Mechanistic Role of Heavy Metals in Driving Antimicrobial Resistance: From Rhizosphere to Phyllosphere
Abstract
1. Introduction
1.1. Molecular Mechanisms
1.2. Ecological Impacts
1.3. Bioremediation Strategies
2. Effect of Metals on Plant Rhizospheric Flora
2.1. Nitrogen-Fixing and Phosphorus-Solubilizing Rhizobacteria
2.2. Mycorrhizal Fungi
3. Impact of Metal on Soil and Plant Health
3.1. Antioxidant Enzymes in Microbial Ros Detoxification
3.2. Metal-Reducing Enzymes: Detoxification Through Biotransformation
3.3. Relationships of Symbiotic Alteration
3.4. Increased Pathogen Susceptibility
4. Metal Efflux Pumps in Bacteria Mechanisms
5. Positive Effects: Role of Metal-Tolerant Microbes
5.1. Metal Immobilization and Detoxification
5.2. Metal Stress Enhancement of Plant Growth
PGPR Strain | Target Heavy Metal (s) | Host Plant | Mechanism of Action | Reference |
---|---|---|---|---|
Pseudomonas fluorescens | Zinc (Zn), Cadmium (Cd) | Brassica juncea | ACC deaminase activity, Zn/Cd biosorption, antioxidant enzyme induction | [107] |
Bacillus subtilis | Lead (Pb) | Zea mays | Cell wall binding, phytohormone production, Pb detoxification | [108] |
Enterobacter cloacae | Arsenic (As) | Oryza sativa (rice) | Arsenite oxidation, metal exclusion, enhanced root architecture | [109] |
Azospirillum brasilense | Nickel (Ni) | Triticum aestivum | Indole-3-acetic acid (IAA) production, Ni stress alleviation | [110] |
Rhizobium leguminosarum | Chromium (Cr) | Lens culinaris | Siderophore production, improved nutrient uptake, Cr sequestration | [111] |
Serratia marcescens | Copper (Cu) | Solanum lycopersicum | Biofilm formation, Cu efflux, antioxidant enzyme upregulation | [112] |
5.3. Reactive Oxygen Species (Ros) Generation
5.4. Plant-Related Oxidative Stress Impacts
5.5. Bioremediation Applications and Link to AMR
5.6. Oxidative Damage to Cellular Components
6. Link Between Oxidative Stress and Antimicrobial Resistance
6.1. Fluoroquinolone Resistance Results from Mutations in DNA Gyrase (gyrA and gyrB) Caused by ROS Damage
6.2. Mutations in Ribosomal Proteins (rpsL and rrl) Confer Aminoglycoside Resistance
6.3. Metal Stress-Induced SOS Response Increasing Resistance Mutations
6.4. Horizontal Gene Transfer (HGT) and Co-Selection of AMR Genes
6.5. Plasmid-Mediated Resistance Metal Stress
7. Biofilm Formation and Antibiotic Tolerance
Metals and Antibiotics Are Biofilms That Increase Multidrug Tolerance
8. Environmental and Clinical Implications
9. Bioremediation Using Metal-Resistant Bacteria
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Puri, B.; Vaishya, R.; Vaish, A. Antimicrobial resistance: Current challenges and future directions. Med. J. Armed Forces India 2025, 81, 247–258. [Google Scholar] [CrossRef]
- Saeed, U.; Insaf, R.A.; Piracha, Z.Z.; Tariq, M.N.; Sohail, A.; Abbasi, U.A.; Fazal, I. Crisis averted: A world united against the menace of multiple drug-resistant superbugs-pioneering anti-AMR vaccines, RNA interference, nanomedicine, CRISPR-based antimicrobials, bacteriophage therapies, and clinical artificial intelligence strategies to safeguard global antimicrobial arsenal. Front. Microbiol. 2023, 14, 1270018. [Google Scholar]
- Ferraz, M.P. Antimicrobial resistance: The impact from and on society according to one health approach. Societies 2024, 14, 187. [Google Scholar] [CrossRef]
- Kim, C.; Holm, M.; Frost, I.; Hasso-Agopsowicz, M.; Abbas, K. Global and regional burden of attributable and associated bacterial antimicrobial resistance avertable by vaccination: Modelling study. BMJ Glob. Health 2023, 8, e011341. [Google Scholar] [CrossRef]
- Javadi, H.; Lehnen, A.C.; Hartlieb, M. Bioinspired Cationic Antimicrobial Polymers. Angew. Chem. Int. Ed. 2025, 64, e202503738. [Google Scholar] [CrossRef] [PubMed]
- Samtiya, M.; Matthews, K.R.; Dhewa, T.; Puniya, A.K. Antimicrobial resistance in the food chain: Trends, mechanisms, pathways, and possible regulation strategies. Foods 2022, 11, 2966. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, X.; Fang, Y.; Guo, K.; Li, L.; Cai, S.; Hu, B. Global patterns of change in the burden of malnutrition in older adults from 1990 to 2021 and the forecast for the next 25 years. Front. Nutr. 2025, 12, 1562536. [Google Scholar] [CrossRef] [PubMed]
- Irfan, M.; Almotiri, A.; AlZeyadi, Z.A. Antimicrobial resistance and its drivers—A review. Antibiotics 2022, 11, 1362. [Google Scholar] [CrossRef]
- Kumar, R.; Kamboj, N.; Kumar, V.; Kumar, S.; Kumar, N.; Gautam, P. Assessing the Contamination Risk of Salmonella enterica subsp. in Green Leafy Vegetables. J. Pure Appl. Microbiol. 2025, 19, 459. [Google Scholar] [CrossRef]
- Kumar, R.; Adeyemi, N.O.; Chattaraj, S.; Alloun, W.; Thamarsha, A.K.A.N.W.M.R.K.; Anđelković, S.; Mitra, D.; Gautam, P. Antimicrobial resistance in Salmonella: One Health perspective on global food safety challenges. Sci. One Health 2025, 4, 100117. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Vena, A.; Sepulcri, C.; Giacobbe, D.R.; Peghin, M. Treatment of bloodstream infections due to Gram-negative bacteria with difficult-to-treat resistance. Antibiotics 2020, 9, 632. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A. Antimicrobial resistance: A growing serious threat for global public health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- Coque, T.M.; Cantón, R.; Pérez-Cobas, A.E.; Fernández-de-Bobadilla, M.D.; Baquero, F. Antimicrobial resistance in the global health network: Known unknowns and challenges for efficient responses in the 21st century. Microorganisms 2023, 11, 1050. [Google Scholar] [CrossRef]
- Ye, Z.; Li, M.; Jing, Y.; Liu, K.; Wu, Y.; Peng, Z. What Are the Drivers Triggering Antimicrobial Resistance Emergence and Spread? Outlook from a One Health Perspective. Antibiotics 2025, 14, 543. [Google Scholar] [CrossRef] [PubMed]
- Rahman, Z.; Singh, V.P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb) on the total environment: An overview. Environ. Monit. Assess. 2019, 191, 419. [Google Scholar] [CrossRef]
- Kumar, R.; Gupta, G.; Hussain, A.; Rani, A.; Thapliyal, A.; Gunsola, D.; Mitra, D. Pioneering zero-waste technologies utilization and its framework on sustainable management: International, national and state level. Discov. Appl. Sci. 2025, 7, 224. [Google Scholar] [CrossRef]
- Gillieatt, B.F.; Coleman, N.V. Unravelling the mechanisms of antibiotic and heavy metal resistance co-selection in environmental bacteria. FEMS Microbiol. Rev. 2024, 48, fuae017. [Google Scholar] [CrossRef]
- Muteeb, G.; Rehman, M.T.; Shahwan, M.; Aatif, M. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: A narrative review. Pharmaceuticals 2023, 16, 1615. [Google Scholar] [CrossRef]
- Sulis, G.; Sayood, S.; Gandra, S. Antimicrobial resistance in low-and middle-income countries: Current status and future directions. Expert Rev. Anti-Infect. Ther. 2022, 20, 147–160. [Google Scholar] [CrossRef]
- Kirchhelle, C. Giants on Clay Feet—COVID-19, infection control and public health laboratory networks in England, the USA and (West-) Germany (1945–2020). Soc. Hist. Med. 2022, 35, 703–748. [Google Scholar] [CrossRef] [PubMed]
- Dunga, K.E.; Okoro, C.I.; Onyenama, A.C.; Ekuma, U.O.; Ohanusi, I.N.; Izah, S.C. Implementing One Health approach to emerging zoonotic diseases: Bridging surveillance, sustainability and global governance. Exon 2025, 2, 200–223. [Google Scholar] [CrossRef]
- Wasan, H.; Singh, D.; Reeta, K.H.; Gupta, Y.K. Landscape of push funding in antibiotic research: Current status and way forward. Biology 2023, 12, 101. [Google Scholar] [CrossRef] [PubMed]
- Gou, F.; Liu, J.; Xiao, C.; Wu, J. Research on artificial-intelligence-assisted medicine: A survey on medical artificial intelligence. Diagnostics 2024, 14, 1472. [Google Scholar] [CrossRef]
- Ahmed, S.M.; Naher, N.; Tune, S.N.B.K.; Islam, B.Z. The Implementation of National Action Plan (NAP) on Antimicrobial Resistance (AMR) in Bangladesh: Challenges and lessons learned from a cross-sectional qualitative study. Antibiotics 2022, 11, 690. [Google Scholar] [CrossRef]
- Seixas, A.F.; Quendera, A.P.; Sousa, J.P.; Silva, A.F.; Arraiano, C.M.; Andrade, J.M. Bacterial response to oxidative stress and RNA oxidation. Front. Genet. 2022, 12, 821535. [Google Scholar] [CrossRef]
- Zhu, J.; Thompson, C.B. Metabolic regulation of cell growth and proliferation. Nat. Rev. Mol. Cell Biol. 2019, 20, 436–450. [Google Scholar] [CrossRef]
- Ali, Q.; Ayaz, M.; Yu, C.; Wang, Y.; Gu, Q.; Wu, H.; Gao, X. Cadmium tolerant microbial strains possess different mechanisms for cadmium biosorption and immobilization in rice seedlings. Chemosphere 2022, 303, 135206. [Google Scholar] [CrossRef]
- Shaw, D.R.; Dussan, J. Mathematical modelling of toxic metal uptake and efflux pump in metal-resistant bacterium Bacillus cereus isolated from heavy crude oil. Water Air Soil Pollut. 2015, 226, 112. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Wang, Y.; Xie, X.; Shi, Q. The connection between Czc and Cad systems involved in cadmium resistance in Pseudomonas putida. Int. J. Mol. Sci. 2021, 22, 9697. [Google Scholar] [CrossRef]
- Ashwath, P.; Sannejal, A.D. A quest to the therapeutic arsenal: Novel strategies to combat multidrug-resistant bacteria. Curr. Gene Ther. 2022, 22, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Sarti, G.C.; Paz-González, A.; Cristóbal-Miguez, J.A.E.; García, A.R.; Galelli, M.E. Production of a Microbial Biofilm and Its Application on Tomato Seeds to Improve Crop Development in a Lead-Contaminated Substrate. Processes 2025, 13, 767. [Google Scholar] [CrossRef]
- Basu, M. Impact of mercury and its toxicity on health and environment: A general perspective. In Mercury Toxicity: Challenges and Solutions; Springer Nature: Singapore, 2023; pp. 95–139. [Google Scholar]
- Anand, V.; Kaur, J.; Srivastava, S.; Bist, V.; Dharmesh, V.; Kriti, K.; Srivastava, S. Potential of methyltransferase containing Pseudomonas oleovorans for abatement of arsenic toxicity in rice. Sci. Total Environ. 2023, 856, 158944. [Google Scholar] [CrossRef]
- Raro, O.H.F.; Poirel, L.; Nordmann, P. Effect of zinc oxide and copper sulfate on antibiotic resistance plasmid transfer in Escherichia coli. Microorganisms 2023, 11, 2880. [Google Scholar] [CrossRef]
- Dinesh, R.; Sreena, C.P.; Sheeja, T.E.; Srinivasan, V.; Subila, K.P.; Sona, C.; Sajith, V. Co-resistance is the dominant mechanism of co-selection and dissemination of antibiotic resistome in nano zinc oxide polluted soil. J. Hazard. Mater. 2025, 485, 136885. [Google Scholar] [CrossRef]
- Murray, L.M.; Hayes, A.; Snape, J.; Kasprzyk-Hordern, B.; Gaze, W.H.; Murray, A.K. Co-selection for antibiotic resistance by environmental contaminants. NPJ Antimicrob. Resist. 2024, 2, 9. [Google Scholar] [CrossRef]
- Engin, A.B.; Engin, E.D.; Engin, A. Effects of co-selection of antibiotic-resistance and metal-resistance genes on antibiotic-resistance potency of environmental bacteria and related ecological risk factors. Environ. Toxicol. Pharmacol. 2023, 98, 104081. [Google Scholar] [CrossRef]
- de Araújo, L.C.A.; Lima, A.V.A.; Barbosa, A.V. Impacted Aquatic Environment Microorganisms. Emerg. Contam. 2021, 1, 191. [Google Scholar]
- Kim, I.S.; Yang, W.S.; Kim, C.H. Physiological properties, functions, and trends in the matrix metalloproteinase inhibitors in inflammation-mediated human diseases. Curr. Med. Chem. 2023, 30, 2075–2112. [Google Scholar] [CrossRef]
- Lorrai, R.; Ferrari, S. Host cell wall damage during pathogen infection: Mechanisms of perception and role in plant-pathogen interactions. Plants 2021, 10, 399. [Google Scholar] [CrossRef]
- Gaudet, R.G.; Bradfield, C.J.; MacMicking, J.D. Evolution of cell-autonomous effector mechanisms in macrophages versus non-immune cells. Myeloid Cells Health Dis. A Synth. 2017, 1, 615–635. [Google Scholar]
- Pontiggia, D.; Giulietti, S.; Gramegna, G.; Lionetti, V.; Lorrai, R.; Marti, L.; Cervone, F. The Ancient Battle between Plants and Pathogens: Resilience of the Plant Cell Wall and Damage-Associated Molecular Patterns (DAMPs) Drive Plant Immunity. In Plant Cell Walls; CRC Press: Boca Raton, FL, USA, 2023; pp. 393–411. [Google Scholar]
- Kothari, A.; Kumar, P.; Gaurav, A.; Kaushal, K.; Pandey, A.; Yadav, S.R.M.; Omar, B.J. Association of antibiotics and heavy metal arsenic to horizontal gene transfer from multidrug-resistant clinical strains to antibiotic-sensitive environmental strains. J. Hazard. Mater. 2023, 443, 130260. [Google Scholar] [CrossRef] [PubMed]
- Makar, O.; Kavulych, Y.; Terek, O.; Romanyuk, N. Plant-microbe interaction: Mechanisms and applications for improving crop yield and quality. Stud. Biol. 2023, 17, 225–242. [Google Scholar] [CrossRef]
- Khatun, J.; Intekhab, A.; Dhak, D. Effect of uncontrolled fertilization and heavy metal toxicity associated with arsenic (As), lead (Pb) and cadmium (Cd), and possible remediation. Toxicology 2022, 477, 153274. [Google Scholar] [CrossRef]
- Jach, M.E.; Sajnaga, E.; Ziaja, M. Utilization of legume-nodule bacterial symbiosis in phytoremediation of heavy metal-contaminated soils. Biology 2022, 11, 676. [Google Scholar] [CrossRef] [PubMed]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Pasic, L.; Avgustin, J.A.; Erjavec, M.S.; Herzog-Velikonja, B.; Podlesek, Z.; Zgur-Bertok, D. Two tales of prokaryotic genomic diversity: Escherichia coli and Halophiles. Food Technol. Biotechnol. 2014, 52, 158. [Google Scholar]
- Mahto, K.U.; Kumari, S.; Das, S. Unraveling the complex regulatory networks in biofilm formation in bacteria and relevance of biofilms in environmental remediation. Crit. Rev. Biochem. Mol. Biol. 2022, 57, 305–332. [Google Scholar] [CrossRef]
- Zhang, J.; Lei, H.; Huang, J.; Wong, J.W.; Li, B. Co-occurrence and co-expression of antibiotic, biocide, and metal resistance genes with mobile genetic elements in microbial communities subjected to long-term antibiotic pressure: Novel insights from metagenomics and metatranscriptomics. J. Hazard. Mater. 2025, 489, 137559. [Google Scholar] [CrossRef]
- Jia, T.; Wang, R.; Chai, B. Effects of heavy metal pollution on soil physicochemical properties and microbial diversity over different reclamation years in a copper tailings dam. J. Soil Water Conserv. 2019, 74, 439–448. [Google Scholar] [CrossRef]
- Williams, A.; Sinanaj, B.; Hoysted, G.A. Plant–microbe interactions through a lens: Tales from the mycorrhizosphere. Ann. Bot. 2024, 133, 399–412. [Google Scholar] [CrossRef]
- Sharma, M.; Bharti, M.; Modeel, S.; Khurana, H.; Negi, T.; Negi, R.K. Challenges of Multidrug-Resistant Microbes on Public Health. In Biomedical Research, Medicine, and Disease; CRC Press: Boca Raton, FL, USA, 2023; pp. 363–376. [Google Scholar]
- James, C.; James, S.J.; Onarinde, B.A.; Dixon, R.A.; Williams, N. A critical review of AMR risks arising as a consequence of using biocides and certain metals in food animal production. Antibiotics 2023, 12, 1569. [Google Scholar] [CrossRef]
- Yoon, H.J.; Shin, S.H.; Yoon, J.H. The Role of Reactive Oxygen Species from Heavy Metal: Effect on reactivity of Fish and Defensive Mechanism of Antibiotic Resistant Bacteria in Aquatic Environment. Water Air Soil Pollut. 2024, 235, 768. [Google Scholar] [CrossRef]
- Zaib, M.; Aryan, M.; Khaliq, A.; Haider, K.; Ahmad, S.; Zeeshan, A.; Zubair, H. Essential Insights for Effective Environmental Management and Human Well-being: Strategies for Remediation in Soil-Plant-Environment Systems. J. Asian Dev. Stud. 2023, 12, 1453–1469. [Google Scholar]
- Kumar, R.; Kamboj, N.; Mitra, D. Microbial innovations in agriculture: Interdisciplinary approaches to leveraging microbes for food sustainability and security. Indian. J. Microbiol. Res. 2024, 11, 129–139. [Google Scholar]
- Fakhar, A.; Gul, B.; Gurmani, A.R.; Khan, S.M.; Ali, S.; Sultan, T.; Rizwan, M. Heavy metal remediation and resistance mechanism of Aeromonas, Bacillus, and Pseudomonas: A review. Crit. Rev. Environ. Sci. Technol. 2022, 52, 1868–1914. [Google Scholar] [CrossRef]
- Sher, S.; Rehman, A. Use of heavy metals resistant bacteria—A strategy for arsenic bioremediation. Appl. Microbiol. Biotechnol. 2019, 103, 6007–6021. [Google Scholar] [CrossRef]
- Erdoğan, İ.; Cevher-Keskin, B.; Bilir, Ö.; Hong, Y.; Tör, M. Recent developments in CRISPR/Cas9 genome-editing technology related to plant disease resistance and abiotic stress tolerance. Biology 2023, 12, 1037. [Google Scholar] [CrossRef]
- Qiu, X.; Wang, B.; Ren, S.; Liu, X.; Wang, Y. Regulation of quorum sensing for the manipulation of conjugative transfer of antibiotic resistance genes in wastewater treatment system. Water Res. 2024, 253, 121222. [Google Scholar] [CrossRef] [PubMed]
- Tarfeen, N.; Nisa, K.U.; Hamid, B.; Bashir, Z.; Yatoo, A.M.; Dar, M.A.; Sayyed, R.Z. Microbial remediation: A promising tool for reclamation of contaminated sites with special emphasis on heavy metal and pesticide pollution: A review. Processes 2022, 10, 1358. [Google Scholar] [CrossRef]
- Guerra Sierra, B.E.; Muñoz Guerrero, J.; Sokolski, S. Phytoremediation of Heavy Metals in Tropical Soils an Overview. Sustainability 2021, 13, 2574. [Google Scholar] [CrossRef]
- Yadav, S.; Singh, K.; Chandra, R. Plant growth–promoting rhizobacteria (PGPR) and bioremediation of industrial waste. In Microbes for Sustainable Development and Bioremediation; CRC Press: Boca Raton, FL, USA, 2019; pp. 207–241. [Google Scholar]
- Madouh, T.A.; Davidson, M.K. Management of Environmental Pollution: Hyperaccumulator Plants, Arbuscular Mycorrhizal Fungi (AMF), and Biochar in Heavy Metal Remediation. In Ecosystem Management: Climate Change and Sustainability; John Wiley & Sons: Hoboken, NJ, USA, 2024; pp. 115–169. [Google Scholar]
- Zhang, H.; Liu, W.; Xiong, Y.; Li, G.; Cui, J.; Zhao, C.; Zhang, L. Effects of dissolved organic matter on distribution characteristics of heavy metals and their interactions with microorganisms in soil under long-term exogenous effects. Sci. Total Environ. 2024, 947, 174565. [Google Scholar] [CrossRef]
- Arora, D.; Arora, A.; Panghal, V.; Singh, A.; Bala, R.; Kumari, S.; Kumar, S. Unleashing the feasibility of nanotechnology in phytoremediation of heavy metal–contaminated soil: A critical review towards sustainable approach. Water Air Soil Pollut. 2024, 235, 57. [Google Scholar] [CrossRef]
- Timofeeva, A.M.; Galyamova, M.R.; Sedykh, S.E. Plant growth-promoting soil bacteria: Nitrogen fixation, phosphate solubilization, siderophore production, and other biological activities. Plants 2023, 12, 4074. [Google Scholar] [CrossRef]
- Sharma, M.; Sharma, S.; Paavan Gupta, M.; Goyal, S.; Talukder, D.; Baskoutas, S. Mechanisms of microbial resistance against cadmium–a review. J. Environ. Health Sci. Eng. 2024, 22, 13–30. [Google Scholar] [CrossRef]
- Vasilachi, I.C.; Stoleru, V.; Gavrilescu, M. Analysis of heavy metal impacts on cereal crop growth and development in contaminated soils. Agriculture 2023, 13, 1983. [Google Scholar] [CrossRef]
- Wong, C.K.F.; Teh, C.Y. Impact of biofertilizers on horticultural crops. In Biofertilizers: Study and Impact; Wiley: Hoboken, NJ, USA, 2021; pp. 39–103. [Google Scholar]
- Kumar, R.; Kamboj, N.; Mitra, D.; Verma, D.; Choudhury, T. Bacterial Strategies: Novel Pathways for Sustainable Development Through Wastewater. In AI Technologies for Enhancing Recycling Processes; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; Volume 1, pp. 421–440. [Google Scholar]
- Wahab, A.; Muhammad, M.; Munir, A.; Abdi, G.; Zaman, W.; Ayaz, A.; Reddy, S.P.P. Role of arbuscular mycorrhizal fungi in regulating growth, enhancing productivity, and potentially influencing ecosystems under abiotic and biotic stresses. Plants 2023, 12, 3102. [Google Scholar] [CrossRef]
- Delano-Frier, J.P.; Castro-Guillén, J.L.; Blanco-Labra, A. Recent findings on the multifaceted functionality of enzyme inhibition by natural compounds: A review. Curr. Enzym. Inhib. 2008, 4, 121–152. [Google Scholar] [CrossRef]
- Lin, L.; Chen, Y.; Qu, L.; Zhang, Y.; Ma, K. Cd heavy metal and plants, rather than soil nutrient conditions, affect soil arbuscular mycorrhizal fungal diversity in green spaces during urbanization. Sci. Total Environ. 2020, 726, 138594. [Google Scholar] [CrossRef]
- Dubey, R.K.; Vishal Tripathi, V.T.; Edrisi, S.A.; Mansi Bakshi, M.B.; Dubey, P.K.; Ajeet Singh, A.S.; Abhilash, P.C. Role of plant growth-promoting microorganisms in sustainable agriculture and environmental remediation. In Advances in PGPR Research; CABI: Wallingford, UK, 2017; Volume 1, pp. 75–125. [Google Scholar]
- Zandi, P.; Schnug, E. Reactive oxygen species, antioxidant responses and implications from a microbial modulation perspective. Biology 2022, 11, 155. [Google Scholar] [CrossRef]
- Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef]
- Batool, R.; Umer, M.J.; Hussain, B.; Anees, M.; Wang, Z. Molecular mechanisms of superoxide dismutase (SODs)-mediated defense in controlling oxidative stress in plants. In Antioxidant Defense in Plants: Molecular Basis of Regulation; Springer Nature: Singapore, 2022; pp. 157–179. [Google Scholar]
- Bhattacharya, P.; Chakraborty, N.; Pal, R. Bioremediation of toxic metals using algae. In Algal Biorefinery: An Integrated Approach; Springer: Berlin/Heidelberg, Germany, 2015; pp. 439–462. [Google Scholar]
- Parcheta, M.; Świsłocka, R.; Orzechowska, S.; Akimowicz, M.; Choińska, R.; Lewandowski, W. Recent developments in effective antioxidants: The structure and antioxidant properties. Materials 2021, 14, 1984. [Google Scholar] [CrossRef]
- Kühn, H.; Borchert, A. Regulation of enzymatic lipid peroxidation: The interplay of peroxidizing and peroxide reducing enzymes. Free Radic. Biol. Med. 2002, 33, 154–172. [Google Scholar] [CrossRef]
- Aragaw, T.A.; Bogale, F.M.; Gessesse, A. Adaptive response of thermophiles to redox stress and their role in the process of dye degradation from textile industry wastewater. Front. Physiol. 2022, 13, 908370. [Google Scholar] [CrossRef]
- Etesami, H. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects. Ecotoxicol. Environ. Saf. 2018, 147, 175–191. [Google Scholar] [CrossRef]
- Ding, C.; Ding, Z.; Liu, Q.; Liu, W.; Chai, L. Advances in mechanism for the microbial transformation of heavy metals: Implications for bioremediation strategies. Chem. Commun. 2024, 60, 12315–12332. [Google Scholar] [CrossRef]
- Adhikary, S.; Saha, J.; Dutta, P.; Pal, A. Bacterial homeostasis and tolerance to potentially toxic metals and metalloids through diverse transporters: Metal-specific insights. Geomicrobiol. J. 2024, 41, 496–518. [Google Scholar] [CrossRef]
- Nnaji, N.D.; Anyanwu, C.U.; Miri, T.; Onyeaka, H. Mechanisms of heavy metal tolerance in bacteria: A review. Sustainability 2024, 16, 11124. [Google Scholar] [CrossRef]
- Branco, S.; Schauster, A.; Liao, H.L.; Ruytinx, J. Mechanisms of stress tolerance and their effects on the ecology and evolution of mycorrhizal fungi. New Phytol. 2022, 235, 2158–2175. [Google Scholar] [CrossRef]
- Stambulska, U.Y.; Bayliak, M.M. Legume-rhizobium symbiosis: Secondary metabolites, free radical processes, and effects of heavy metals. In Co-Evolution of Secondary Metabolites; Springer International Publishing: Cham, Switzerland, 2020; pp. 291–322. [Google Scholar]
- Antar, M.; Gopal, P.; Msimbira, L.A.; Naamala, J.; Nazari, M.; Overbeek, W.; Smith, D.L. Inter-organismal signaling in the rhizosphere. In Rhizosphere Biology: Interactions Between Microbes and Plants; Springer: Singapore, 2020; pp. 255–293. [Google Scholar]
- Karnwal, A.; Martolia, S.; Dohroo, A.; Al-Tawaha, A.R.M.S.; Malik, T. Exploring bioremediation strategies for heavy metals and POPs pollution: The role of microbes, plants, and nanotechnology. Front. Environ. Sci. 2024, 12, 1397850. [Google Scholar] [CrossRef]
- Ali, S.; Waqas, W.; Bakky, M.A.H.; Zada, S.; Saif, U.M.; Hasan, M.T.; Hui, W. Implications of Microalgal–Bacterial Interactions in Modern Aquaculture Practices: A Review of the Current Knowledge. Rev. Aquac. 2025, 17, e12980. [Google Scholar] [CrossRef]
- Gupta, R.; Khan, F.; Alqahtani, F.M.; Hashem, M.; Ahmad, F. Plant growth–promoting Rhizobacteria (PGPR) assisted bioremediation of Heavy Metal Toxicity. Appl. Biochem. Biotechnol. 2024, 196, 2928–2956. [Google Scholar] [CrossRef]
- Rai, M.; Ingle, A.P.; Paralikar, P.; Anasane, N.; Gade, R.; Ingle, P. Effective management of soft rot of ginger caused by Pythium spp. and Fusarium spp.: Emerging role of nanotechnology. Appl. Microbiol. Biotechnol. 2018, 102, 6827–6839. [Google Scholar] [CrossRef]
- Xu, W.; Chen, L.; Hu, X.; Zhang, L.; Huang, D.; Li, J.; Zhu, M. Botanic signal monitor: Advanced wearable sensor for plant health analysis. Adv. Funct. Mater. 2024, 34, 2410544. [Google Scholar] [CrossRef]
- Rensing, C.; Moodley, A.; Cavaco, L.M.; McDevitt, S.F. Resistance to metals used in agricultural production. In Antimicrobial Resistance in Bacteria from Livestock and Companion Animals; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 83–107. [Google Scholar]
- Schulz, V.; Schmidt-Vogler, C.; Strohmeyer, P.; Weber, S.; Kleemann, D.; Nies, D.H.; Herzberg, M. Behind the shield of Czc: ZntR controls expression of the gene for the zinc-exporting P-type ATPase ZntA in Cupriavidus metallidurans. J. Bacteriol. 2021, 203, 10–1128. [Google Scholar] [CrossRef]
- Wilcox, D.E. Isothermal titration calorimetry of metal ions binding to proteins: An overview of recent studies. Inorg. Chim. Acta 2008, 361, 857–867. [Google Scholar] [CrossRef]
- Klein, J.S.; Lewinson, O. Bacterial ATP-driven transporters of transition metals: Physiological roles, mechanisms of action, and roles in bacterial virulence. Metallomics 2011, 3, 1098–1108. [Google Scholar] [CrossRef]
- Alotaibi, B.S.; Khan, M.; Shamim, S. Unraveling the underlying heavy metal detoxification mechanisms of Bacillus species. Microorganisms 2021, 9, 1628. [Google Scholar] [CrossRef]
- Priya, A.K.; Gnanasekaran, L.; Dutta, K.; Rajendran, S.; Balakrishnan, D.; Soto-Moscoso, M. Biosorption of heavy metals by microorganisms: Evaluation of different underlying mechanisms. Chemosphere 2022, 307, 135957. [Google Scholar] [CrossRef] [PubMed]
- Vocciante, M.; Grifoni, M.; Fusini, D.; Petruzzelli, G.; Franchi, E. The role of plant growth-promoting rhizobacteria (PGPR) in mitigating plant’s environmental stresses. Appl. Sci. 2022, 12, 1231. [Google Scholar] [CrossRef]
- Rohmanna, N.A.; Agustina, L.; Saputra, R.A.; Sari, N.; Noor, I.; Majid, Z.A.N.M. Enhancing phytoremediation of heavy metals: A comprehensive review of performance microorganism-assisted Cyperus rotundus L. J. Ecol. Eng. 2025, 26, 391–401. [Google Scholar] [CrossRef]
- Kumar, R.; Farda, B.; Mignini, A.; Djebaili, R.; Koolman, L.; Paul, A.; Mitra, D. Microbial Solutions in Agriculture: Enhancing Soil Health and Resilience Through Bio-Inoculants and Bioremediation. Bacteria 2025, 4, 28. [Google Scholar] [CrossRef]
- Chandwani, S.; Wahab, R.; Ahmad, N.; Manoharadas, S.; Natarajan, A. Siderophore and 1-Aminocyclopropane-1-Carboxylic-Acid Deaminase (ACCD) Producing Lead-Tolerant Bacillus spp. Alleviate Lead Stress and Improve N and P Dynamics in Black Gram (Vigna mungo L.) Plants. Geomicrobiol. J. 2025, 42, 496–506. [Google Scholar] [CrossRef]
- Shahid, M.; Singh, U.B.; Khan, M.S.; Singh, P.; Kumar, R.; Singh, R.N.; Singh, H.V. Bacterial ACC deaminase: Insights into enzymology, biochemistry, genetics, and potential role in amelioration of environmental stress in crop plants. Front. Microbiol. 2023, 14, 1132770. [Google Scholar] [CrossRef]
- Nazli, F.; Mustafa, A.; Ahmad, M.; Hussain, A.; Jamil, M.; Wang, X.; El-Esawi, M.A. A review on practical application and potentials of phytohormone-producing plant growth-promoting rhizobacteria for inducing heavy metal tolerance in crops. Sustainability 2020, 12, 9056. [Google Scholar] [CrossRef]
- Menhas, S.; Hayat, K.; Niazi, N.K.; Zhou, P.; Amna Bundschuh, J.; Chaudhary, H.J. Microbe-EDTA mediated approach in the phytoremediation of lead-contaminated soils using maize (Zea mays L.) plants. Int. J. Phytoremediation 2021, 23, 585–596. [Google Scholar] [CrossRef]
- Sultana, R.; Islam, S.M.N.; Sultana, T. Arsenic and other heavy metals resistant bacteria in rice ecosystem: Potential role in promoting plant growth and tolerance to heavy metal stress. Environ. Technol. Innov. 2023, 31, 103160. [Google Scholar] [CrossRef]
- Wu, R.; Sun, X.; Zhu, M.; Wang, Y.; Zhu, Y.; Fang, Z.; Du, S. Abscisic acid-producing bacterium Azospirillum brasilense effectively reduces heavy metals (cadmium, nickel, lead, and zinc) accumulation in pak choi across various soil types. Ecotoxicol. Environ. Saf. 2025, 298, 118277. [Google Scholar] [CrossRef]
- Naz, H.; Sayyed, R.Z.; Khan, R.U.; Naz, A.; Wani, O.A.; Maqsood, A.; Show, P.L. Mesorhizobium improves chickpea growth under chromium stress and alleviates chromium contamination of soil. J. Environ. Manag. 2023, 338, 117779. [Google Scholar] [CrossRef]
- Mandal, S.; Saha, K.K.; Mandal, N.C. Molecular insight into key eco-physiological process in bioremediating and plant-growth-promoting bacteria. Front. Agron. 2021, 3, 664126. [Google Scholar] [CrossRef]
- Janani, B.; Sre, V.V.; Syed, A.; Elgorban, A.M.; Abid, I.; Wong, L.S.; Khan, S.S. Engineering defects and lattice disorientation in layered double hydroxides by coupling 2D-Co (OH) 2 platelets via pn heterojunction for enhanced photocatalytic degradation chloramphenicol. Colloids Surf. A Physicochem. Eng. Asp. 2025, 705, 135674. [Google Scholar] [CrossRef]
- Marcon, L.; Oliveras, J.; Puntes, V.F. In situ nanoremediation of soils and groundwaters from the nanoparticle’s standpoint: A review. Sci. Total Environ. 2021, 791, 148324. [Google Scholar] [CrossRef]
- Salam, A.; Afridi, M.S.; Khan, A.R.; Azhar, W.; Shuaiqi, Y.; Ulhassan, Z.; Gan, Y. Cobalt induced toxicity and tolerance in plants: Insights from omics approaches. In Heavy Metal Toxicity and Tolerance in Plants: A Biological, Omics, and Genetic Engineering Approach; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2023; pp. 207–229. [Google Scholar]
- Keunen, E.; Remans, T.; Bohler, S.; Vangronsveld, J.; Cuypers, A. Metal-induced oxidative stress and plant mitochondria. Int. J. Mol. Sci. 2011, 12, 6894–6918. [Google Scholar] [CrossRef]
- Prabhu, C.; Satyaprasad, A.U.; Deekshit, V.K. Understanding bacterial resistance to heavy metals and nanoparticles: Mechanisms, implications, and challenges. J. Basic Microbiol. 2025, 65, e2400596. [Google Scholar] [CrossRef]
- Agarwal, P.; Giri, B.S.; Rani, R. Unravelling the role of rhizospheric plant-microbe synergy in phytoremediation: A genomic perspective. Curr. Genom. 2020, 21, 334–342. [Google Scholar] [CrossRef]
- Sachdev, S.; Ansari, S.A.; Ansari, M.I.; Fujita, M.; Hasanuzzaman, M. Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxid 2021, 10, 277. [Google Scholar] [CrossRef]
- Malik, Z.; Afzal, S.; Danish, M.; Abbasi, G.H.; Bukhari, S.A.H.; Khan, M.I.; Ali, S. Role of nitric oxide and calcium signaling in abiotic stress tolerance in plants. In Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2020; pp. 563–581. [Google Scholar]
- Ha-Tran, D.M.; Nguyen, T.T.M.; Hung, S.H.; Huang, E.; Huang, C.C. Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: A review. Int. J. Mol. Sci. 2021, 22, 3154. [Google Scholar] [CrossRef]
- Kamboj, N.; Chugh, P.; Wijenayake, W.P.T.; Mitra, D.; Panneerselvam, P.; Kumar, R. Multifunctionality and Diversity of Antagonistic Potential Fungi as Biocontrol Agent. In Bio-Control Agents for Sustainable Agriculture: Diversity, Mechanisms and Applications; Springer Nature: Singapore, 2025; Volume 1, pp. 167–208. [Google Scholar]
- Nastro, R.A.; Leccisi, E.; Toscanesi, M.; Liu, G.; Trifuoggi, M.; Ulgiati, S. Exploring avoided environmental impacts as well as energy and resource recovery from microbial desalination cell treatment of brine. Energies 2021, 14, 4453. [Google Scholar] [CrossRef]
- da Cruz Nizer, W.S.; Inkovskiy, V.; Versey, Z.; Strempel, N.; Cassol, E.; Overhage, J. Oxidative stress response in Pseudomonas aeruginosa. Pathogens 2021, 10, 1187. [Google Scholar] [CrossRef]
- Ballash, G.A.; Parker, E.M.; Mollenkopf, D.F.; Wittum, T.E. The One Health dissemination of antimicrobial resistance occurs in both natural and clinical environments. J. Am. Vet. Med. Assoc. 2024, 262, 451–458. [Google Scholar] [CrossRef]
- Chen, X.; Yin, H.; Li, G.; Wang, W.; Wong, P.K.; Zhao, H.; An, T. Antibiotic-resistance gene transfer in antibiotic-resistance bacteria under different light irradiation: Implications from oxidative stress and gene expression. Water Res. 2019, 149, 282–291. [Google Scholar] [CrossRef]
- Fischer, F. The Beneficial Microbiota: Exploring the Roles, Mechanisms, and Potential of Good Bacteria in Environmental, Human, and Industrial Contexts. Insight Into Epidemiol. 2024, 1, e1113. [Google Scholar]
- Rizvi, A.; Ahmed, B.; Khan, M.S.; Rajput, V.D.; Umar, S.; Minkina, T.; Lee, J. Maize associated bacterial microbiome linked mitigation of heavy metal stress: A multidimensional detoxification approach. Environ. Exp. Bot. 2022, 200, 104911. [Google Scholar] [CrossRef]
- Yang, Y.L.; Amnuaykanjanasin, A. Natural Product Reports. Nat. Prod. Rep. 2022, 39, 991–1014. [Google Scholar]
- Vats, P.; Kaur, U.J.; Rishi, P. Heavy metal-induced selection and proliferation of antibiotic resistance: A review. J. Appl. Microbiol. 2022, 132, 4058–4076. [Google Scholar] [CrossRef] [PubMed]
- Alnsour, A.R.; Daghmash, R.M.; Masadeh, M.M.; Alzoubi, K.H.; Masadeh, M.M.; Bataineh, N.H.; Al-Ogaidi, M.S. The pharmaceutical role of silver nanoparticles in treating multidrug-resistant bacteria and biofilms. Curr. Nanosci. 2024, 20, 471–494. [Google Scholar] [CrossRef]
- Pal, A.; Bhattacharjee, S.; Saha, J.; Sarkar, M.; Mandal, P. Bacterial survival strategies and responses under heavy metal stress: A comprehensive overview. Crit. Rev. Microbiol. 2022, 48, 327–355. [Google Scholar] [CrossRef]
- Andrés Juan, C.; Pérez de Lastra, J.M.; Plou Gasca, F.J.; Pérez-Lebeña, E. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Klitgaard, R.N.; Jana, B.; Guardabassi, L.; Nielsen, K.L.; Løbner-Olesen, A. DNA damage repair and drug efflux as potential targets for reversing low or intermediate ciprofloxacin resistance in E. coli K-12. Front. Microbiol. 2018, 9, 1438. [Google Scholar] [CrossRef]
- Bush, N.G.; Diez-Santos, I.; Abbott, L.R.; Maxwell, A. Quinolones: Mechanism, lethality and their contributions to antibiotic resistance. Molecules 2020, 25, 5662. [Google Scholar] [CrossRef]
- Podlesek, Z.; Žgur Bertok, D. The DNA damage inducible SOS response is a key player in the generation of bacterial persister cells and population wide tolerance. Front. Microbiol. 2020, 11, 1785. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Liang, L.; Su, L.; Wen, A.; Zhou, C.; Feng, Y. Structural basis for regulation of SOS response in bacteria. Proc. Natl. Acad. Sci. USA 2023, 120, e2217493120. [Google Scholar] [CrossRef]
- Skutel, M.; Yanovskaya, D.; Demkina, A.; Shenfeld, A.; Musharova, O.; Severinov, K.; Isaev, A. RecA-dependent or independent recombination of plasmid DNA generates a conflict with the host EcoKI immunity by launching restriction alleviation. Nucleic Acids Res. 2024, 52, 5195–5208. [Google Scholar] [CrossRef]
- Liu, S.K.; Eisen, J.A.; Hanawalt, P.C.; Tessman, I. recA mutations that reduce the constitutive coprotease activity of the RecA1202 (Prtc) protein: Possible involvement of interfilament association in proteolytic and recombination activities. J. Bacteriol. 1993, 175, 6518–6529. [Google Scholar] [CrossRef]
- Tran, Q.G.; Le, T.T.; Choi, D.Y.; Cho, D.H.; Yun, J.H.; Choi, H.I.; Lee, Y.J. Progress and challenges in CRISPR/Cas applications in microalgae. J. Microbiol. 2025, 63, e2501028. [Google Scholar] [CrossRef]
- Andersson, D.I.; Balaban, N.Q.; Baquero, F.; Courvalin, P.; Glaser, P.; Gophna, U.; Tønjum, T. Antibiotic resistance: Turning evolutionary principles into clinical reality. FEMS Microbiol. Rev. 2020, 44, 171–188. [Google Scholar] [CrossRef]
- Singh, C.K.; Sodhi, K.K.; Shree, P.; Nitin, V. Heavy metals as catalysts in the evolution of antimicrobial resistance and the mechanisms underpinning co-selection. Curr. Microbiol. 2024, 81, 148. [Google Scholar] [CrossRef]
- Henrici De Angelis, L.; D’Andrea, M.; Di Pilato, V.; Demattè, E.; Brovarone, F.; Nardini, P.; Rossolini, G. First report of multi-drug resistant, VEB-6 producing Proteus mirabilis isolates from Italy. In Abstract Book Congresso; Italian society of microbiology; SIM: Genoa, Italy, 2017; Available online: https://shorturl.at/QLHqC (accessed on 15 July 2025).
- Briguglio, I.; Piras, S.; Corona, P.; Antonietta Pirisi, M.; Jabes, D.; Carta, A. SAR and anti-mycobacterial activity of quinolones and triazoloquinolones: An update. Anti-Infect. Agents 2013, 11, 75–89. [Google Scholar] [CrossRef]
- Drlica, K.; Zhao, X. Bacterial death from treatment with fluoroquinolones and other lethal stressors. Expert Rev. Anti-Infect. Ther. 2021, 19, 601–618. [Google Scholar] [CrossRef]
- Saleh, N.M.; Moemen, Y.S.; Mohamed, S.H.; Fathy, G.; Ahmed, A.A.; Al-Ghamdi, A.A.; El Sayed, I.E.T. Experimental and molecular docking studies of cyclic diphenyl phosphonates as DNA gyrase inhibitors for fluoroquinolone-resistant pathogens. Antibiotics 2022, 11, 53. [Google Scholar] [CrossRef]
- Suwanthada, P.; Kongsoi, S.; Miura, N.; Belotindos, L.P.; Piantham, C.; Toyting, J.; Suzuki, Y. The Impact of Substitutions at Positions 1 and 8 of Fluoroquinolones on the Activity Against Mutant DNA Gyrases of Salmonella Typhimurium. Microb. Drug Resist. 2023, 29, 552–560. [Google Scholar] [CrossRef]
- Blanchard, L.; de Groot, A. Coexistence of SOS-dependent and SOS-independent regulation of DNA repair genes in radiation-resistant Deinococcus bacteria. Cells 2021, 10, 924. [Google Scholar] [CrossRef]
- Mercolino, J.; Lo Sciuto, A.; Spinnato, M.C.; Rampioni, G.; Imperi, F. RecA and specialized error-prone DNA polymerases are not required for mutagenesis and antibiotic resistance induced by fluoroquinolones in Pseudomonas aeruginosa. Antibiotics 2022, 11, 325. [Google Scholar] [CrossRef]
- Xu, Y.; Tan, L.; Li, Q.; Zheng, X.; Liu, W. Sublethal concentrations of heavy metals Cu2+ and Zn2+ can induce the emergence of bacterial multidrug resistance. Environ. Technol. Innov. 2022, 27, 102379. [Google Scholar] [CrossRef]
- Muttiah, B.; Hanafiah, A. Bioinspired Nanoplatforms: Polydopamine and Exosomes for Targeted Antimicrobial Therapy. Polymers 2025, 17, 1670. [Google Scholar] [CrossRef]
- Elshobary, M.E.; Badawy, N.K.; Ashraf, Y.; Zatioun, A.A.; Masriya, H.H.; Ammar, M.M.; Assy, A.M. Combating antibiotic resistance: Mechanisms, multidrug-resistant pathogens, and novel therapeutic approaches: An updated review. Pharmaceuticals 2025, 18, 402. [Google Scholar] [CrossRef]
- Webster, C.M.; Shepherd, M. A mini-review: Environmental and metabolic factors affecting aminoglycoside efficacy. World J. Microbiol. Biotechnol. 2023, 39, 7. [Google Scholar] [CrossRef]
- Hou, K.; Jabeen, R.; Sun, L.; Wei, J. How do Mutations of Mycobacterium Genes Cause Drug Resistance in Tuberculosis? Curr. Pharm. Biotechnol. 2024, 25, 724–736. [Google Scholar] [CrossRef]
- Baran, A.; Kwiatkowska, A.; Potocki, L. Antibiotics and bacterial resistance—A short story of an endless arms race. Int. J. Mol. Sci. 2023, 24, 5777. [Google Scholar] [CrossRef]
- Mikami, M.; Shimizu, H.; Iwama, N.; Yajima, M.; Kuwasako, K.; Ogura, Y.; Nameki, N. Stalled ribosome rescue factors exert different roles depending on types of antibiotics in Escherichia coli. NPJ Antimicrob. Resist. 2024, 2, 22. [Google Scholar] [CrossRef]
- Sun, H.; Zeng, J.; Li, S.; Liang, P.; Zheng, C.; Liu, Y.; Sun, Q. Interaction between rpsL and gyrA mutations affects the fitness and dual resistance of Mycobacterium tuberculosis clinical isolates against streptomycin and fluoroquinolones. Infect. Drug Resist. 2018, 11, 431–440. [Google Scholar] [CrossRef]
- Springer, B.; Kidan, Y.G.; Prammananan, T.; Ellrott, K.; Böttger, E.C.; Sander, P. Mechanisms of streptomycin resistance: Selection of mutations in the 16S rRNA gene conferring resistance. Antimicrob. Agents Chemother. 2001, 45, 2877–2884. [Google Scholar] [CrossRef]
- Mwangi, Z.; Naeku, G.; Mureithi, M.; Onyambu, F.; Bulimo, W. Mutation patterns of resistance genes for macrolides, aminoglycosides, and rifampicin in non-tuberculous mycobacteria isolates from Kenya. F1000Research 2023, 11, 962. [Google Scholar] [CrossRef] [PubMed]
- Händel, N.; Hoeksema, M.; Freijo Mata, M.; Brul, S.; ter Kuile, B.H. Effects of stress, reactive oxygen species, and the SOS response on de novo acquisition of antibiotic resistance in Escherichia coli. Antimicrob. Agents Chemother. 2016, 60, 1319–1327. [Google Scholar] [CrossRef]
- Crane, J.K.; Alvarado, C.L.; Sutton, M.D. Role of the SOS response in the generation of antibiotic resistance in vivo. Antimicrob. Agents Chemother. 2021, 65, 10–1128. [Google Scholar] [CrossRef]
- Borgio, J.F.; Rasdan, A.S.; Sonbol, B.; Alhamid, G.; Almandil, N.B.; AbdulAzeez, S. Emerging status of multidrug-resistant bacteria and fungi in the arabian peninsula. Biology 2021, 10, 1144. [Google Scholar] [CrossRef]
- Blázquez, J.; Rodríguez-Beltrán, J.; Matic, I. Antibiotic-induced genetic variation: How it arises and how it can be prevented. Annu. Rev. Microbiol. 2018, 72, 209–230. [Google Scholar] [CrossRef]
- Fornelos, N.; Browning, D.F.; Butala, M. The use and abuse of LexA by mobile genetic elements. Trends Microbiol. 2016, 24, 391–401. [Google Scholar] [CrossRef]
- Sass, T.H.; Ferrazzoli, A.E.; Lovett, S.T. DnaA and SspA regulation of the iraD gene of Escherichia coli: An alternative DNA damage response independent of LexA/RecA. Genetics 2022, 221, iyac062. [Google Scholar] [CrossRef]
- Heininger, K. The deprivation syndrome is the driving force of phylogeny, ontogeny and oncogeny. Rev. Neurosci. 2001, 12, 217–288. [Google Scholar] [CrossRef]
- da Silva, P.B.; Araújo, V.H.; Fonseca-Santos, B.; Solcia, M.C.; Ribeiro, C.M.; da Silva, I.C.; Chorilli, M. Highlights regarding the use of metallic nanoparticles against pathogens considered a priority by the world health organization. Curr. Med. Chem. 2021, 28, 1906–1956. [Google Scholar] [CrossRef]
- Sazykin, I.S.; Sazykina, M.A.; Litsevich, A.R. Distribution of Antibiotic Resistance Genes in Microbial Communities: The Impact of Anthropogenic Pollution. Mol. Biol. 2024, 58, 1049–1062. [Google Scholar] [CrossRef]
- Bazzi, W.; Abou Fayad, A.G.; Nasser, A.; Haraoui, L.P.; Dewachi, O.; Abou-Sitta, G.; Matar, G.M. Heavy metal toxicity in armed conflicts potentiates AMR in A. baumannii by selecting for antibiotic and heavy metal co-resistance mechanisms. Front. Microbiol. 2020, 11, 68. [Google Scholar] [CrossRef]
- Delmar, J.A.; Su, C.C.; Yu, E.W. Bacterial multidrug efflux transporters. Annu. Rev. Biophys. 2014, 43, 93–117. [Google Scholar] [CrossRef] [PubMed]
- Sarangi, B.K.; Kalve, S.; Pandey, R.A.; Chakrabarti, T. Transgenic plants for phytoremediation of arsenic and chromium to enhance tolerance and hyperaccumulation. Transgenic Plant J. 2009, 3, 57–86. [Google Scholar]
- Geleta, D.; Abebe, G.; Alemu, B.; Workneh, N.; Beyene, G. Mechanisms of bacterial drug resistance with special emphasis on phenotypic and molecular characterization of extended spectrum beta-lactamase. New Microbiol. 2024, 47, 1–14. [Google Scholar]
- Priyadarshanee, M.; Chatterjee, S.; Rath, S.; Dash, H.R.; Das, S. Cellular and genetic mechanism of bacterial mercury resistance and their role in biogeochemistry and bioremediation. J. Hazard. Mater. 2022, 423, 126985. [Google Scholar] [CrossRef]
- Hikal, A.F.; Hasan, S.; Gudeta, D.; Zhao, S.; Foley, S.; Khan, A.A. The acquired pco gene cluster in Salmonella enterica mediates resistance to copper. Front. Microbiol. 2024, 15, 1454763. [Google Scholar] [CrossRef]
- Islam, M.R.; Mondol, S.M.; Hossen, M.A.; Khatun, M.P.; Selim, S.; Amiruzzaman; Rahaman, M.M. First report on comprehensive genomic analysis of a multidrug-resistant Enterobacter asburiae isolated from diabetic foot infection from Bangladesh. Sci. Rep. 2025, 15, 424. [Google Scholar] [CrossRef]
- Yan, G.; Chen, X.; Du, S.; Deng, Z.; Wang, L.; Chen, S. Genetic mechanisms of arsenic detoxification and metabolism in bacteria. Curr. Genet. 2019, 65, 329–338. [Google Scholar] [CrossRef]
- Chatterjee, S.; Barman, P.; Barman, C.; Majumdar, S.; Chakraborty, R. Multimodal cadmium resistance and its regulatory networking in Pseudomonas aeruginosa strain CD3. Sci. Rep. 2024, 14, 31689. [Google Scholar] [CrossRef]
- Taghavi, S.; Lesaulnier, C.; Monchy, S.; Wattiez, R.; Mergeay, M.; van der Lelie, D. Lead (II) resistance in Cupriavidus metallidurans CH34: Interplay between plasmid and chromosomally-located functions. Antonie Van. Leeuwenhoek 2009, 96, 171–182. [Google Scholar] [CrossRef]
- Zhu, T.; Tian, J.; Zhang, S.; Wu, N.; Fan, Y. Identification of the transcriptional regulator NcrB in the nickel resistance determinant of Leptospirillum ferriphilum UBK03. PLoS ONE 2011, 6, e17367. [Google Scholar] [CrossRef]
- Gu, R.; Gao, J.; Dong, L.; Liu, Y.; Li, X.; Bai, Q.; Xiao, H. Chromium metabolism characteristics of coexpression of ChrA and ChrT gene. Ecotoxicol. Environ. Saf. 2020, 204, 111060. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, L.; Hou, Z.; Wang, L.; Ma, D.; Yang, G.; Luo, Y. Heavy metal copper accelerates the conjugative transfer of antibiotic resistance genes in freshwater microcosms. Sci. Total Environ. 2020, 717, 137055. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, A.Z.; Cen, T.; Li, X.; He, M.; Li, D.; Chen, J. Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment. Environ. Pollut. 2018, 237, 74–82. [Google Scholar] [CrossRef]
- Vrancianu, C.O.; Popa, L.I.; Bleotu, C.; Chifiriuc, M.C. Targeting plasmids to limit acquisition and transmission of antimicrobial resistance. Front. Microbiol. 2020, 11, 761. [Google Scholar] [CrossRef]
- Sánchez-Corona, C.G.; Gonzalez-Avila, L.U.; Hernández-Cortez, C.; Rojas-Vargas, J.; Castro-Escarpulli, G.; Castelán-Sánchez, H.G. Impact of Heavy Metal and Resistance Genes on Antimicrobial Resistance: Ecological and Public Health Implications. Genes 2025, 16, 625. [Google Scholar] [CrossRef] [PubMed]
- Vermeire, M.L.; Thiour-Mauprivez, C.; De Clerck, C. Agroecological transition: Towards a better understanding of the impact of ecology-based farming practices on soil microbial ecotoxicology. FEMS Microbiol. Ecol. 2024, 100, fiae031. [Google Scholar] [CrossRef] [PubMed]
- Obruca, S.; Sedlacek, P.; Pernicova, I.; Kovalcik, A.; Novackova, I.; Slaninova, E.; Marova, I. Interconnection between PHA and stress robustness of bacteria. In The Handbook of Polyhydroxyalkanoates; CRC Press: Boca Raton, FL, USA, 2020; pp. 107–132. [Google Scholar]
- Francolini, I.; Piozzi, A. Role of antioxidant molecules and polymers in prevention of bacterial growth and biofilm formation. Curr. Med. Chem. 2020, 27, 4882–4904. [Google Scholar] [CrossRef] [PubMed]
- Holm, A.; Vikström, E. Quorum sensing communication between bacteria and human cells: Signals, targets, and functions. Front. Plant Sci. 2014, 5, 309. [Google Scholar] [CrossRef]
- Ramanathan, J. Microbiome in Defence Against Pathogens. In Pathogens and Environmental Impact on Life Forms: Understanding Pathogens and Host Defence Mechanisms; Springer: Cham, Switzerland, 2024; pp. 343–422. [Google Scholar]
- Sionov, R.V.; Steinberg, D. Targeting the holy triangle of quorum sensing, biofilm formation, and antibiotic resistance in pathogenic bacteria. Microorganisms 2022, 10, 1239. [Google Scholar] [CrossRef]
- Bouillet, S.; Bauer, T.S.; Gottesman, S. RpoS and the bacterial general stress response. Microbiol. Mol. Biol. Rev. 2024, 88, e00151-22. [Google Scholar] [CrossRef]
- Akter, S.; Rahman, M.A.; Ashrafudoulla, M.; Mahamud, A.S.U.; Chowdhury, M.A.H.; Ha, S.D. Mechanistic and bibliometric insights into RpoS-mediated biofilm regulation and its strategic role in food safety applications. Crit. Rev. Food Sci. Nutr. 2025, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Scott, R.A. Transcriptional Responses of Pseudomonas Syringae to Factors Inherent During Plant Host Associations, with a Focus on Quorum Sensing and its Regulation. PhD Thesis, University of California, Berkeley, CA, USA, 2013. [Google Scholar]
- Gao, J.; Liu, H.; Zhang, Z.; Liang, Z. Quorum sensing-mediated lipid oxidation further regulating the environmental adaptability of Aspergillus ochraceus. Metabolites 2023, 13, 491. [Google Scholar] [CrossRef]
- Duan, X.; Pan, Y.; Cai, Z.; Liu, Y.; Zhang, Y.; Liu, M.; Yang, L. rpoS-mutation variants are selected in Pseudomonas aeruginosa biofilms under imipenem pressure. Cell Biosci. 2021, 11, 138. [Google Scholar] [CrossRef]
- Nadar, S.; Khan, T.; Patching, S.G.; Omri, A. Development of antibiofilm therapeutics strategies to overcome antimicrobial drug resistance. Microorganisms 2022, 10, 303. [Google Scholar] [CrossRef]
- Hetta, H.F.; Ramadan, Y.N.; Al-Harbi, A.I.A.; Ahmed, E.; Battah, B.; Abd Ellah, N.H.; Donadu, M.G. Nanotechnology as a promising approach to combat multidrug resistant bacteria: A comprehensive review and future perspectives. Biomedicines 2023, 11, 413. [Google Scholar] [CrossRef] [PubMed]
- François, P.; Schrenzel, J.; Götz, F. Biology and regulation of staphylococcal biofilm. Int. J. Mol. Sci. 2023, 24, 5218. [Google Scholar] [CrossRef] [PubMed]
- Eissa, M. Genus burkholderia: A double-edged sword with widespread implications for human health, agriculture, and the environment. J. Biol. Res. Rev. 2024, 1, 79–96. [Google Scholar] [CrossRef]
- Roy, R.; Tiwari, M.; Donelli, G.; Tiwari, V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018, 9, 522–554. [Google Scholar] [CrossRef]
- Huang, L.; Ahmed, S.; Gu, Y.; Huang, J.; An, B.; Wu, C.; Cheng, G. The effects of natural products and environmental conditions on antimicrobial resistance. Molecules 2021, 26, 4277. [Google Scholar] [CrossRef]
- Mosselhy, D.A.; Assad, M.; Sironen, T.; Elbahri, M. Nanotheranostics: A Possible Solution for Drug-Resistant Staphylococcus aureus and their Biofilms? Nanomaterials 2021, 11, 82. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, H.; Wang, H.; Wang, P.; Chen, S. Multidrug resistance in Pseudomonas aeruginosa: Genetic control mechanisms and therapeutic advances. Mol. Biomed. 2024, 5, 62. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Wu, C.; Gao, H.; Xu, C.; Dai, M.; Huang, L.; Cheng, G. Bacterial multidrug efflux pumps at the frontline of antimicrobial resistance: An overview. Antibiotics 2022, 11, 520. [Google Scholar] [CrossRef]
- Dong, T.; Schellhorn, H.E. Role of RpoS in virulence of pathogens. Infect. Immun. 2010, 78, 887–897. [Google Scholar] [CrossRef]
- Mishra, S.; Bharagava, R.N.; More, N.; Yadav, A.; Zainith, S.; Mani, S.; Chowdhary, P. Heavy metal contamination: An alarming threat to environment and human health. In Environmental Biotechnology: For Sustainable Future; Springer: Singapore, 2018; pp. 103–125. [Google Scholar]
- Nguyen, T.H.T.; Nguyen, H.D.; Le, M.H.; Nguyen, T.T.H.; Nguyen, T.D.; Nguyen, D.L.; Pham, H.N. Efflux pump inhibitors in controlling antibiotic resistance: Outlook under a heavy metal contamination context. Molecules 2023, 28, 2912. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, J.; Wang, Y.; Verstraete, W.; Yuan, Z.; Guo, J. Insights of metallic nanoparticles and ions in accelerating the bacterial uptake of antibiotic resistance genes. J. Hazard. Mater. 2022, 421, 126728. [Google Scholar] [CrossRef]
- Xing, Y.; Kang, X.; Zhang, S.; Men, Y. Specific phenotypic, genomic, and fitness evolutionary trajectories toward streptomycin resistance induced by pesticide co-stressors in Escherichia coli. ISME Commun. 2021, 1, 39. [Google Scholar] [CrossRef] [PubMed]
- Kaur, U.J.; Preet, S.; Rishi, P. Augmented antibiotic resistance associated with cadmium induced alterations in Salmonella enterica serovar Typhi. Sci. Rep. 2018, 8, 12818. [Google Scholar] [CrossRef]
- Zhai, Y.; He, Z.; Kang, Y.; Yu, H.; Wang, J.; Du, P.; Gao, Z. Complete nucleotide sequence of pH11, an IncHI2 plasmid conferring multi-antibiotic resistance and multi-heavy metal resistance genes in a clinical Klebsiella pneumoniae isolate. Plasmid 2016, 86, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Rojo-Bezares, B.; Azcona-Gutiérrez, J.M.; Martin, C.; Jareño, M.S.; Torres, C.; Sáenz, Y. Streptococcus agalactiae from pregnant women: Antibiotic and heavy-metal resistance mechanisms and molecular typing. Epidemiol. Infect. 2016, 144, 3205–3214. [Google Scholar] [CrossRef]
- Garhwal, D.; Vaghela, G.; Panwala, T.; Revdiwala, S.; Shah, A.; Mulla, S. Lead tolerance capacity of clinical bacterial isolates and change in their antibiotic susceptibility pattern after exposure to a heavy metal. Int. J. Med. Public. Health 2014, 4, 253. [Google Scholar]
- Nair, R.; Thapaliya, D.; Su, Y.; Smith, T.C. Resistance to zinc and cadmium in Staphylococcus aureus of human and animal origin. Infect. Control Hosp. Epidemiol. 2014, 35 (Suppl. S3), S32–S39. [Google Scholar] [CrossRef]
- Sandegren, L.; Linkevicius, M.; Lytsy, B.; Melhus, Å.; Andersson, D.I. Transfer of an Escherichia coli ST131 multiresistance cassette has created a Klebsiella pneumoniae-specific plasmid associated with a major nosocomial outbreak. J. Antimicrob. Chemother. 2012, 67, 74–83. [Google Scholar] [CrossRef]
- Hofmann, L.; Hirsch, M.; Ruthstein, S. Advances in understanding of the copper homeostasis in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2021, 22, 2050. [Google Scholar] [CrossRef]
- Giacometti, F.; Shirzad-Aski, H.; Ferreira, S. Antimicrobials and food-related stresses as selective factors for antibiotic resistance along the farm to fork continuum. Antibiotics 2021, 10, 671. [Google Scholar] [CrossRef] [PubMed]
- Islam, T.N.; Meem, F.S.; Yasmin, R.; Amin, M.B.; Rahman, T.; Mohasin, M. Co-exposure of chromium or cadmium and a low concentration of amoxicillin are responsible to emerge amoxicillin resistant Staphylococcus aureus. J. Glob. Antimicrob. Resist. 2023, 35, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Wang, M.; Xiang, J.; Shao, Y.; Li, L.; Sedjoah, R.C.A.A.; Xin, Z. BON domain-containing protein-mediated co-selection of antibiotic and heavy metal resistance in bacteria. Int. J. Biol. Macromol. 2023, 238, 124062. [Google Scholar] [CrossRef] [PubMed]
- Robas, M.; Probanza, A.; González, D.; Jiménez, P.A. Mercury and antibiotic resistance co-selection in Bacillus sp. isolates from the Almadén mining district. Int. J. Environ. Res. Public Health 2021, 18, 8304. [Google Scholar] [CrossRef]
- Longhi, C.; Maurizi, L.; Conte, A.L.; Marazzato, M.; Comanducci, A.; Nicoletti, M.; Zagaglia, C. Extraintestinal pathogenic Escherichia coli: Beta-lactam antibiotic and heavy metal resistance. Antibiotics 2022, 11, 328. [Google Scholar] [CrossRef]
- KassimGhaima, K.; Mohamed, A.I.; Al Meshhdany, W.Y.; Abdulhassan, A.A. Resistance and bioadsorption of cadmium by Pseudomonas aeruginosa isolated from agricultural soil. Int. J. Appl. Environ. Sci. 2017, 12, 1649–1660. [Google Scholar]
- Figueiredo, R.; Card, R.M.; Nunez-Garcia, J.; Mendonca, N.; da Silva, G.J.; Anjum, M.F. Multidrug-resistant Salmonella enterica isolated from food animal and foodstuff may also be less susceptible to heavy metals. Foodborne Pathog. Dis. 2019, 16, 166–172. [Google Scholar] [CrossRef]
- Imran, M.; Das, K.R.; Naik, M.M. Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: An emerging health threat. Chemosphere 2019, 215, 846–857. [Google Scholar] [CrossRef]
- Dinakarkumar, Y.; Ramakrishnan, G.; Gujjula, K.R.; Vasu, V.; Balamurugan, P.; Murali, G. Fungal bioremediation: An overview of the mechanisms, applications, and future perspectives. Environ. Chem. Ecotoxicol. 2024, 6, 293–302. [Google Scholar] [CrossRef]
- Ghosh, A.; Sah, D.; Chakraborty, M.; Rai, J.P.N. Mechanism and Application of Bacterial Exopolysaccharides: An Advanced Approach for Sustainable Heavy Metal Absorption from Soil. Carbohydr. Res. 2024, 544, 109247. [Google Scholar] [CrossRef]
- Khan, M.M.; Siddiqi, S.A.; Farooque, A.A.; Iqbal, Q.; Shahid, S.A.; Akram, M.T.; Khan, I. Towards Sustainable Application of Wastewater in Agriculture: A Review on Reusability and Risk Assessment. Agronomy 2022, 12, 1397. [Google Scholar] [CrossRef]
- Xu, Q.; Xiong, X.; Shi, Y.; Qian, L.; Zhou, X.; Tian, X.; Fang, L. Antagonism or synergism? Contrasting toxicity mechanisms of combined antibiotic and metal pollution in Eisenia fetida. Environ. Pollut. 2025, 374, 126166. [Google Scholar] [CrossRef]
- Jally, B.; Laubie, B.; Chour, Z.; Muhr, L.; Qiu, R.; Morel, J.L.; Simonnot, M.O. A new method for recovering rare earth elements from the hyperaccumulating fern Dicranopteris linearis in China. Miner. Eng. 2021, 166, 106879. [Google Scholar] [CrossRef]
- Khan, A.M.; Yusoff, I.; Abu Bakar, N.K.; Abu Bakar, A.F.; Alias, Y.; Mispan, M.S. Accumulation, uptake, and bioavailability of rare earth elements (rees) in soil-grown plants from ex-mining area in Perak, Malaysia. Appl. Ecol. Environ. Res. 2017, 15, 117–133. [Google Scholar] [CrossRef]
- Qin, B.; Liu, W.; He, E.; Li, Y.; Liu, C.; Ruan, J.; Tang, Y. Vacuum pyrolysis method for reclamation of rare earth elements from the hyperaccumulator Dicranopteris dichotoma grown in contaminated soil. J. Clean. Prod. 2019, 229, 480–488. [Google Scholar] [CrossRef]
- Dalla Vecchia, F.; Nardi, S.; Santoro, V.; Pilon-Smits, E.; Schiavon, M. Brassica juncea and the Se-hyperaccumulator Stanleya pinnata exhibit different patterns of chromium and selenium accumulation and distribution while activating distinct oxidative stress-response signatures. Environ. Pollut. 2023, 320, 121048. [Google Scholar] [CrossRef]
- Bouslimi, H.; Ferreira, R.; Dridi, N.; Brito, P.; Martins-Dias, S.; Caçador, I.; Sleimi, N.; Laboratory of Resources; Materials and Ecosystems; Faculty of Sciences of Bizerte; et al. Effects of barium stress in Brassica juncea and Cakile maritima: The indicator role of some antioxidant enzymes and secondary metabolites. Phyton 2021, 90, 145. [Google Scholar] [CrossRef]
- Kouki, R.; Dridi, N.; Vives-Peris, V.; Gómez-Cadenas, A.; Caçador, I.; Pérez-Clemente, R.M.; Sleimi, N. Appraisal of Abelmoschus esculentus L. Response to Al and Ba Stress. Plants 2023, 12, 179. [Google Scholar] [CrossRef] [PubMed]
- Redondo-Gómez, S.; Mateos-Naranjo, E.; Vecino-Bueno, I.; Feldman, S.R. Accumulation and tolerance characteristics of chromium in a cordgrass Cr-hyperaccumulator, Spartina argentinensis. J. Hazard. Mater. 2011, 185, 862–869. [Google Scholar] [CrossRef]
- Dridi, N.; Bouslimi, H.; Duarte, B.; Caçador, I.; Sleimi, N. Evaluation of physiological and biochemical parameters and some bioindicators of barium tolerance in Limbarda crithmoides and Helianthus annuus. Int. J. Plant Biol. 2022, 13, 115–131. [Google Scholar] [CrossRef]
- Andrade, A.F.M.D.; Amaral Sobrinho, N.M.B.D.; Santos, F.S.D.; Magalhães, M.O.L.; Tolón-Becerra, A.; Lima, L.D.S. EDTA-induced Phytoextraction of Pb and Ba by Brachiaria (B. decumbens cv. Basilisk) in soil contaminated with oil exploration drilling waste. Acta Scientiarum. Agron. 2014, 36, 495–500. [Google Scholar]
- Smillie, C. Salicornia spp. as a biomonitor of Cu and Zn in salt marsh sediments. Ecol. Indic. 2015, 56, 70–78. [Google Scholar] [CrossRef]
- Mellem, J.J.; Baijnath, H.; Odhav, B. Translocation and accumulation of Cr, Hg, As, Pb, Cu and Ni by Amaranthus dubius (Amaranthaceae) from contaminated sites. J. Environ. Sci. Health Part A 2009, 44, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Fellet, G.; Pošćić, F.; Casolo, V.; Marchiol, L. Metallophytes and thallium hyperaccumulation at the former Raibl lead–zinc mining site (Julian Alps, Italy). Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2012, 146, 1023–1036. [Google Scholar] [CrossRef]
- Lutts, S.; Lefèvre, I.; Delpérée, C.; Kivits, S.; Dechamps, C.; Robledo, A.; Correal, E. Heavy Metal Accumulation by the Halophyte Species Mediterranean Saltbush. J. Environ. Qual. 2004, 33, 1271–1279. [Google Scholar] [CrossRef]
- Joshi, A.; Kanthaliya, B.; Rajput, V.; Minkina, T.; Arora, J. Assessment of Phytoremediation Capacity of Three Halophytes: Suaeda monoica, Tamarix indica, and Cressa critica. Biol. Futur. 2020, 71, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Kachout, S.S.; Mansoura, A.B.; Mechergui, R.; Leclerc, J.C.; Rejeb, M.N.; Ouerghi, Z. Accumulation of Cu, Pb, Ni, and Zn in the halophyte plant Atriplex grown on polluted soil. J. Sci. Food Agric. 2012, 92, 336–342. [Google Scholar] [CrossRef]
- Ayyappan, D.; Sathiyaraj, G.; Ravindran, K.C. Phytoextraction of heavy metals by Sesuvium portulacastrum L., a salt marsh halophyte from tannery effluent. Int. J. Phytoremediation 2016, 18, 453–459. [Google Scholar] [CrossRef]
- Grosjean, N.; Le Jean, M.; Berthelot, C.; Chalot, M.; Gross, E.M.; Blaudez, D. Accumulation and fractionation of rare earth elements are conserved traits in the Phytolacca genus. Sci. Rep. 2019, 9, 18458. [Google Scholar] [CrossRef]
- Nezhadasad-Aghbash, B.; Radjabian, T.; Hajiboland, R. Tolerance to Zn toxicity in the halophyte Lepidium latifolium L. and the effect of salt on Zn tolerance and accumulation, respectively. Acta Agric. Slov. 2023, 119, 1–17. [Google Scholar] [CrossRef]
- Liu, J.; Duan, C.Q.; Zhang, X.H.; Zhu, Y.N.; Hu, C. Characteristics of chromium (III) uptake in the hyperaccumulator Leersia hexandra Swartz. Environ. Exp. Bot. 2011, 74, 122–126. [Google Scholar] [CrossRef]
- Kalve, S.; Sarangi, B.K.; Pandey, R.A.; Chakrabarti, T. Arsenic and chromium hyperaccumulation by an ecotype of Pteris vittata, prospective for phytoextraction from contaminated water and soil. Curr. Sci. 2011, 100, 888–894. [Google Scholar]
- Lokhande, V.H.; Patade, V.Y.; Srivastava, S.; Suprasanna, P.; Shrivastava, M.; Awasthi, G. Copper accumulation and biochemical responses of Sesuvium portulacastrum (L.). Mater. Today Proc. 2020, 31, 679–684. [Google Scholar] [CrossRef]
- Hajri, A.K.; Hamdi, N.; Alharbi, A.A.; Alsherari, S.A.; Albalawi, D.A.; Kelabi, E.; Ghnaya, T. Evaluation of the potential of two halophytes to extract Cd and Zn from contaminated saltwater. Environ. Sci. Pollut. Res. 2023, 30, 114525–114534. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Lin, Y.; Yang, Y.; Shen, Q.; Huang, J.S.; Wang, S.; Zhu, X.; Li, Z. Tolerance and bioaccumulation of Cd and Cu in Sesuvium portulacastrum. Ecotoxicol. Environ. Saf. 2018, 147, 306–312. [Google Scholar] [CrossRef]
- Fatnani, D.; Patel, M.; Parida, A.K. Regulation of chromium translocation to shoot and physiological, metabolomic, and ionomic adjustments confer chromium stress tolerance in the halophyte Suaeda maritima. Environ. Pollut. 2023, 320, 121046. [Google Scholar] [CrossRef]
- Eslava-Silva, F.D.J.; Muñíz-Díaz de León, M.E.; Jiménez-Estrada, M. Pteridium aquilinum (Dennstaedtiaceae), a novel hyperaccumulator species of hexavalent chromium. Appl. Sci. 2023, 13, 5621. [Google Scholar] [CrossRef]
- Chai, M.; Shi, F.; Li, R.; Qiu, G.; Liu, F.; Liu, L. Growth and physiological responses to copper stress in a halophyte Spartina alterniflora (Poaceae). Acta Physiol. Plant. 2014, 36, 745–754. [Google Scholar] [CrossRef]
- Buendía-González, L.; Orozco-Villafuerte, J.; Cruz-Sosa, F.; Barrera-Díaz, C.E.; Vernon-Carter, E.J. Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresour. Technol. 2010, 101, 5862–5867. [Google Scholar] [CrossRef] [PubMed]
- Adki, V.S.; Jadhav, J.P.; Bapat, V.A. Nopalea cochenillifera, a potential chromium (VI) hyperaccumulator plant. Environ. Sci. Pollut. Res. 2013, 20, 1173–1180. [Google Scholar] [CrossRef] [PubMed]
- Tangahu, B.V.; Abdullah, S.R.S.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M. Phytoremediation of wastewater containing lead (Pb) in pilot reed bed using Scirpus grossus. Int. J. Phytoremediation 2013, 15, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Tangahu, B.V.; Abdullah, S.R.S.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M. Lead (Pb) removal from contaminated water using constructed wetland planted with Scirpus grossus: Optimization using response surface methodology (RSM) and assessment of rhizobacterial addition. Chemosphere 2022, 291, 132952. [Google Scholar] [CrossRef]
Resistance Mechanism | Genes Involved | Binding Site | Resistance Site | References |
---|---|---|---|---|
Mercury | merA, merB, merC, merD, merE, merR, merT | Operon | Mercury detoxification and efflux | [173] |
Copper | copA, copB, copC, copD, and pcoA, pcoC, pcoD | Operon | Involved in copper efflux | [174] |
Zinc | zntA, zntB, zntC | Operon | Involved in zinc efflux | [175] |
Arsenic | arsA, arsB, arsC, arsD, arsR, arsH | Operon | Arsenic detoxification and efflux | [176] |
Cadmium | czcA, czcB, czcC, czcD | Operon | Cadmium involved in efflux | [177] |
Lead | pbrA, pbrB, pbrC, pbrT | Locus | Lead involved in efflux and uptake | [178] |
Nickel | ncrA, ncrB, ncrC | Operon | Involved in nickel efflux | [179] |
Chromium | chrA, chrB, chrC | Operon | Involved in chromium efflux | [180] |
Heavy Metals | Clinically Relevant Microorganism(s) Exhibiting Co-Selection | Antibiotics | Reference |
---|---|---|---|
Cadmium | Salmonella Typhi | Ciprofloxacin, ceftizoxime, ampicillin, chloramphenicol | [210] |
Lead, cadmium, mercury, tellurite, cobalt, copper | Klebsiella pneumoniae | Aminoglycosides, Streptomycin, Rifampicin, Beta-lactams, Gentamicin, Trimethoprim, Chloramphenicol | [211] |
Cadmium, copper | Streptococcus agalactiae | Lincosamide, Macrolide | [212] |
Lead | Pseudomonas spp. | Cefepime, Colistin, Levofloxacin | [213] |
Lead | Salmonella Typhi | Ampicillin-Sulbactam, Nalidixic Acid, Levofloxacin | [213] |
Lead | Members of Enterobacteriaceae | Tetracycline, Co-Trimoxazole, Third and Fourth generation Cephalosporins, Ciprofloxacin, Gentamycin | [213] |
Lead | Staphylococcus aureus | Amoxicillin/Clavulanic Acid, Cefoxitin, Co-Trimoxazole, Amoxicillin/Clavulanic Acid | [213] |
Cadmium, Zinc | Staphylococcus aureus | Methicillin | [214] |
Arsenic, Silver, Copper | Klebsiella pneumoniae, Escherichia coli | Macrolides, Trimethoprim, Beta-lactams, Tetracyclines, Aminoglycosides | [215] |
Copper, Zinc | Pseudomonas aeruginosa | Carbapenem | [216] |
Cadmium | Klebsiella pneumoniae, Pseudomonas aeruginosa | Sulphonamides, Kanamycin, Oxacillin, Nalidixic Acid | [217] |
Chromium, Lead | Staphylococcus aureus | Oxacillin, Penicillin G, Methicillin | [218] |
Cadmium | Stenotrophomonas maltophilia | Macrolide | [219] |
Mercury | Members of Enterobacteriaceae, Oral Streptococci | Tetracycline, Ampicillin, Streptomycin | [220] |
Mercury | Escherichia coli | Kanamycin, Chloramphenicol, Streptomycin, Tetracycline | [221] |
Arsenic, Mercury, Cadmium | Pseudomonas aeruginosa | Chloramphenicol, Streptomycin, Kanamycin | [222] |
Mercury, Silver | Salmonella Typhimurium | Ampicillin, Chloramphenicol | [223] |
Mercury | Staphylococcus aureus | Penicillin | [224] |
Heavy Metals | Accumulator Species | Climate Condition | Experimental Condition | Concentration in Plants | References |
---|---|---|---|---|---|
Group of rare earth elements (REE) | Dicranopteris linearis | Annual Rainfall Temperature (ART) | Chinese plants grown from mining tailings | Dry Weight (DW) Biomass milligram/g Total REE; 2.70 billion | [229] |
Sc | Cyperus Rotundus L. | ART | Plant grown on pH 4.4–7.5 media soil from a former mining region in Lahat, Malasia | Flower (8.21 µg/g), Leaves (204.60 µg/g), Stem (18.84 microgram/g), Root (280.83 µg/g) DW | [230] |
Sc | Dicranopteris linearis (Burn) (B) | ART | Soil (pH 4.4–7.5); plant from a former mining region near Lahat, Malasia | Lamina (478.50 µg/g), Petiole (26.57 µg/g), Shoot (24.53 µg/g), Root (312.41 microgram/g) DW | [230] |
Sc, REE | Dicranopteris dichotoma | ART | Plants from a former mining region in Lahat, Malasia Media; soil (pH 4.4–7.5); plants gathered from China | Biomass (mg/kg) Se 121 Cr 155 Nd 511 La 929 Roots (33.16 µg/g), Shoots (177.83 µg/g), Leaves (33.40 µg/g) DW | [230,231] |
Se, Cr, Ba | Brassica juncea (glycophyte) | ART 26/21 °C | Media: perlite/gravel combination (2:1, v/v) | Mas. fresh weight; Roots (4017 mg), Shoots (9471mg), Whole plant (13,488 mg); (Ba concentration 100µM) Tolerance index; 112–183% of the whole plant leaf. Se 2600 mgCr/kg DW Cr 1000 mgSe/killogram DW Se 35 mgCr/kg/dl root Cr 1150 mg Se/kg DW | [232,233] |
Ba | Abelmoshush esculentus L. | ART 12/25 °C (Night/Day) | Plant: Tunisia Media, Baddar Company; blend gravel and perlite/gravel (1:2, v/v) | Ba in Fruits (150–450 mg/kg), Shoots (200–900 microgram/killogram), Roots (450–1100 mg/kg) DW | [234] |
Ba | Cakile maritima (Halophyes) | ART 25 ± 5 °C | Media: perlite/gravel combination (2:1, v/v) | Mas. Fresh weight in roots (1339 mg), Shoots (13,019 mg), Whole plants (14,358 mg), (Ba concentration: 500µM) 71–88% of whole plants | [233] |
Cr | Spartina argentinensis | ART 21–25 °C | Plants; Argentina Media; inert substrate, pearlite in glass | Cr absorption in root and cultivator dry masses; 4–15 milligram/gram | [235] |
Ba | Helianthus annuss | ART 25 ± 5 °C | Sunflower-seed land farm located north of Tunisia Media; mixture of perlite and gravel substrate (2:1, v/v) | Shoots 1350 µg/g DW | [236] |
Ba | Limbarda crithmoides | ART | North seeds shore of the Bizerte lagon in Menzel emil, Bizerte, Tunisia | In each organ; be around 3000 µg/g DW | [236] |
Ba, Pb | Brachiaria decumbens | ART | Media; soil tainted by waste from exploration and oil well drilling (pH soil 8.3) Cv. Basilisk plants from Brazil Including EDTA in the therapy | In Leaf (Pb 0.5–9.02 mg/kg), (Ba; 24.3–27.3 mg/kg) DW In Root (Pb; 1.41–5.3 mg/kg), (Ba; 17.6–20.9 mg/kg) DW | [237] |
Zn, Cu | Salicornia spp. | ART | Sediment samples from Restronguet Creek | Cu in Sediment (3420), Aerial water (551), Roots (1954) mg/kg DW Zn in Sediment (1991), Aerial water (4831), Roots (720) mg/kg DW | [238] |
Ni, Cu, Pb, As, Hg, Cr | Amaranthus dubius | ART | Soil pH 7–8 Plants dispersed in media throughout Africa, Asia, and South America | In Leaves Cr, Hg, As, Pb, Cu, Ni (17–118, 3–12, 4–188, 3–9, 20–45, 9–36) ppm In Stems Cr, Hg, As, Pb, Cu, Ni (17–126, 17–61, 13–201, 6–21, 27–67, 9–38) ppm In Roots Cr, Hg, As, Pb, Cu, Ni (30–308, 24–66-, 7–127, 10–138, 118–173, 38–106) ppm | [239] |
Zn, Ti, Pb, Cd | Minuartia verna subsp. Verna | Total annual rainfall: 2100 mm The temperature was 2.4 °C in January and 16.4 °C in August. | Soil Raibl Lead/Zinc mining site, Cave del Predial, Italy; Media and Plants (pH 7.84–8.44) | M. verna subsp. In shoot Zn, Ti, Pb, Cd (24.1–18,372, 18.3–3632, 40–5998, 0.55–24.7) mg/kg In Root Cd, Pb, Ti, Zn (0.60–29.2, 151–9329, 0–1286, 342–27,521) mg/kg | [240] |
Zn, Ti, Pb, Cd | Thlaspo rotundifolium subsp. Cepaeifolium | Annual rainfall 2100 mm Temperature 2.4 °C January and 16.4 °C August | Plant and Media; Cave del Predial, Soil Raibl lead, zinc mining site, Italy (pH 784–8.44) | Root and Shoot (mg/kg) Cd; 1.30–47.9 and 1.35–78 Pb; 282–14,435 and 29.2–2817 Ti; 35.8–2275 and 0–874 Zn; 71.7–11,548 and 28.1–11,573 | [240] |
Cd, Pb, Ti, Zn | Biscutella laevigata subsp. | Annual rainfall 2100 mm Temperature 2.4 °C January and 16.4 °C August | Media and Plants; Zinc mining site, Soil Raibl lead, Cave del Predial, Italy (pH 7.84–8.44) | Shoot and Root (mg/kg) Cd; 0–4.75 and 0–8.45 Pb; 0–874 and 0–1939 Ti; 33.4–32,661 and 0–9984 Zn; 20.2–20,980 and 34.7–5692 | [240] |
Cd, Pb, Ti, Zn | Alyssum wulfenianum | Annual rainfall 2100 mm Temperature 2.4 °C January and 16.4 °C August | Media and Plants; Cave del Predial, Soil Raibl lead, Zinc mining site, Italy (pH 7.84–8.44) | Root and Shoot (mg/kg) Cd; 2.20–6.23 and 0.59–5.95 Pb; 253–1504 and 28–826 Ti; 0–4347 and 31.5–1946 Zn; 354–5670 and 194–1934 | [240] |
Zn, Cd | Atriplex halimus L. (Halophyte species Mediterranean saltbush) | ART 25 ± 2 °C | Media; soil Plant; Spain | Leaves, Roots, Stems (mg/kg DW) Zn; 460, 1423, 431 Cd; 618, 3174, 1151 | [241] |
Cd, Cr, Cu, Mn, Fe, Zn | Cressa critica (Halophytes) | Rainfall range: 650–700 mm annually | Gujrat, India’s Gulf of Bhabha soil, pH 8.93, EC 112 dS/m | Stems and Leaves (mg/kg DW) Cd; 2 and 2.1 Cu; 11 and 12 Mn; 30 and 35 Fe; 160 nm and 150 Zn; 15 and 14 | [242] |
Zn, Fe, Mn, Cu, Cr, Cd | Tamarix indica (Halophytes) | Annual rainfall; 650–700 mm per year | Soil from Gulf of Bhabha, Gujrat, India, pH 8.93, EC 112 dS/m | In Stems Zn, Fe, Mn, Cu, Cd (19,150, 25, 10, 3.5) mg/kg DW In Leaves Zn, Fe, Mn, Cu, Cd (17, 160, 39, 9, 3.6) mg/kg DW | [242] |
Zn, Pb, Cu | Halophyte Atriplex species; A. rosea | ART | Plants; CN Seed Ltd., Ely, UK Media; Contaminated soil in France | mg/kg DW In Root Pb (725) In Roots Cu (385) In Shoots Cu (48) In Root Zn (1179) | [243] |
Cu, Pb | Halophytes Atriplex species; A. hortensis var. purpurea | ART | Media; French plants with contaminated soil; CN Seed Ltd., Ely, UK | In Root Cu (265 mg/kg DW) and Pb (1064 mg/kg DW) | [243] |
Cu, Ni, Zn, Pb | Halophyte Atriplex species: Atriplex hortensis var. rubra | ART | Media; Contaminated soil in France Plants; CN Seed Ltd., Ely, UK | In Root Ni, Pb, Zn (1593, 982, 2512) mg/kg DW In Shoot Ni, Cu (61, 30 min) mg/kg DW | [243] |
Zn, Cu, Cr, Cd | Sesuvium portulacastrum (Halophytes) | Rainfall total during the year: 135.6 cm Temperature range: 33.26 °C in the summer to 29.68 °C in the winter | Media: soil treated with tanning effluent (pH 8.3, EC 5.25 dSm-1) and salt (pH 7., EC 4.48 dSm-1) Plants from the Cuddalore District’s Pichavaram Mangrove Forest in Tail Nasa, India | Zn (70.10), Cu (35.10), Cd (22.10), Cr (49.82) mg/g DW | [244] |
Zn, Cu, Cr, Cd | Suaeda monoica (Salt marsh halophyte) | Rainfall totals: 135.6 cm annually Maximum summer temperature: 33.26 °C; minimum winter temperature: 29.68 °C | Media; soil (pH 8.40, EC 4.75 dS/m) treated with paper mill effluent; plants; Tamil Nadu, India. Media: Salt-treated soil (pH 7.7, EC 4.48 dSm-1) and tannery wastewater samples (pH 8.3, EC 5.25 dSm-1). Gujrat, India’s Gulf of Bhabha soil, pH 8.93, EC 112 dS/m Plants from the Cuddalore District’s Pichavaram Mangrove Forest in Tail Nasa, India | Mg/kg DW Zn (60.20) Cu (29.2) Cd (17.50) Cr (40.89) Stems and Leaves (mg/kg DW) Cr (2.5 and 2) Cd (4.0 and 4.5) Cu (10 °C and 12) Mn (40 and 45) Fr (160 and 170) Zn (21 and 20) Mg/kg DW Zn 22.33 Cu 23.89 Cr 18.66 Cd 15 | [244] |
Heavy Metals | Accumulator Species | Climate Condition | Experimental Condition | Concentration in Plants | References |
---|---|---|---|---|---|
Rare earth elements (REEs) | Atriplex rosea Phytolacca bogotensis P. acinosa Roxb. P. icosandra L. P. clavigera W.W. Smith P. americana L. | Annual rainfall Temperature (ART) 23/18 °C | Media: water Plants: UK, Canada, France | Dry Weight (DW) Shoot Ni; 90–460 microgram/gram DW Cu; 160–390 µg/g DW Cd; 210–340 µg/g DW Zn; 126–1341 microgram/g DW Pb; 157–1184 µg/g DW Leaves and Roots; 180–500 and 1500–8000 mg/kg Leaves and Roots; 150–250 and 1600–10,000 mg/kg Leaves and Roots; 50–400 and 1600–13,000 mg/kg Leaves and Roots; 250–500 and 1500–6000 mg/kg Leaves and Roots; 300–900 and 1500–5000 mg/kg | [245] |
Cd, Cu, Zn, Pb | Atriplex hortensis | ART | Media; hydroponic Plants from Denmark | Shoot Zn; 351–1257 microgram/gram DW Pb; 773–2276 µg/g DW Cd; 210–340 microgram/g DW Ni; 210–770 µg/g DW Cu; 340–400 µg/gram DW | [243] |
Zn | Halophytes Lepidium latifolium L. | ART 25/17 °C | Media; Water Plants; Meghan Playa, Iran | Old Leaves, Roots, Young Leaves (0.7, 2.9, 1 mg/g DW) | [246] |
Cr III | Leersia hexandra (Swartz) | ART 25/18 °C Day/Night | Media; Water The Taohua River in Guilin | Uptake Cr(III) 48 h; 3300 mg/kg DW | [247] |
Cr, As | Pterus vittata (Ecotype) | ART 30–35 °C | Media; Hoagland medium (water) Plants in India | Root, Leaf, Stem AS; (1173–10,170, 2307–3474, 1299–6400) microgram/kg DW Cr; 9200–17,427, 611–2609, 1556–20,675 mg/kg DW | [248] |
Cu, Cd, Zn | Sesuvium portulacastrum (Halophytes) | ART | MS Medium; water for Indian plants | Roots and Shoots Cd; 300–800 and 340–620 µg/g DW Zn; 910–1200 and 420–650 µg/g DW | [249,250] |
Zn, Cd | Carpobrotus edulis L. | ART | Media; water | Roots and Shoots Zn; 660–1450 and 560–700 µg/g DW Cd; 670–1250 and 330–670 µg/g DW | [250] |
Cd, Cu | Sesuvium portulacastrum (Halophyte) | ART | Media; water Plant from Halling Levee, Shatoulong Village, Yangjiang, China | Leaf, Root, Stem (mg/kg DW) Cu; 29.3–1032, 22.9–2090, 33.4–106.1 Cd; 16.26–64.7, 1707–3815, 77.8–251 | [251] |
Cr | Suaeda maritima Halophyte | ART | Media: Central Salt and Marine Chemical Research Institute (CSMCRI), Bhavnagar, Gujarat, India; hydroponic plant from a salt farm. 400 µM Cr was applied to the plant. | Cr. In Shoot (90.83 µg/g DW) Cr. In Root (1874.97 µg/g DW) | [252] |
Cr (VI) | Pteridium aquilinum (Dennstaedtiaceae) | ART | Media; in vitro and via hydroponic treatment Spores in La Cantera, Maxico Use of the gametophyte and sporophytes phase | Sporophytes 11,854 mg Cr/kg DW in underground part. Gametophytes 915 mg Cr/kg DW | [253] |
Se, Cr | Stanleya pinnata | ART 26/21 °C | Media; Water | In leaf; Se (12 microgram Cr/kg DW), Cr (1500 microgram Se/killogram DW) In Root; Se (500 mg Cr/kg DW), Cr (950 mg Se/kg DW) | [232] |
Cu | Spartina alterniflora (Poaceae) Halophyte | ART 22–28 °C (Day) and 16–22 °C (Night) | Media: Hoagland’s nutrition solution pH 6.5, clean, dry vermiculite Seeds, China’s Bohai Bay | Rhozomes; 49 µg/g DW Steam; 49 µg/g DW Fine roots; 197.12 µg/g DW Leaves; 47 µg/g DW | [254] |
Cr, Cd | Prosopis laevigata | ART 25 ± 2 °C | Media; liquid culture media, often known as Murashige and Skoog (MS) medium Humb and Bonel Seed. Ex. Mexican State’s Willd. M. C. Johnston 3.4 mM Cr (VI) and 0.65 mM Cd (II) were used to cultivate the plants. | In Root; (Cr 8090 mg/kg DW), (Cd; 21,437 mg/kg DW) In Shoot; (Cr 5461 mg/kg DW), (Cd; 8176 mg/kg DW) | [255] |
Cr (VI) | Nopalea cochenillifera | ART | Media; Shivaji University, Kolhapur, India seeds; Murashige and Skoog’s (MS) basal medium (pH 5.80 corrected) | Shoots; 705.714 microgram Cr/kg DW Roots; 25,263.396 microgram Cr/kg DW | [256] |
Pb | Scirpus grossus | ART | Medium sand and water with spikes | Pb Treatment 3236 mg/kg for 50 mg/L 4909 mg/kg for 30 mg/L 1343 milligram/killogram for 10 milligram/L | [257,258] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R.; Vasić, T.P.; Živković, S.P.; Panneerselvam, P.; Santoyo, G.; de los Santos Villalobos, S.; Olatunbosun, A.N.; Pandit, A.; Koolman, L.; Mitra, D.; et al. Mechanistic Role of Heavy Metals in Driving Antimicrobial Resistance: From Rhizosphere to Phyllosphere. Appl. Microbiol. 2025, 5, 79. https://doi.org/10.3390/applmicrobiol5030079
Kumar R, Vasić TP, Živković SP, Panneerselvam P, Santoyo G, de los Santos Villalobos S, Olatunbosun AN, Pandit A, Koolman L, Mitra D, et al. Mechanistic Role of Heavy Metals in Driving Antimicrobial Resistance: From Rhizosphere to Phyllosphere. Applied Microbiology. 2025; 5(3):79. https://doi.org/10.3390/applmicrobiol5030079
Chicago/Turabian StyleKumar, Rahul, Tanja P. Vasić, Sanja P. Živković, Periyasamy Panneerselvam, Gustavo Santoyo, Sergio de los Santos Villalobos, Adeyemi Nurudeen Olatunbosun, Aditi Pandit, Leonard Koolman, Debasis Mitra, and et al. 2025. "Mechanistic Role of Heavy Metals in Driving Antimicrobial Resistance: From Rhizosphere to Phyllosphere" Applied Microbiology 5, no. 3: 79. https://doi.org/10.3390/applmicrobiol5030079
APA StyleKumar, R., Vasić, T. P., Živković, S. P., Panneerselvam, P., Santoyo, G., de los Santos Villalobos, S., Olatunbosun, A. N., Pandit, A., Koolman, L., Mitra, D., & Gautam, P. (2025). Mechanistic Role of Heavy Metals in Driving Antimicrobial Resistance: From Rhizosphere to Phyllosphere. Applied Microbiology, 5(3), 79. https://doi.org/10.3390/applmicrobiol5030079