Functional Characterization of Native Microorganisms from the Pulp of Coffea arabica L. Var. Castillo and Cenicafé 1 for Postharvest Applications and Compost Enhancement
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.1.1. Geographical Location and Coffee Varieties
2.1.2. Description of Wet-Processing Facilities
2.1.3. Pulp Sampling Procedure
2.2. Physicochemical Characterization of Coffee Pulp
2.2.1. Moisture Content, pH, and Temperature
2.2.2. Lignocellulosic Composition
2.2.3. Nutrient and Soluble Compound Analysis
2.3. Microbial Isolation and Functional Screening
2.3.1. Culture-Dependent Isolation Techniques
2.3.2. Selective Media and Functional Group Targeting
2.3.3. Enzymatic (Pectinolytic and Cellulolytic) Activity Assays
2.3.4. Pathogenicity and Mycotoxigenicity Screening
2.4. Amplicon Sequencing and Bioinformatic Analysis
2.4.1. DNA Extraction, Amplicon Library Preparation, and Sequencing
2.4.2. Taxonomic Assignment and Diversity Metrics
2.5. Pilot-Scale Composting Trials
2.5.1. Experimental Setup and Treatment Design
2.5.2. Inoculum Preparation and Application
2.5.3. Monitoring of Composting Parameters (Temperature, Moisture, and pH)
2.5.4. Organic Matter and Lignocellulose Degradation Evaluation
2.5.5. Final Compost Characterization
Nutrient Content (NPK)
Maturity and Phytotoxicity Tests
2.6. Statistical Analysis
3. Results and Discussion
3.1. Microbial Diversity Associated with Coffee Pulp
3.1.1. Culture-Dependent Isolation and Functional Groups
3.1.2. Amplicon-Based Community Profiling
3.2. Enzymatic Potential of Native Isolates
3.2.1. Pectinolytic and Cellulolytic Activities
3.2.2. Comparison Across Strains and Genera
3.2.3. Implications for Lignocellulose Breakdown and Mucilage Removal
3.3. Composting Performance and Substrate Transformation
3.3.1. Temperature Profiles, Decomposition Rates, and Composting Time
3.3.2. Nutrient Enhancement in Final Product
3.3.3. Evaluation of Phytotoxicity, Safety, and Potential Scalability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Acquaticci, L.; Angeloni, S.; Cela, N.; Galgano, F.; Vittori, S.; Caprioli, G.; Condelli, N. Impact of Coffee Species, Post-Harvesting Treatments and Roasting Conditions on Coffee Quality and Safety Related Compounds. Food Control 2023, 149, 109714. [Google Scholar] [CrossRef]
- Ahmed, H.; Abolore, R.S.; Jaiswal, S.; Jaiswal, A.K. Toward Circular Economy: Potentials of Spent Coffee Grounds in Bioproducts and Chemical Production. Biomass 2024, 4, 286–312. [Google Scholar] [CrossRef]
- Amrouk, E.M.; Palmeri, F.; Magrini, E. Global Coffee Market and Recent Price Developments; FAO: Rome, Italy, 2025; p. 10. [Google Scholar]
- Rahmah, D.M.; Mardawati, E.; Kastaman, R.; Pujianto, T.; Pramulya, R. Coffee Pulp Biomass Utilization on Coffee Production and Its Impact on Energy Saving, CO2 Emission Reduction, and Economic Value Added to Promote Green Lean Practice in Agriculture Production. Agronomy 2023, 13, 904. [Google Scholar] [CrossRef]
- Cangussu, L.B.; Melo, J.C.; Franca, A.S.; Oliveira, L.S. Chemical Characterization of Coffee Husks, a By-Product of Coffea arabica Production. Foods 2021, 10, 3125. [Google Scholar] [CrossRef] [PubMed]
- de Bomfim, A.S.C.; de Oliveira, D.M.; Walling, E.; Babin, A.; Hersant, G.; Vaneeckhaute, C.; Dumont, M.-J.; Rodrigue, D. Spent Coffee Grounds Characterization and Reuse in Composting and Soil Amendment. Waste 2023, 1, 2–20. [Google Scholar] [CrossRef]
- Dadi, D.; Daba, G.; Beyene, A.; Luis, P.; Van der Bruggen, B. Composting and Co-Composting of Coffee Husk and Pulp with Source-Separated Municipal Solid Waste: A Breakthrough in Valorization of Coffee Waste. Int. J. Recycl. Org. Waste Agric. 2019, 8, 263–277. [Google Scholar] [CrossRef]
- Lemma, D.B.; Debebe, W.A. Wet Coffee Processing Wastewater Treatment by Using an Integrated Constructed Wetland. Desalination Water Treat. 2023, 304, 97–111. [Google Scholar] [CrossRef]
- Král, E.; Rukov, J.L.; Mendes, A.C. Coffee Cherry on the Top: Disserting Valorization of Coffee Pulp and Husk. Food Eng. Rev. 2024, 16, 146–162. [Google Scholar] [CrossRef]
- Ijanu, E.M.; Kamaruddin, M.A.; Norashiddin, F.A. Coffee Processing Wastewater Treatment: A Critical Review on Current Treatment Technologies with a Proposed Alternative. Appl. Water Sci. 2019, 10, 11. [Google Scholar] [CrossRef]
- Staš, J.; Houdkova, M.; Banout, J.; Duque-Dussán, E.; Roubík, H.; Kokoska, L. Adaptation and Validation of a Modified Broth Microdilution Method for Screening the Anti-Yeast Activity of Plant Phenolics in Apple and Orange Juice Models. Life 2024, 14, 938. [Google Scholar] [CrossRef]
- Sánchez-Reinoso, A.D.; Ávila-Pedraza, E.Á.; Lombardini, L.; Restrepo-Díaz, H. The Application of Coffee Pulp Biochar Improves the Physical, Chemical, and Biological Characteristics of Soil for Coffee Cultivation. J. Soil Sci. Plant Nutr. 2023, 23, 2512–2524. [Google Scholar] [CrossRef]
- Pascucci, F. The State of the Global Coffee Sector. In Sustainability in the Coffee Supply Chain: Tensions and Paradoxes; Pascucci, F., Ed.; Springer Nature: Cham, Switzerland, 2024; pp. 57–75. ISBN 978-3-031-72502-9. [Google Scholar]
- Poyilil, S.; Palatel, A.; Chandrasekharan, M. Physico-Chemical Characterization Study of Coffee Husk for Feasibility Assessment in Fluidized Bed Gasification Process. Environ. Sci. Pollut. Res. 2022, 29, 51041–51053. [Google Scholar] [CrossRef] [PubMed]
- Serna-Jiménez, J.A.; Siles, J.A.; de los Ángeles Martín, M.; Chica, A.F. A Review on the Applications of Coffee Waste Derived from Primary Processing: Strategies for Revalorization. Processes 2022, 10, 2436. [Google Scholar] [CrossRef]
- Lourenço, K.S.; Barthel, M.; Velthof, G.; Westerik, D.; Rahn, E.; Pulleman, M.; Six, J.; Giller, K.E. Assessing Greenhouse Gas Emissions from Post-Harvest Residue Management in Coffee and Cocoa Production Systems; Wageningen University & Research: Wageningen, The Netherlands, 2024. [Google Scholar] [CrossRef]
- Flores-Solórzano, S.B.; Huerta-Lwanga, E.; Cuevas-González, R.; Guillén-Navarro, K. Optimal Conditions to Produce Extracts of Compost and Vermicompost from Oil Palm and Coffee Pulp Wastes. J. Mater. Cycles Waste Manag. 2022, 24, 801–810. [Google Scholar] [CrossRef]
- Duque-Orrego, H.; Salazar, H.M.; Rojas-Sepúlveda, L.A.; Gaitán, Á. Análisis Económico de Tecnologías Para La Producción de Café En Colombia. Cenicafé 2021. [Google Scholar] [CrossRef]
- Flórez, C.; Arias, J.; Maldonado, C. Variedades Castillo Zonales Resistencia a La Roya Con Mayor Productividad. Cenicafé 2018, 489, 1–8. [Google Scholar] [CrossRef]
- Flórez, C.; Maldonado, C.; Cortina, H.; Moncada, M.; Montoya-Restrepo, E.C.; Ruales, L.; Muñoz-Unigarro, C.; Rendón, J.; Duque-Orrego, H. Cenicafé 1: Nueva Variedad de Porte Bajo, Altamente Productiva, Resistente a La Roya y al CBD, Con Mayor Calidad Física Del Grano. Av. Téc. Cenicafé 2016, 469, 1–8. [Google Scholar] [CrossRef]
- Centro Nacional de Investigaciones de Café. Guía Más Agronomía, Más Productividad, Más Calidad, 3rd ed.; Cenicafé: Manizales, Colombia, 2021; ISBN 978-958-8490-49-6. [Google Scholar]
- Rendón, J.R. Producción de Café Variedad Castillo® En Altas Densidades de Siembra Con Uno y Dos Tallos Por Sitio. Rev. Cenicafé 2021, 72, e72106. [Google Scholar] [CrossRef]
- Duong, B.; Marraccini, P.; Maeght, J.-L.; Vaast, P.; Lebrun, M.; Duponnois, R. Coffee Microbiota and Its Potential Use in Sustainable Crop Management. A Review. Front. Sustain. Food Syst. 2020, 4, 607935. [Google Scholar] [CrossRef]
- Vinícius de Melo Pereira, G.; Soccol, V.T.; Brar, S.K.; Neto, E.; Soccol, C.R. Microbial Ecology and Starter Culture Technology in Coffee Processing. Crit. Rev. Food Sci. Nutr. 2017, 57, 2775–2788. [Google Scholar] [CrossRef]
- Fu, X.; Li, G.; Li, Y.; Li, Y.; Bi, X.; Huang, J.; Yang, Y.; Yu, H.; Liu, D.; Hu, F.; et al. Fermentation with Coffee Berry Peels Induces Spatiotemporal Changes in Microbial Communities Leading to Unique Aroma of Coffee Berries. Int. J. Food Prop. 2024, 27, 657–673. [Google Scholar] [CrossRef]
- Tenea, G.N.; Cifuentes, V.; Reyes, P.; Cevallos-Vallejos, M. Unveiling the Microbial Signatures of Arabica Coffee Cherries: Insights into Ripeness Specific Diversity, Functional Traits, and Implications for Quality and Safety. Foods 2025, 14, 614. [Google Scholar] [CrossRef]
- Ashokkumar, V.; Flora, G.; Venkatkarthick, R.; SenthilKannan, K.; Kuppam, C.; Mary Stephy, G.; Kamyab, H.; Chen, W.-H.; Thomas, J.; Ngamcharussrivichai, C. Advanced Technologies on the Sustainable Approaches for Conversion of Organic Waste to Valuable Bioproducts: Emerging Circular Bioeconomy Perspective. Fuel 2022, 324, 124313. [Google Scholar] [CrossRef]
- Mebrate, A.; and Kippie, T. Effect of Coffee Pulp Compost and P Fertilizer on Yield and Yield Components of Maize (Zea Mays L.) in Gedeo Zone, Southern Ethiopia. Compost. Sci. Util. 2021, 29, 21–36. [Google Scholar] [CrossRef]
- Montilla-Pérez, J.; Arcila-Pulgarín, J.; Aristizábal-Loaiza, M.; Montoya-Restrepo, E.C.; Puerta-Quintero, G.I.; Oliveros-Tascón, C.E.; Cadena-Gómez, G. Caracterización de Algunas Propiedades Físicas y Factores de Conversión Del Café Durante El Proceso de Beneficio Húmedo Tradicional. Rev. Cenicafé 2008, 59, 120–142. [Google Scholar]
- Pérez-Sariñana, B.Y.; Saldaña-Trinidad, S. Chemistry and Biotransformation of Coffee By-Products to Biofuels. In The Question of Caffeine; Books on Demand: Hamburg, Germany, 2017. [Google Scholar]
- Pagliarini, E.; Totaro, G.; Saccani, A.; Gaggìa, F.; Lancellotti, I.; Di Gioia, D.; Sisti, L. Valorization of Coffee Wastes as Plant Growth Promoter in Mulching Film Production: A Contribution to a Circular Economy. Sci. Total. Environ. 2023, 871, 162093. [Google Scholar] [CrossRef]
- Otálora, M.C.; Wilches-Torres, A.; Gómez Castaño, J.A. Physicochemical Properties and Valorization of the Mucilage Byproduct from Colombian Coffea arabica L. as a Powdered Food Hydrocolloid. ACS Food Sci. Technol. 2024, 4, 2895–2906. [Google Scholar] [CrossRef]
- Sierra-López, L.D.; Hernandez-Tenorio, F.; Marín-Palacio, L.D.; Giraldo-Estrada, C. Coffee Mucilage Clarification: A Promising Raw Material for the Food Industry. Food Humanit. 2023, 1, 689–695. [Google Scholar] [CrossRef]
- Duque Dussán, E.; Bappah, M.; Sanz-Uribe, J.; Nainggolan, E.A. Thermo-Chemical Characterization of Coffee Husk from a New Variety (Coffea arabica L. Var. Cenicafé 1) for Biofuel Production. Sci. Agric. Bohem. 2025, 56, 1–22. [Google Scholar] [CrossRef]
- Manrique, R.; Vásquez, D.; Ceballos, C.; Chejne, F.; Amell, A. Evaluation of the Energy Density for Burning Disaggregated and Pelletized Coffee Husks. ACS Omega 2019, 4, 2957–2963. [Google Scholar] [CrossRef]
- Manrique, R.; Vásquez, D.; Chejne, F.; Pinzón, A. Energy Analysis of a Proposed Hybrid Solar–Biomass Coffee Bean Drying System. Energy 2020, 202, 1–8. [Google Scholar] [CrossRef]
- Duque-Dussán, E.; Sanz-Uribe, J.R.; Banout, J. Design and Evaluation of a Hybrid Solar Dryer for Postharvesting Processing of Parchment Coffee. Renew. Energy 2023, 215, 118961. [Google Scholar] [CrossRef]
- Thurston, R.W.; Morris, J.; Steiman, S. Coffee: A Comprehensive Guide to the Bean, the Beverage, and the Industry; Bloomsbury Publishing PLC: London, UK, 2013; ISBN 978-1-4422-1442-2. [Google Scholar]
- la Rosa, J.M.D.; Pérez-Dalí, S.M.; Campos, P.; Sánchez-Martín, Á.; González-Pérez, J.A.; Miller, A.Z. Suitability of Volcanic Ash, Rice Husk Ash, Green Compost and Biochar as Amendments for a Mediterranean Alkaline Soil. Agronomy 2023, 13, 1097. [Google Scholar] [CrossRef]
- Fischer, H.; Romano, N.; Sinha, A.K. Conversion of Spent Coffee and Donuts by Black Soldier Fly (Hermetia Illucens) Larvae into Potential Resources for Animal and Plant Farming. Insects 2021, 12, 332. [Google Scholar] [CrossRef]
- Hutabarat, D.J.C.; Mangindaan, D. Cultivation of Black Soldier Fly (Hermetia Illucens) Larvae for the Valorization of Spent Coffee Ground: A Systematic Review and Bibliometric Study. Agriculture 2024, 14, 205. [Google Scholar] [CrossRef]
- Kandasamy, S.; Muthusamy, G.; Balakrishnan, S.; Duraisamy, S.; Thangasamy, S.; Seralathan, K.-K.; Chinnappan, S. Optimization of Protease Production from Surface-Modified Coffee Pulp Waste and Corncobs Using Bacillus Sp. by SSF. 3 Biotech 2016, 6, 167. [Google Scholar] [CrossRef]
- Ameca, G.M.; Cerrilla, M.E.O.; Córdoba, P.Z.; Cruz, A.D.; Hernández, M.S.; Haro, J.H. Chemical Composition and Antioxidant Capacity of Coffee Pulp. Ciênc. E Agrotecnologia 2018, 42, 307–313. [Google Scholar] [CrossRef]
- San Martin Ruiz, M.; Reiser, M.; Kranert, M. Enhanced Composting as a Way to a Climate-Friendly Management of Coffee by-Products. Environ. Sci. Pollut. Res. 2020, 27, 24312–24319. [Google Scholar] [CrossRef]
- Jain, R.; Pattanaik, L.; Padhi, S.K.; Naik, S.N. Role of Microbes and Microbial Consortium in Solid Waste Management. In Environmental and Agricultural Microbiology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021; pp. 383–422. ISBN 978-1-119-52589-9. [Google Scholar]
- Elhalis, H.; Cox, J.; Frank, D.; Zhao, J. The Role of Wet Fermentation in Enhancing Coffee Flavor, Aroma and Sensory Quality. Eur. Food Res. Technol. 2021, 247, 485–498. [Google Scholar] [CrossRef]
- Haile, M.; Kang, W.H. The Role of Microbes in Coffee Fermentation and Their Impact on Coffee Quality. J. Food Qual. 2019, 2019, 4836709. [Google Scholar] [CrossRef]
- DaMatta, F.M.; Avila, R.T.; Cardoso, A.A.; Martins, S.C.V.; Ramalho, J.C. Physiological and Agronomic Performance of the Coffee Crop in the Context of Climate Change and Global Warming: A Review. J. Agric. Food Chem. 2018, 66, 5264–5274. [Google Scholar] [CrossRef]
- Peñuela-Martínez, A.E.; Guerrero, Á.; Sanz-Uribe, J.R. Cromacafé® Herramienta Para Identificar Los Estados de Madurez de Las Variedades de Café de Fruto Rojo. Av. Téc. Cenicafé 2022, 535, 1–8. [Google Scholar] [CrossRef]
- Pineda, M.F.; Tinoco, H.A.; Lopez-Guzman, J.; Perdomo-Hurtado, L.; Cardona, C.I.; Rincon-Jimenez, A.; Betancur-Herrera, N. Ripening Stage Classification of Coffea arabica L. Var. Castillo Using a Machine Learning Approach with the Electromechanical Impedance Measurements of a Contact Device. Mater. Today Proc. 2022, 1675, 1–26. [Google Scholar] [CrossRef]
- García, L.J.C.; Posada-Suárez, H.; Läderach, P. Recommendations for the Regionalizing of Coffee Cultivation in Colombia: A Methodological Proposal Based on Agro-Climatic Indices. PLoS ONE 2014, 9, e113510. [Google Scholar] [CrossRef] [PubMed]
- Duque-Dussán, E.; Banout, J. Improving the Drying Performance of Parchment Coffee Due to the Newly Redesigned Drying Chamber. J. Food Process Eng. 2022, 45, e14161. [Google Scholar] [CrossRef]
- ISO 6673:2003; Green Coffee—Determination of Loss in Mass at 105 Degrees C. ISO: Geneva, Switzerland, 2003.
- Dimitrijević, S.; Milić, M.; Buntić, A.; Dimitrijević-Branković, S.; Filipović, V.; Popović, V.; Salamon, I. Spent Coffee Grounds, Plant Growth Promoting Bacteria, and Medicinal Plant Waste: The Biofertilizing Effect of High-Value Compost. Sustainability 2024, 16, 1632. [Google Scholar] [CrossRef]
- Duque-Buitrago, L.-F.; Calderón-Gaviria, K.-D.; Torres-Valenzuela, L.-S.; Sánchez-Tamayo, M.-I.; Plaza-Dorado, J.-L. Modulating Coffee Fermentation Quality Using Microbial Inoculums from Coffee By-Products for Sustainable Practices in Smallholder Coffee Production. Sustainability 2025, 17, 1781. [Google Scholar] [CrossRef]
- Lončarić, Z.; Galić, V.; Nemet, F.; Perić, K.; Galić, L.; Ragályi, P.; Uzinger, N.; Rékási, M. The Evaluation of Compost Maturity and Ammonium Toxicity Using Different Plant Species in a Germination Test. Agronomy 2024, 14, 2636. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Wickham, H. Data Analysis. In Use R! Springer International Publishing: Cham, Switzerland, 2016; pp. 189–201. ISBN 978-3-319-24275-0. [Google Scholar]
- Shen, X.; Wang, Q.; Wang, H.; Fang, G.; Li, Y.; Zhang, J.; Liu, K. Microbial Characteristics and Functions in Coffee Fermentation: A Review. Fermentation 2024, 11, 5. [Google Scholar] [CrossRef]
- Polanía Rivera, A.M.; López Silva, J.; Torres-Valenzuela, L.S.; Plaza Dorado, J.L. Development of Starter Inoculum for Controlled Arabica Coffee Fermentation Using Coffee By-Products (Pulp and Mucilage Broth), Yeast, and Lactic Acid Bacteria. Fermentation 2024, 10, 516. [Google Scholar] [CrossRef]
- Elhalis, H.; Cox, J.; Zhao, J. Yeasts Are Essential for Mucilage Degradation of Coffee Beans during Wet Fermentation. Yeast 2023, 40, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, B.L.; Pereira, P.V.; Bertoli, L.D.; Silveira, D.L.; Batista, N.N.; Pinheiro, P.F.; De Souza Carneiro, J.; Schwan, R.F.; De Assis Silva, S.; Coelho, J.M.; et al. Fermentation of Coffea Canephora Inoculated with Yeasts: Microbiological, Chemical, and Sensory Characteristics. Food Microbiol. 2021, 98, 103786. [Google Scholar] [CrossRef] [PubMed]
- Núñez Pérez, J.; Chávez Arias, B.S.; De La Vega Quintero, J.C.; Zárate Baca, S.; Pais-Chanfrau, J.M. Multi-Objective Statistical Optimization of Pectinolytic Enzymes Production by an Aspergillus Sp. on Dehydrated Coffee Residues in Solid-State Fermentation. Fermentation 2022, 8, 170. [Google Scholar] [CrossRef]
- Carota, E.; Crognale, S.; Russo, C.; Petruccioli, M.; D’Annibale, A. Lignocellulolytic Potential of the Recently Described Species Aspergillus Olivimuriae on Different Solid Wastes. Appl. Sci. 2021, 11, 5349. [Google Scholar] [CrossRef]
- Alabdalall, A.H.; Almutari, A.A.; Aldakeel, S.A.; Albarrag, A.M.; Aldakheel, L.A.; Alsoufi, M.H.; Alfuraih, L.Y.; Elkomy, H.M. Bioethanol Production from Lignocellulosic Biomass Using Aspergillus Niger and Aspergillus Flavus Hydrolysis Enzymes through Immobilized S. Cerevisiae. Energies 2023, 16, 823. [Google Scholar] [CrossRef]
- Krull, R.; Wucherpfennig, T.; Esfandabadi, M.E.; Walisko, R.; Melzer, G.; Hempel, D.C.; Kampen, I.; Kwade, A.; Wittmann, C. Characterization and Control of Fungal Morphology for Improved Production Performance in Biotechnology. J. Biotechnol. 2013, 163, 112–123. [Google Scholar] [CrossRef]
- Cárdenas, D.E.; Aguilar, C.; Bhatta, U.; Bugingo, C.; Cochran-Murray, S.; Gazis, R.; Miles, T.D.; Jurick, W.; Naegele, R.P.; Quesada-Ocampo, L.; et al. Rotten to the Core: Challenges with Postharvest Disease Management of Fruit Crops. Plant Dis. 2025, 1–70. [Google Scholar] [CrossRef]
- Applications of Streptomyces spp. Enhanced Compost in Sustainable Agriculture. In Soil Biology; Springer International Publishing: Cham, Switzerland, 2020; pp. 257–291. ISBN 978-3-030-39172-0.
- Chukwuma, O.B.; Rafatullah, M.; Tajarudin, H.A.; Ismail, N. A Review on Bacterial Contribution to Lignocellulose Breakdown into Useful Bio-Products. Int. J. Environ. Res. Public. Health 2021, 18, 6001. [Google Scholar] [CrossRef]
- Bhimani, A.A.; Bhimani, H.D.; Vaghela, N.R.; Gohel, S.D. Cultivation Methods, Characterization, and Biocatalytic Potential of Organic Solid Waste Degrading Bacteria Isolated from Sugarcane Rhizospheric Soil and Compost. Biologia 2024, 79, 953–974. [Google Scholar] [CrossRef]
- Velásquez, S.; Banchón, C. Influence of Pre-and Post-Harvest Factors on the Organoleptic and Physicochemical Quality of Coffee: A Short Review. J. Food Sci. Technol. 2023, 60, 2526–2538. [Google Scholar] [CrossRef]
- Vale, A.d.S.; Pereira, C.M.T.; De Dea Lindner, J.; Rodrigues, L.R.S.; Kadri, N.K.E.; Pagnoncelli, M.G.B.; Kaur Brar, S.; Soccol, C.R.; Pereira, G.V. de M. Exploring Microbial Influence on Flavor Development during Coffee Processing in Humid Subtropical Climate through Metagenetic–Metabolomics Analysis. Foods 2024, 13, 1871. [Google Scholar] [CrossRef]
- Xia, Y.; Sun, J. Alpha Diversity. In Bioinformatic and Statistical Analysis of Microbiome Data; Springer International Publishing: Cham, Switzerland, 2023; pp. 289–333. ISBN 978-3-031-21390-8. [Google Scholar]
- De Souza, T.S.P.; Kawaguti, H.Y. Cellulases, Hemicellulases, and Pectinases: Applications in the Food and Beverage Industry. Food Bioprocess Technol. 2021, 14, 1446–1477. [Google Scholar] [CrossRef]
- Sohail, M.; Barzkar, N.; Michaud, P.; Tamadoni Jahromi, S.; Babich, O.; Sukhikh, S.; Das, R.; Nahavandi, R. Cellulolytic and Xylanolytic Enzymes from Yeasts: Properties and Industrial Applications. Molecules 2022, 27, 3783. [Google Scholar] [CrossRef] [PubMed]
- De Bruyn, F.; Zhang, S.J.; Pothakos, V.; Torres, J.; Lambot, C.; Moroni, A.V.; Callanan, M.; Sybesma, W.; Weckx, S.; De Vuyst, L. Exploring the Impacts of Postharvest Processing on the Microbiota and Metabolite Profiles during Green Coffee Bean Production. Appl. Environ. Microbiol. 2017, 83, e02398-16. [Google Scholar] [CrossRef] [PubMed]
- Finore, I.; Feola, A.; Russo, L.; Cattaneo, A.; Di Donato, P.; Nicolaus, B.; Poli, A.; Romano, I. Thermophilic Bacteria and Their Thermozymes in Composting Processes: A Review. Chem. Biol. Technol. Agric. 2023, 10, 7. [Google Scholar] [CrossRef]
- Chen, M.; Li, Q.; Liu, C.; Meng, E.; Zhang, B. Microbial Degradation of Lignocellulose for Sustainable Biomass Utilization and Future Research Perspectives. Sustainability 2025, 17, 4223. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, H.; Qiu, H.; Anning, D.K.; Li, M.; Wang, Y.; Zhang, C. Effects of C/N Ratio on Lignocellulose Degradation and Enzyme Activities in Aerobic Composting. Horticulturae 2021, 7, 482. [Google Scholar] [CrossRef]
- Maral-Gül, D.; Eltem, R. Evaluation of Bacillus Isolates as a Biological Control Agents against Soilborne Phytopathogenic Fungi. Int. Microbiol. 2024, 28, 75–89. [Google Scholar] [CrossRef]
- Ul Hassan, Z.; Oufensou, S.; Zeidan, R.; Migheli, Q.; Jaoua, S. Microbial Volatilome in Food Safety. Current Status and Perspectives in the Biocontrol of Mycotoxigenic Fungi and Their Metabolites. Biocontrol Sci. Technol. 2023, 33, 499–538. [Google Scholar] [CrossRef]
- Clara Ivette, R.-M.; Luis Alberto, M.-G.; Luis Galdino, G.-P.; Francisco Alexander, R.-M.; Reiner, R.-R. Advances and Challenges in the Production and Use of Native Bacteria as Plant Probiotics in Agronomic Applications: A Mexican Review. J. Agric. Food Res. 2025, 21, 101917. [Google Scholar] [CrossRef]
- Díaz-Rodríguez, A.M.; Parra Cota, F.I.; Cira Chávez, L.A.; García Ortega, L.F.; Estrada Alvarado, M.I.; Santoyo, G.; de los Santos-Villalobos, S. Microbial Inoculants in Sustainable Agriculture: Advancements, Challenges, and Future Directions. Plants 2025, 14, 191. [Google Scholar] [CrossRef]
- Gil-Gómez, J.A.; Florez-Pardo, L.M.; Leguizamón-Vargas, Y.C. Valorization of Coffee By-Products in the Industry, a Vision towards Circular Economy. Discov. Appl. Sci. 2024, 6, 480. [Google Scholar] [CrossRef]
- Ravindran, B.; Awasthi, M.K.; Karmegam, N.; Chang, S.W.; Chaudhary, D.K.; Selvam, A.; Nguyen, D.D.; Rahman Milon, A.; Munuswamy-Ramanujam, G. Co-Composting of Food Waste and Swine Manure Augmenting Biochar and Salts: Nutrient Dynamics, Gaseous Emissions and Microbial Activity. Bioresour. Technol. 2022, 344, 126300. [Google Scholar] [CrossRef]
- Wang, X.; Sale, P.; Hunt, J.; Clark, G.; Wood, J.L.; Franks, A.E.; Reddy, P.; Jin, J.; Joseph, S.; Tang, C. Enhancing Growth and Transpiration Efficiency of Corn Plants with Compost Addition and Potential Beneficial Microbes under Well-Watered and Water-Stressed Conditions. Plant Soil 2025, 1–19. [Google Scholar] [CrossRef]
- Sheng, C.; Yao, C. Review on Self-Heating of Biomass Materials: Understanding and Description. Energy Fuels 2022, 36, 731–761. [Google Scholar] [CrossRef]
- Rohaya, S.; Anwar, S.H.; Amhar, A.B.; Sutriana, A.; Muzaifa, M. Antioxidant Activity and Physicochemical Composition of Coffee Pulp Obtained from Three Coffee Varieties in Aceh, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2023, 1182, 012063. [Google Scholar] [CrossRef]
- Xu, Z.; Li, R.; Zhang, X.; Liu, J.; Xu, X.; Wang, S.; Lan, T.; Zhang, K.; Gao, F.; He, Q.; et al. Mechanisms and Effects of Novel Ammonifying Microorganisms on Nitrogen Ammonification in Cow Manure Waste Composting. Waste Manag. 2023, 169, 167–178. [Google Scholar] [CrossRef]
- Ellafi, A.; Dali, A.; Mnif, S.; Ben Younes, S. Microbial Enzymatic Degradation, Spectral Analysis and Phytotoxicity Assessment of Congo Red Removal By Bacillus spp. Catal. Lett. 2023, 153, 3620–3633. [Google Scholar] [CrossRef]
- Murthy, P.S.; Madhava Naidu, M. Sustainable Management of Coffee Industry By-Products and Value Addition—A Review. Resour. Conserv. Recycl. 2012, 66, 45–58. [Google Scholar] [CrossRef]
- Grgas, D.; Rukavina, M.; Bešlo, D.; Štefanac, T.; Crnek, V.; Šikić, T.; Habuda-Stanić, M.; Landeka Dragičević, T. The Bacterial Degradation of Lignin—A Review. Water 2023, 15, 1272. [Google Scholar] [CrossRef]
- Zainudin, M.H.M.; Zulkarnain, A.; Azmi, A.S.; Muniandy, S.; Sakai, K.; Shirai, Y.; Hassan, M.A. Enhancement of Agro-Industrial Waste Composting Process via the Microbial Inoculation: A Brief Review. Agronomy 2022, 12, 198. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, K.; Yang, Y.; Gao, B.; Zheng, H. Effects of Biochar on the Accumulation of Necromass-Derived Carbon, the Physical Protection and Microbial Mineralization of Soil Organic Carbon. Crit. Rev. Environ. Sci. Technol. 2024, 54, 39–67. [Google Scholar] [CrossRef]
- Li, J.-Y.; Chen, P.; Li, Z.-G.; Li, L.-Y.; Zhang, R.-Q.; Hu, W.; Liu, Y. Soil Aggregate-Associated Organic Carbon Mineralization and Its Driving Factors in Rhizosphere Soil. Soil Biol. Biochem. 2023, 186, 109182. [Google Scholar] [CrossRef]
- Chen, X.; Du, G.; Wu, C.; Li, Q.; Zhou, P.; Shi, J.; Zhao, Z. Effect of Thermophilic Microbial Agents on Nitrogen Transformation, Nitrogen Functional Genes, and Bacterial Communities during Bean Dregs Composting. Environ. Sci. Pollut. Res. 2022, 29, 31846–31860. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Zafar, U.; Khan, A.; Haq, T.; Mujahid, T.; Wali, M. Effectiveness of Compost Inoculated with Phosphate Solubilizing Bacteria. J. Appl. Microbiol. 2022, 133, 1115–1129. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, S.A.; Alharby, H.F.; Abdelfattah, M.A.; Mohamed, I.A.A.; Hakeem, K.R.; Rady, M.M.; Shaaban, A. Spirulina Platensis-Inoculated Humified Compost Boosts Rhizosphere Soil Hydro-Physico-Chemical Properties and Atriplex Nummularia Forage Yield and Quality in an Arid Saline Calcareous Soil. J. Soil Sci. Plant Nutr. 2023, 23, 2215–2236. [Google Scholar] [CrossRef]
- AbdelRahman, M.A.E.; Metwaly, M.M.; Afifi, A.A.; D’Antonio, P.; Scopa, A. Assessment of Soil Fertility Status under Soil Degradation Rate Using Geomatics in West Nile Delta. Land 2022, 11, 1256. [Google Scholar] [CrossRef]
- El-Ramady, H.; Brevik, E.C.; Fawzy, Z.F.; Elsakhawy, T.; Omara, A.E.-D.; Amer, M.; Faizy, S.E.-D.; Abowaly, M.; El-Henawy, A.; Kiss, A.; et al. Nano-Restoration for Sustaining Soil Fertility: A Pictorial and Diagrammatic Review Article. Plants 2022, 11, 2392. [Google Scholar] [CrossRef]
- Kong, Y.; Zhang, J.; Yang, Y.; Liu, Y.; Zhang, L.; Wang, G.; Liu, G.; Dang, R.; Li, G.; Yuan, J. Determining the Extraction Conditions and Phytotoxicity Threshold for Compost Maturity Evaluation Using the Seed Germination Index Method. Waste Manag. 2023, 171, 502–511. [Google Scholar] [CrossRef]
- Dume, B.; Hanc, A.; Svehla, P.; Michal, P.; Chane, A.D.; Nigussie, A. Composting and Vermicomposting of Sewage Sludge at Various C/N Ratios: Technological Feasibility and End-Product Quality. Ecotoxicol. Environ. Saf. 2023, 263, 115255. [Google Scholar] [CrossRef] [PubMed]
- Datta, A.; Choudhury, M.; Sharma, P.C.; Priyanka; Jat, H.S.; Jat, M.L.; Kar, S. Stability of Humic Acid Carbon under Conservation Agriculture Practices. Soil Tillage Res. 2022, 216, 105240. [Google Scholar] [CrossRef]
- Nadaf, S.A.; Shivaprasad, P.; Babou, C.; Hariyappa, N.; Chandrashekar, N.; Kumari, P.; Sowmya, P.R.; Hareesh, S.B.; Pati, N.R.; Nagaraja, J.S.; et al. Coffee (Coffea spp.). In Soil Health Management for Plantation Crops: Recent Advances and New Paradigms; Thomas, G.V., Krishnakumar, V., Eds.; Springer Nature: Singapore, 2024; pp. 337–389. ISBN 978-981-97-0092-9. [Google Scholar]
- Kiup, E.; Swan, T.; Field, D. Soil Management Practices in Coffee Farming Systems in the Asia-Pacific Region and Their Relevance to Papua New Guinea: A Systematic Review. Soil Use Manag. 2025, 41, e70068. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, Q.; Zhang, Y.; Yang, L.; Zeng, Z.; Zhou, Y.; Chen, B. Advance in the Thermoinhibition of Lettuce (Lactuca sativa L.) Seed Germination. Plants 2024, 13, 2051. [Google Scholar] [CrossRef]
- Kong, Y.; Wang, G.; Chen, W.; Yang, Y.; Ma, R.; Li, D.; Shen, Y.; Li, G.; Yuan, J. Phytotoxicity of Farm Livestock Manures in Facultative Heap Composting Using the Seed Germination Index as Indicator. Ecotoxicol. Environ. Saf. 2022, 247, 114251. [Google Scholar] [CrossRef]
- Antunes, L.F.D.S.; Vaz, A.F.D.S.; Martelleto, L.A.P.; Leal, M.A.D.A.; Alves, R.D.S.; Ferreira, T.D.S.; Rumjanek, N.G.; Correia, M.E.F.; Rosa, R.C.C.; Guerra, J.G.M. Sustainable Organic Substrate Production Using Millicompost in Combination with Different Plant Residues for the Cultivation of Passiflora Edulis Seedlings. Environ. Technol. Innov. 2022, 28, 102612. [Google Scholar] [CrossRef]
Functional Group | Medium Used | No. of Isolates | Representative Genera | Notes on Morphology/Activity |
---|---|---|---|---|
Yeasts | YPDA | 20 | Pichia, Saccharomyces | Creamy colonies, some pectinase activity |
Lactic Acid Bacteria | MRS | 18 | Lactobacillus, Leuconostoc | Rod/coccus, catalase-negative |
Filamentous Fungi | PDA | 15 | Aspergillus, Penicillium | Pigmented colonies, sporulating |
Variety | Shannon Index (16S) | Chao1 (16S) | Shannon Index (ITS1) | Chao1 (ITS1) |
---|---|---|---|---|
Castillo | 3.2 | 152 | 2.9 | 121 |
Cenicafé 1 | 3.4 | 165 | 3.5 | 142 |
Isolate Code | Genus/Species | Source Variety | Pectinolytic Halo (mm) | Pectinolytic Index (Mean ± SE) | Cellulolytic Halo (mm) | Cellulolytic Index (Mean ± SE) | Functional Classification |
---|---|---|---|---|---|---|---|
F1 | Aspergillus niger | Cenicafé 1 | 28.0 | 2.8 ± 0.05 | 15.0 | 1.5 ± 0.04 | Strong pectinase producer |
F5 | Trichoderma harzianum | Castillo | 13.0 | 1.3 ± 0.06 | 32.0 | 3.2 ± 0.07 | Strong cellulase producer |
Y2 | Pichia kudriavzevii | Castillo | 21.0 | 2.1 ± 0.03 | 9.0 | 0.9 ± 0.02 | Yeast with pectinolytic activity |
B3 | Bacillus subtilis | Cenicafé 1 | 14.0 | 1.4 ± 0.04 | 28.0 | 2.8 ± 0.05 | Versatile thermophilic bacterium |
Parameter | Castillo (Inoculated) | Castillo (Uninoculated) | Cenicafé 1 (Inoculated) | Cenicafé (Uninoculated) |
---|---|---|---|---|
Peak temperature (°C) | 56.30 | 46.10 | 57.11 | 47.40 |
Thermophilic phase (days) | 8.70 | 4.30 | 10.30 | 4.91 |
Mass loss (%) | 41.20 | 27.60 | 43.90 | 29.0 |
VS reduction (%) | 39.80 | 25.1 | 40.60 | 26.41 |
Hemicellulose reduction (%) | 58.50 | 39.20 | 62.11 | 41.70 |
Cellulose reduction (%) | 45.10 | 32.50 | 49.30 | 35.41 |
Lignin reduction (%) | 13.60 | 9.31 | 15.10 | 10.21 |
Final N (%) | 1.920 | 1.36 | 2.08 | 1.41 |
Final P (%) | 0.54 | 0.32 | 0.59 | 0.35 |
Final K (%) | 2.60 | 1.50 | 2.80 | 1.70 |
Germination index (%) | 88.70 | 64.21 | 92.40 | 66.80 |
Nutrient | Unit | Castillo (Inoculated) | Castillo (Uninoculated) | Cenicafé 1 (Inoculated) | Castillo (Uninoculated) |
---|---|---|---|---|---|
N | % | 1.92 | 1.36 | 2.08 | 1.41 |
P | % | 0.54 | 0.32 | 0.59 | 0.35 |
K | % | 2.60 | 1.50 | 2.80 | 1.70 |
Ca | % | 1.15 | 0.87 | 1.22 | 0.91 |
Mg | % | 0.32 | 0.26 | 0.35 | 0.29 |
S | % | 0.18 | 0.14 | 0.21 | 0.16 |
Fe | % (from mg/kg) | 0.046 | 0.037 | 0.0488 | 0.039 |
Zn | % (from mg/kg) | 0.011 | 0.008 | 0.0124 | 0.0091 |
C/N ratio | - | 12.50 | 18.40 | 11.80 | 17.20 |
Organic matter | % | 48.70 | 43.20 | 50.30 | 44.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figueroa-Varela, P.A.; Duque-Dussán, E. Functional Characterization of Native Microorganisms from the Pulp of Coffea arabica L. Var. Castillo and Cenicafé 1 for Postharvest Applications and Compost Enhancement. Appl. Microbiol. 2025, 5, 86. https://doi.org/10.3390/applmicrobiol5030086
Figueroa-Varela PA, Duque-Dussán E. Functional Characterization of Native Microorganisms from the Pulp of Coffea arabica L. Var. Castillo and Cenicafé 1 for Postharvest Applications and Compost Enhancement. Applied Microbiology. 2025; 5(3):86. https://doi.org/10.3390/applmicrobiol5030086
Chicago/Turabian StyleFigueroa-Varela, Paula A., and Eduardo Duque-Dussán. 2025. "Functional Characterization of Native Microorganisms from the Pulp of Coffea arabica L. Var. Castillo and Cenicafé 1 for Postharvest Applications and Compost Enhancement" Applied Microbiology 5, no. 3: 86. https://doi.org/10.3390/applmicrobiol5030086
APA StyleFigueroa-Varela, P. A., & Duque-Dussán, E. (2025). Functional Characterization of Native Microorganisms from the Pulp of Coffea arabica L. Var. Castillo and Cenicafé 1 for Postharvest Applications and Compost Enhancement. Applied Microbiology, 5(3), 86. https://doi.org/10.3390/applmicrobiol5030086