Effective Recognition of Lithium Salt in (Choline Chloride: Glycerol) Deep Eutectic Solvent by Reichardt’s Betaine Dye 33
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wagle, D.V.; Zhao, H.; Baker, G.A. Deep eutectic solvents: Sustainable media for nanoscale and functional materials. Acc. Chem. Res. 2014, 47, 2299–2308. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012, 41, 7108–7146. [Google Scholar] [CrossRef] [PubMed]
- LaRocca, M.M.; Baker, G.A.; Heitz, M.P. Assessing rotation and solvation dynamics in ethaline deep eutectic solvent and its solutions with methanol. J. Chem. Phys. 2021, 155, 034505. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef]
- Sahu, S.; Banu, S.; Sahu, A.K.; Kumar, B.P.; Mishra, A.K. Molecular-level insights into inherent heterogeneity of maline deep eutectic system. J. Mol. Liq. 2022, 350, 118478. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; De la Guardia, M.; Andruch, V.; Vilková, M. Deep Eutectic Solvents vs. Ionic Liquids: Similarities and Differences. Microchem. J. 2020, 159, 105539. [Google Scholar] [CrossRef]
- Flieger, J.; Flieger, M. Ionic liquids toxicity-benefits and threats. Int. J. Mol. Sci. 2020, 21, 6267. [Google Scholar] [CrossRef]
- Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. [Google Scholar] [CrossRef]
- Cruz, H.; Jordão, N.; Branco, L.C. Deep Eutectic Solvents (DESs) as Low-Cost and Green Electrolytes for Electrochromic Devices. Green Chem. 2017, 19, 1653–1658. [Google Scholar] [CrossRef]
- Li, Q.; Chen, J.; Fan, L.; Kong, X.; Lu, Y. Progress in Electrolytes for Rechargeable Li-Based Batteries and Beyond. Green Energy Environ. 2016, 1, 18–42. [Google Scholar] [CrossRef]
- Acree, W.E., Jr.; Wilkins, D.C.; Tucker, S.A.; Griffin, J.M.; Powell, J.R. Spectrochemical Investigations of Preferential Solvation. 2. Compatibility of Thermodynamic Models versus Spectrofluorometric Probe Methods for Tautomeric Solutes Dissolved in Binary Mixtures. J. Phys. Chem. 1994, 98, 2537–2544. [Google Scholar] [CrossRef]
- Rai, R.; Pandey, S. Solvatochromic probe response within ionic liquids and their equimolar mixtures with tetraethylene glycol. J. Phys. Chem. B 2014, 118, 11259–11270. [Google Scholar] [CrossRef] [PubMed]
- Nunes, R.; Nunes, N.; Elvas-Leitão, R.; Martins, F. Using Solvatochromic Probes to Investigate Intermolecular Interactions in 1,4-Dioxane/Methanol/Acetonitrile Solvent Mixtures. J. Mol. Liq. 2018, 266, 259–268. [Google Scholar] [CrossRef]
- Catalán, J.; de Paz, J.L.G.; Reichardt, C. On the Molecular Structure and UV/vis Spectroscopic Properties of the Solvatochromic and Thermochromic Pyridinium-N-Phenolate Betaine Dye B30. J. Phys. Chem. A 2010, 114, 6226–6234. [Google Scholar] [CrossRef]
- Reichardt, C. Polarity of Ionic Liquids Determined Empirically by Means of Solvatochromic Pyridinium N-phenolate Betaine Dyes. Green Chem. 2005, 7, 339–351. [Google Scholar] [CrossRef]
- Reichardt, C. Solvatochromic Dyes as Solvent Polarity Indicators. Chem. Rev. 1994, 94, 2319–2358. [Google Scholar] [CrossRef]
- Kamlet, M.J.; Abboud, J.L.M.; Abraham, M.H.; Taft, R.W. Linear Solvation Energy Relationships. 23. A Comprehensive Collection of the Solvatochromic Parameters, Pi*, Alpha, and Beta, and Some Methods for Simplifying the Generalized Solvatochromic Equation. J. Org. Chem. 1983, 48, 2877–2887. [Google Scholar] [CrossRef]
- Kamlet, M.J.; Abboud, J.L.; Taft, R.W. The Solvatochromic Comparison Method. 6. The π* Scale of Solvent Polarities. J. Am. Chem. Soc. 1977, 99, 6027–6038. [Google Scholar] [CrossRef]
- Taft, R.W.; Kamlet, M.J. The Solvatochromic Comparison Method. 2. The α-Scale of Solvent Hydrogen-Bond Donor (HBD) Acidities. J. Am. Chem. Soc. 1976, 98, 2886–2894. [Google Scholar] [CrossRef]
- Taft, R.W.; Abboud, J.L.M.; Kamlet, M.J. Solvatochromic comparison method. 20. Linear solvation energy relationships. 12. The d.delta. term in the solvatochromic equations. J. Am. Chem. Soc. 1981, 103, 1080–1086. [Google Scholar] [CrossRef]
- Kamlet, M.J.; Taft, R.W. The Solvatochromic Comparison Method. I. The ß-Scale of Solvent Hydrogen-Bond Acceptor (HBA) Basicities. J. Am. Chem. Soc. 1976, 98, 377–383. [Google Scholar] [CrossRef]
- Makris, D.P.; Lalas, S. Glycerol and Glycerol-Based Deep Eutectic Mixtures as Emerging Green Solvents for Polyphenol Extraction: The Evidence so Far. Molecules 2020, 25, 5842. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Troya, D.; Korovich, A.G.; Bostwick, J.E.; Colby, R.H.; Madsen, L.A. Uncorrelated Lithium-Ion Hopping in a Dynamic Solvent–Anion Network. ACS Energy Lett. 2023, 8, 1944–1951. [Google Scholar] [CrossRef]
- Dong, D.C.; Winnik, M.A. The Py scale of solvent polarities. Can. J. Chem. 1984, 62, 2560–2565. [Google Scholar] [CrossRef]
- Pandey, S.; Baker, S.N.; Pandey, S.; Baker, G.A. Fluorescent Probe Studies of Polarity and Solvation within Room Temperature Ionic Liquids: A Review. J. Fluoresc. 2012, 22, 1313–1343. [Google Scholar] [CrossRef]
- Street, K.W., Jr.; Acree, W.E., Jr. Experimental Artifacts and Determination of Accurate Py Values. Analyst 1986, 111, 1197–1201. [Google Scholar] [CrossRef][Green Version]
- Street, K.W., Jr.; Acree, W.E., Jr.; Fetzer, J.C.; Shetty, P.H.; Poole, C.F. Polycyclic Aromatic Hydrocarbon Solute Probes. Part V: Fluorescence Spectra of Pyrene, Ovalene, Coronene, and Benzo[ghi]perylene Dissolved in Liquid Alkylammonium Thiocyanate Organic Salts. Appl. Spectrosc. 1989, 43, 1149–1153. [Google Scholar] [CrossRef]
- Tucker, S.A.; Cretella, L.E.; Waris, R.; Street, K.W., Jr.; Acree, W.E., Jr.; Fetzer, J.C. Polycyclic Aromatic Hydrocarbon Solute Probes. Part VI: Effect of Dissolved Oxygen and Halogenated Solvents on the Emission Spectra of Select Probe Molecules. Appl. Spectrosc. 1990, 44, 269–273. [Google Scholar] [CrossRef]
- Dhingra, D.; Pandey, A.; Pandey, S. Pyrene Fluorescence To Probe a Lithium Chloride-Added (Choline Chloride + Urea) Deep Eutectic Solvent. J. Phys. Chem. B 2019, 123, 3103–3111. [Google Scholar] [CrossRef]
- Kumar, M.; Anjali; Dhingra, D.; Yadav, A.; Pandey, S. Effect of lithium salt on fluorescence quenching in glycerol: A comparison with ionic liquid/deep eutectic solvent. Phys. Chem. Chem. Phys. 2022, 24, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Kadyan, A.; Pandey, S. Florescence Quenching within Lithium Salt-Added Ionic Liquid. J. Phys. Chem. B 2018, 122, 5106–5113. [Google Scholar] [CrossRef] [PubMed]
(mol·kg−1) | (nm) | (nm) | (nm) | β | α | |||
---|---|---|---|---|---|---|---|---|
0.0 | 0.00 | 426 | 0.86 | 422 | 1.21 | 385 | 0.43 | 0.85 |
0.5 | 0.05 | 422 | 0.89 | 422 | 1.21 | 385 | 0.43 | 0.89 |
1.0 | 0.10 | 419 | 0.90 | 422 | 1.21 | 385 | 0.43 | 0.92 |
1.5 | 0.14 | 417 | 0.91 | 422 | 1.21 | 385 | 0.43 | 0.94 |
2.0 | 0.18 | 413 | 0.93 | 422 | 1.21 | 385 | 0.43 | 0.98 |
2.5 | 0.21 | 411 | 0.94 | 422 | 1.21 | 385 | 0.43 | 1.00 |
3.0 | 0.24 | 409 | 0.95 | 422 | 1.21 | 385 | 0.43 | 1.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, M.; Kumar, A.; Pandey, S. Effective Recognition of Lithium Salt in (Choline Chloride: Glycerol) Deep Eutectic Solvent by Reichardt’s Betaine Dye 33. Liquids 2023, 3, 393-401. https://doi.org/10.3390/liquids3040024
Kumar M, Kumar A, Pandey S. Effective Recognition of Lithium Salt in (Choline Chloride: Glycerol) Deep Eutectic Solvent by Reichardt’s Betaine Dye 33. Liquids. 2023; 3(4):393-401. https://doi.org/10.3390/liquids3040024
Chicago/Turabian StyleKumar, Manish, Abhishek Kumar, and Siddharth Pandey. 2023. "Effective Recognition of Lithium Salt in (Choline Chloride: Glycerol) Deep Eutectic Solvent by Reichardt’s Betaine Dye 33" Liquids 3, no. 4: 393-401. https://doi.org/10.3390/liquids3040024
APA StyleKumar, M., Kumar, A., & Pandey, S. (2023). Effective Recognition of Lithium Salt in (Choline Chloride: Glycerol) Deep Eutectic Solvent by Reichardt’s Betaine Dye 33. Liquids, 3(4), 393-401. https://doi.org/10.3390/liquids3040024