Current Trends in the Applications of Probiotics and Other Beneficial Microbes: Expanding Horizons
Funding
Conflicts of Interest
References
- Aggarwal, N.; Kitano, S.; Puah, G.R.Y.; Kittelmann, S.; Hwang, I.Y.; Chang, M.W. Microbiome and human health: Current understanding, engineering, and enabling technologies. Chem. Rev. 2023, 123, 31–72. [Google Scholar] [CrossRef]
- Stark, L.A. Beneficial microorganisms: Countering microbephobia. CBE Life Sci. Educ. 2010, 9, 387–389. [Google Scholar] [CrossRef]
- Fijan, S. Microorganisms with claimed probiotic properties: An overview of recent literature. Int. J. Environ. Res. Public Health 2014, 11, 4745–4767. [Google Scholar] [CrossRef] [PubMed]
- Lebov, J.; Grieger, K.; Womack, D.; Zaccaro, D.; Whitehead, N.; Kowalcyk, B.; MacDonald, P. A framework for one health research. One Health 2017, 3, 44–50. [Google Scholar] [CrossRef]
- Fijan, S.; Frauwallner, A.; Langerholc, T.; Krebs, B.; ter Haar Née Younes, J.A.; Heschl, A.; Turk, D.M.; Rogelj, I. Efficacy of using probiotics with antagonistic activity against pathogens of wound infections: An integrative review of literature. Biomed. Res. Int. 2019, 2019, 7585486. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Foster, J.; Zhou, L. Psychobiotics and the gut-brain axis: In the pursuit of happiness. Neuropsychiatr. Dis. Treat. 2015, 11, 715–723. [Google Scholar] [CrossRef]
- Salem, I.; Ramser, A.; Isham, N.; Ghannoum, M.A. The gut microbiome as a major regulator of the gut-skin axis. Front. Microbiol. 2018, 9, 1459. [Google Scholar] [CrossRef] [PubMed]
- Clarke, G.; Stilling, R.M.; Kennedy, P.J.; Stanton, C.; Cryan, J.F.; Dinan, T.G. Minireview: Gut microbiota: The neglected endocrine organ. Mol. Endocrinol. 2014, 28, 1221–1238. [Google Scholar] [CrossRef]
- Marco, M.L.; Sanders, M.E.; Gänzle, M.; Arrieta, M.C.; Cotter, P.D.; De Vuyst, L.; Hill, C.; Holzapfel, W.; Lebeer, S.; Merenstein, D.; et al. The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on fermented foods. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; et al. Health Benefits of Fermented Foods: Microbiota and Beyond. Curr. Opin. Biotechnol. 2017, 44, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Park, I.; Mannaa, M. Fermented foods as functional systems: Microbial communities and metabolites influencing gut health and systemic outcomes. Foods 2025, 14, 2292. [Google Scholar] [CrossRef]
- Leeuwendaal, N.K.; Stanton, C.; O’toole, P.W.; Beresford, T.P. Fermented foods, health and the gut microbiome. Nutrients 2022, 14, 1527. [Google Scholar] [CrossRef]
- Bender, S.F.; Wagg, C.; van der Heijden, M.G. An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 2016, 31, 440–452. [Google Scholar] [CrossRef]
- Burgin, A.J.; Yang, W.H.; Hamilton, S.K.; Silver, W.L. Beyond carbon and nitrogen: How the microbial energy economy couples elemental cycles in diverse ecosystems. Front. Ecol. Environ. 2011, 9, 44–52. [Google Scholar] [CrossRef]
- Bothwell, L.E.; Greene, J.A.; Podolsky, S.H.; Jones, D.S. Assessing the gold standard—Lessons from the history of RCTs. N. Engl. J. Med. 2016, 374, 2175–2181. [Google Scholar] [CrossRef]
- Saeidnia, S.; Manayi, A.; Abdollahi, M. From in vitro experiments to in vivo and clinical studies; pros and cons. Curr. Drug Discov. Technol. 2015, 12, 218–224. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLoS Med. 2021, 18, e1003583. [Google Scholar] [CrossRef] [PubMed]
- Dobloug, M.S.; Skagen-Sandvik, C.; Evensen, Ø.; Gadan, K.; Bakke, M.J.; Sørum, H.; Salonius, K. Reduced infestation levels of Lepeophtheirus salmonis in atlantic salmon (Salmo salar) following immersion exposure to Probiotic Aliivibrio spp. Appl. Microbiol. 2023, 3, 1339–1354. [Google Scholar] [CrossRef]
- Stumpf, L.; Schildbach, S.; Coffey, A. Obtaining novel vitamin B12 production strains Acetobacter malorum HFD 3141 and Acetobacter orientalis HFD 3031 from home-fermented sourdough. Appl. Microbiol. 2024, 4, 986–999. [Google Scholar] [CrossRef]
- Pérez-González, O.; Valencia-Ampudia, F.; A de la Garza-Ramos, M.; Aguirre-Arzola, V.E. Exploring the intriguing world of fungal diversity in the oral cavities of a native community in Siltepec, Chiapas, Mexico. Appl. Microbiol. 2024, 4, 1411–1421. [Google Scholar] [CrossRef]
- Balland, C.; Alphonse, V.; Jusselme, M.D.; Abbad-Andaloussi, S.; Bousserrhine, N. Capacity of the fungi Trichoderma koningiopsis and Talaromyces verruculosus for Hg leaching, immobilization and absorption during the dissolution of cinnabar. Appl. Microbiol. 2025, 5, 12. [Google Scholar] [CrossRef]
- Senn, S.; Enke, R.A.; Carrell, S.J.; Nations, B.; Best, M.; Kostoglou, M.; Smith, K.; Yan, J.; Ford, J.M.; Vion, L.; et al. De novo leaf transcriptome assembly and metagenomic studies of coast live oak (Quercus agrifolia). Appl. Microbiol. 2025, 5, 24. [Google Scholar] [CrossRef]
- Ehala-Aleksejev, K.; Pihelgas, S.; Kazantseva, J. Consuming a high-pectin smoothie has different effects on the uric acid levels and gut microbiota of healthy women. Appl. Microbiol. 2025, 5, 31. [Google Scholar] [CrossRef]
- Gocheva, Y.; Krumova, E.; Lazarkevich, I.; Eneva, R.; Engibarov, S. Enhancing sialidase production from the Oerskovia paurometabola O129 strain by the optimization of fermentation parameters and the addition of stimulative compounds. Appl. Microbiol. 2025, 5, 50. [Google Scholar] [CrossRef]
- Lares-Michel, M.; Vázquez-Solórzano, R.; Reyes-Castillo, Z.; Salaiza-Ambriz, L.C.; Ramírez-Guerrero, S.; Housni, F.E.; Rodríguez-Lara, A.; Huertas, J.R. Association between adherence levels to the eat-lancet diet in habitual intake and selected gut bacteria in a Mexican subpopulation. Appl. Microbiol. 2025, 5, 62. [Google Scholar] [CrossRef]
- Mohamed, D.A.; Mabrok, H.B.; El-Sayed, H.S.; Abdelgayed, S.; Mohammed, S.E. Cardio-protective effects of microencapsulated probiotic and synbiotic supplements on a myocardial infarction model through the gut–heart axis. Appl. Microbiol. 2025, 5, 72. [Google Scholar] [CrossRef]
- Najjar, A.A. Therapeutic potential of endophytic microbes: Emphasizing both fungal and bacterial endophytes. Appl. Microbiol. 2025, 5, 5. [Google Scholar] [CrossRef]
- Bamicha, V.; Pergantis, P.; Drigas, A. The effect of gut microbiome, neurotransmitters, and digital insights in autism. Appl. Microbiol. 2024, 4, 1677–1701. [Google Scholar] [CrossRef]
- Fijan, S.; Fijan, P.; Wei, L.; Marco, M.L. Health benefits of kimchi, sauerkraut, and other fermented foods of the genus brassica. Appl. Microbiol. 2024, 4, 1165–1176. [Google Scholar] [CrossRef]
- Burlakoti, S.; Devkota, A.R.; Poudyal, S.; Kaundal, A. Beneficial plant–microbe interactions and stress tolerance in maize. Appl. Microbiol. 2024, 4, 1000–1015. [Google Scholar] [CrossRef]
- Yakimova, A.O.; Nikolaeva, A.; Galanova, O.; Shestakova, V.A.; Smirnova, E.I.; Levushkina, A.; Baranovskii, D.S.; Smirnova, A.N.; Stepanenko, V.N.; Kudlay, D.A.; et al. Microbiota-induced radioprotection: A novel approach to enhance human radioresistance with in-situ genetically engineered gut bacteria. Appl. Microbiol. 2025, 5, 1. [Google Scholar] [CrossRef]
- Zhou, X.; Shen, X.; Johnson, J.S.; Spakowicz, D.J.; Agnello, M.; Zhou, W.; Avina, M.; Honkala, A.; Chleilat, F.; Chen, S.J.; et al. Longitudinal profiling of the microbiome at four body sites reveals core stability and individualized dynamics during health and disease. Cell Host Microbe 2024, 32, 506–526.e9. [Google Scholar] [CrossRef] [PubMed]
Authors (Year) | Study Subject | Focus | Strain/Food/Microorganism | Population/Model |
---|---|---|---|---|
Steen Dobloug et al., 2023 [19] | Animal | Probiotic/ Ecological | Aliivibrio spp. | Atlantic salmon against salmon lice |
Stumpf et al., 2024 [20] | Technological—Vitamin B12 production | Fermented food application | Acetobacter malorum HFD 3141; Acetobacter orientalis HFD 3031 | Sourdough isolates; application in apple juice |
Pérez-González et al., 2024 [21] | Human (Indigenous community) | Fermented food/Oral microbiome | Filamentous fungi (Cladosporium) | 37 participants; impact of traditional fermented beverages (pozol) |
Balland et al., 2025 [22] | Ecological/ Technological—mercury leaching | Bioremediation | Trichoderma koningiopsis; Talaromyces verruculosus | Fungi from Hg-contaminated soils; mercury immobilization |
Senn et al., 2025 [23] | Plant | Ecological/ Transcriptomics | Microbiota (Pedobacter, Filimonas, Cohnella, Sorangium) | Oak (Quercus agrifolia) post-fire |
Ehala-Aleksejev et al., 2025 [24] | Human | Fermented food/Dietary fiber | Pectin smoothie (fibers) | 28 healthy women; urate levels and gut microbiota |
Gocheva et al., 2025 [25] | Technological—sialidase production | Fermentation/ Enzyme production | Oerskovia paurometabola O129 | Optimization of sialidase production conditions |
Lares-Michel et al., 2025 [26] | Human (Observational) | Diet–Microbiota interaction | Diet EAT-Lancet; Bifidobacterium, Akkermansia, Prevotella, Bilophila | 54 young adults in Mexico |
Mohamed et al., 2025 [27] | Animal | Probiotic | Microencapsulated probiotics | Rats with induced myocardial infarction |
Najjar, 2025 [28] | Plant/ Ecological (Review) | Endophytes/ Sustainable agriculture | Endophytic fungi and bacteria | Plant applications |
Bamicha et al., 2024 [29] | Human (Review) | Gut microbiome and Neurotransmitters | Microbiota–brain interactions, neurotransmitters | Autism; diet–microbiota connection |
Fijan et al., 2024 [30] | Human (Review) | Fermented food | Kimchi, sauerkraut, Brassica foods | Health benefits |
Burlakoti et al., 2024 [31] | Plant (Review) | Beneficial microbes | Rhizobacteria and other beneficial microbes in maize | Interactions for stress tolerance |
Yakimova et al., 2025 [32] | Human/ Technological (Perspective) | Microbiota engineering | Genetically modified microbiota | Radioprotection in space |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fijan, S.; Fijan, T. Current Trends in the Applications of Probiotics and Other Beneficial Microbes: Expanding Horizons. Appl. Microbiol. 2025, 5, 103. https://doi.org/10.3390/applmicrobiol5040103
Fijan S, Fijan T. Current Trends in the Applications of Probiotics and Other Beneficial Microbes: Expanding Horizons. Applied Microbiology. 2025; 5(4):103. https://doi.org/10.3390/applmicrobiol5040103
Chicago/Turabian StyleFijan, Sabina, and Tamara Fijan. 2025. "Current Trends in the Applications of Probiotics and Other Beneficial Microbes: Expanding Horizons" Applied Microbiology 5, no. 4: 103. https://doi.org/10.3390/applmicrobiol5040103
APA StyleFijan, S., & Fijan, T. (2025). Current Trends in the Applications of Probiotics and Other Beneficial Microbes: Expanding Horizons. Applied Microbiology, 5(4), 103. https://doi.org/10.3390/applmicrobiol5040103