 1-allyl-1-methylimidazolium and octyltriethylammonium cations. Phys. Chem. Liq. 2017, 55, 358–385. [Google Scholar] [CrossRef]
- SciFinder. Chemical Abstracts Service. Columbus, OH, USA. Available online: https://scifinder.cas.org (accessed on 28 July 2023).
- Abraham, M.H.; McGowan, J.C. The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography. Chromatographia 1987, 23, 243–246. [Google Scholar] [CrossRef]
- Liu, X.; Abraham, M.H.; Acree, W.E., Jr. Descriptors for vitamin K3 (menadione); calculation of biological and physicochemical properties. J. Mol. Liq. 2021, 330, 115707. [Google Scholar] [CrossRef]
- Yu, Y.; Li, F.; Long, S.; Xu, L.; Liu, F. Solubility, thermodynamic properties, HSP, and molecular interactions of vitamin K3 in pure solvents. J. Mol. Liq. 2020, 317, 113945. [Google Scholar] [CrossRef]
- Song, C.Y.; Shen, H.Z.; Wang, L.C.; Zhao, J.H.; Wang, F.A. Solubilities of Vitamin K3 in benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene between (299.44 and 344.24) K. J. Chem. Eng. Data 2008, 53, 283–285. [Google Scholar] [CrossRef]
- Song, C.Y.; Shen, H.Z.; Zhao, J.H.; Wang, L.C.; Wang, F.A. Solubilities of 2-methyl-1,4-naphthoquinone in water + (methanol, ethanol, 1-propanol, 2-propanol, 1,2-propanediol and glycerine, respectively) from (293.15 to 337.92) K. J. Chem. Eng. Data 2007, 52, 2018–2019. [Google Scholar] [CrossRef]
- Churchill, B.; Acree, W.E.; Abraham, M.H. Abraham model correlations for direct water-to-2,2,5,5-tetramethyloxolane solute transfer partitioning process revisited. Phys. Chem. Liq. 2020, 58, 833–838. [Google Scholar] [CrossRef]
- Abraham, M.H.; Acree, W.E. Descriptors for the prediction of partition coefficients of 8-hydroxyquinoline and its derivatives. Sep. Sci. Technol. 2014, 49, 2135–2141. [Google Scholar] [CrossRef]
- Smart, K.; Garcia, E.; Oloyede, B.; Fischer, R.; Golden, T.D.; Acree, W.E., Jr.; Abraham, M.H. The partition of organic compounds from water into the methyl isobutyl ketone extraction solvent with updated Abraham model equation. Phys. Chem. Liq. 2021, 59, 431–441. [Google Scholar] [CrossRef]
- Smart, K.; Connolly, E.; Ocon, L.; Golden, T.; Acree, W.E.; Abraham, M.H. Abraham model correlations for describing the partition of organic compounds from water into the methyl ethyl ketone extraction solvent. Phys. Chem. Liq. 2022, 60, 47–58. [Google Scholar] [CrossRef]
- Abraham, M.H.; Acree, W.E., Jr. Estimation of vapor pressures of liquid and solid organic and organometallic compounds at 298.15 K. Fluid Phase Equilib. 2020, 519, 112595. [Google Scholar] [CrossRef]
- Churchill, B.; Acree, W.E., Jr.; Abraham, M.H. Development of Abraham model expressions for predicting the standard molar enthalpies of vaporization of organic compounds at 298.15 K. Thermochim. Acta 2019, 681, 178372. [Google Scholar] [CrossRef]
- Abraham, M.H.; Acree, W.E., Jr. Estimation of heat capacities of gases, liquids and solids, and heat capacities of vaporization and of sublimation of organic chemicals at 298.15 K. J. Mol. Liq. 2020, 317, 113969. [Google Scholar] [CrossRef]
- Mintz, C.; Clark, M.; Acree, W.E., Jr.; Abraham, M.H. Enthalpy of solvation correlations for gaseous solutes dissolved in water and in 1-octanol based on the Abraham model. J. Chem. Inf. Model. 2007, 47, 115–121. [Google Scholar] [CrossRef]
- Hart, E.; Grover, D.; Zettl, H.; Koshevarova, V.; Acree, W.E., Jr.; Abraham, M.H. Development of Abraham model expressions for predicting the enthalpies of solvation of solutes dissolved in acetic acid. Phys. Chem. Liq. 2016, 54, 141–154. [Google Scholar] [CrossRef]
- Magsumov, T.I.; Sedov, I.A.; Acree, W.E., Jr. Development of Abraham model correlations for enthalpies of solvation of solutes dissolved in N-methylformamide, 2-pyrrolidone and N-methylpyrrolidone. J. Mol. Liq. 2021, 323, 114609. [Google Scholar] [CrossRef]
- Varfolomeev, M.A.; Stolov, M.A.; Nagrimanov, R.N.; Rakipov, I.T.; Acree, W.E., Jr.; Abraham, M.H. Analysis of solute-pyridine intermolecular interactions based on experimental enthalpies of solution and enthalpies of solvation of solutes dissolved in pyridine. Thermochim. Acta 2018, 660, 11–17. [Google Scholar] [CrossRef]
- Stolov, M.A.; Zaitseva, K.V.; Varfolomeev, M.A.; Acree, W.E. Enthalpies of solution and enthalpies of solvation of organic solutes in ethylene glycol at 298 K: Prediction and analysis of intermolecular interaction contributions. Thermochim. Acta 2017, 648, 91–99. [Google Scholar] [CrossRef]
- Abraham, M.H.; Gola, J.M.R.; Ibrahim, A.; Acree, W.E., Jr.; Liu, X. The prediction of blood–tissue partitions, water–skin partitions and skin permeation for agrochemicals. Pest Manag. Sci. 2014, 70, 1130–1137. [Google Scholar] [CrossRef]
- Abraham, M.H.; Gola, J.M.R.; Ibrahim, A.; Acree, W.E., Jr.; Liu, X. A simple method for estimating in vitro air–tissue and in vivo blood–tissue partition coefficients. Chemosphere 2015, 120, 188–191. [Google Scholar] [CrossRef]
Organic Mono-Solvent | xS,organic |
---|---|
Cyclohexane | 0.001713 |
Methylcyclohexane | 0.002215 |
1-Heptanol | 0.006035 |
2-Butanol | 0.005822 |
2-Pentanol | 0.006857 |
2-Methyl-1-butanol | 0.004897 |
4-Methyl-2-pentanol | 0.005729 |
Cyclopentanol | 0.008789 |
System | cp | ep | sp | ap | bp | vp | Calculated |
---|---|---|---|---|---|---|---|
Blood-to-brain | 0.547 | 0.221 | −0.604 | −0.641 | −0.681 | 0.635 | 0.298 |
Blood-to-muscle | 0.082 | −0.059 | 0.010 | −0.248 | 0.028 | 0.110 | 0.249 |
Blood-to-liver | 0.292 | 0.000 | −0.296 | −0.334 | 0.181 | 0.337 | 0.022 |
Blood-to-lung | 0.269 | 0.000 | −0.523 | −0.723 | 0.000 | 0.720 | 0.544 |
Blood-to-kidney | 0.494 | −0.067 | −0.426 | −0.367 | 0.232 | 0.410 | 0.452 |
Blood-to-heart | 0.132 | −0.039 | −0.394 | −0.376 | 0.009 | 0.527 | 0.258 |
Blood-to-skin | −0.105 | −0.117 | 0.034 | 0.000 | −0.681 | 0.756 | 0.756 |
Blood-to-fat | 0.077 | 0.249 | −0.215 | −0.902 | −1.523 | 1.234 | 1.225 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motati, S.; Motati, R.; Kandi, T.; Acree, W.E., Jr. Abraham Model Descriptors for Vitamin K4: Prediction of Solution, Biological and Thermodynamic Properties. Liquids 2023, 3, 402-413. https://doi.org/10.3390/liquids3040025
Motati S, Motati R, Kandi T, Acree WE Jr. Abraham Model Descriptors for Vitamin K4: Prediction of Solution, Biological and Thermodynamic Properties. Liquids. 2023; 3(4):402-413. https://doi.org/10.3390/liquids3040025
Chicago/Turabian StyleMotati, Saikiran, Ramya Motati, Trisha Kandi, and William E. Acree, Jr. 2023. "Abraham Model Descriptors for Vitamin K4: Prediction of Solution, Biological and Thermodynamic Properties" Liquids 3, no. 4: 402-413. https://doi.org/10.3390/liquids3040025
APA StyleMotati, S., Motati, R., Kandi, T., & Acree, W. E., Jr. (2023). Abraham Model Descriptors for Vitamin K4: Prediction of Solution, Biological and Thermodynamic Properties. Liquids, 3(4), 402-413. https://doi.org/10.3390/liquids3040025