Environmental and Host Characteristics Shape the Gut Microbiota of the Sand Field Cricket, Gryllus firmus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling and Processing
2.2. Cricket Preparation and Lab Experiment
2.3. Cricket Dissection, DNA Extractions, and Amplicon Sequencing
2.4. Sequence Read and Statistical Analyses
3. Results
3.1. Taxonomic Identification
3.2. Alpha Diversity
3.3. Beta Diversity Ordination and Correlation with Environmental Factors
3.4. ASVs Explaining Sample Group Differences
4. Discussion
4.1. Microbial Composition of the Cricket Microbiome
4.2. Soil Factors Influencing the Cricket Microbiome
4.3. Host Characteristics Impacting the Microbiome
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schmidt, K.; Engel, P. Mechanisms underlying gut microbiota–host interactions in insects. J. Exp. Biol. 2021, 224, jeb207696. [Google Scholar] [CrossRef] [PubMed]
- Bost, A.; Martinson, V.G.; Franzenburg, S.; Adair, K.L.; Albasi, A.; Wells, M.T.; Douglas, A.E. Functional variation in the gut microbiome of wild Drosophila populations. Mol. Ecol. 2018, 27, 2834–2845. [Google Scholar] [CrossRef] [PubMed]
- Coon, K.L.; Brown, M.R.; Strand, M.R. Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats. Mol. Ecol. 2016, 25, 5806–5826. [Google Scholar] [CrossRef] [PubMed]
- Fukatsu, T.; Hosokawa, T. Capsule-Transmitted Gut Symbiotic Bacterium of the Japanese Common Plataspid Stinkbug, Megacopta punctatissima. Appl. Environ. Microbiol. 2002, 68, 389–396. [Google Scholar] [CrossRef]
- Martinson, V.G.; Moy, J.; Moran, N.A. Establishment of Characteristic Gut Bacteria during Development of the Honeybee Worker. Appl. Environ. Microbiol. 2012, 78, 2830–2840. [Google Scholar] [CrossRef]
- Pais, I.S.; Valente, R.S.; Sporniak, M.; Teixeira, L. Drosophila melanogaster establishes a speciesspecific mutualistic interaction with stable gut-colonizing bacteria. PLoS Biol. 2018, 16, e2005710. [Google Scholar] [CrossRef] [PubMed]
- Song, H. Biodiversity of Orthoptera. In Insect Biodiversity; Foottit, R.G., Adler, P.H., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018; Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9781118945582 (accessed on 24 November 2024).
- Kataoka, K.; Togawa, Y.; Sanno, R.; Asahi, T.; Yura, K. Dissecting cricket genomes for the advancement of entomology and entomophagy. Biophys. Rev. 2022, 14, 75–97. [Google Scholar] [CrossRef]
- Shi, W.; Xie, S.; Chen, X.; Sun, S.; Zhou, X.; Liu, L.; Gao, P.; Kyrpides, N.C.; No, E.-G.; Yuan, J.S. Comparative Genomic Analysis of the Endosymbionts of Herbivorous Insects Reveals Eco-Environmental Adaptations: Biotechnology Applications. PLoS Genet. 2013, 9, e1003131. [Google Scholar] [CrossRef]
- Giordano, R.; Jackson, J.J.; Roberstson, H.M. The role of Wolbachia bacteria in reproductive incompatibilities and hybrid zones of Diabrotica beetles and Gryllus crickets. Proc. Natl. Acad. Sci. USA 1997, 94, 11439–11444. [Google Scholar] [CrossRef]
- SantoDomingo, J.W.; Kaufman, M.G.; Klug, M.J.; Tiedje, J.M. Characterization of the Cricket Hindgut Microbiota with Fluorescently Labeled rRNA-Targeted Oligonucleotide Probes. Appl. Environ. Microbiol. 1998, 64, 752–755. [Google Scholar] [CrossRef]
- Kaufman, M.G.; Klug, M.J. The contribution of hindgut bacteria to dietary carbohydrate utilization by crickets (Orthoptera: Gryllidae). Camp. Biochem. Physiol. 1991, 98, 117–123. [Google Scholar] [CrossRef]
- Schmid, R.B.; Lehman, R.M.; Lundgren, J.G. Sex-Specific Interactions of Microbial Symbioses on Cricket Dietary Selection. Environ Entomol. 2014, 43, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.H.; Stat, M.; Bunce, M.; Simmons, L.W. The influence of diet and environment on the gut microbial community of field crickets. Ecol. Evol. 2018, 8, 4704–4720. [Google Scholar] [CrossRef]
- Ferguson, L.V.; Dhakal, P.; Lebenzon, J.E.; Heinrichs, D.E.; Bucking, C.; Sinclair, B.J. Seasonal shifts in the insect gut microbiome are concurrent with changes in cold tolerance and immunity. Funct. Ecol. 2018, 32, 2357–2368. [Google Scholar] [CrossRef]
- Hirata, K.; Asahi, T.; Kataoka, K. Spatial and Sexual Divergence of Gut Bacterial Communities in Field Cricket Teleogryllus occipitalis (Orthoptera: Gryllidae). Microb. Ecol. 2023, 86, 2627–2641. [Google Scholar] [CrossRef] [PubMed]
- Aryal, S.K.; Lu, D.; Le, K.; Allison, L.; Gerke, C.; Dillman, A.R. Sand crickets (Gryllus firmus) have low susceptibility to entomopathogenic nematodes and their pathogenic bacteria. J. Invertebr. Pathol. 2019, 160, 54–60. [Google Scholar] [CrossRef]
- Gurung, K.; Wertheim, B.; Salles, J.F. The microbiome of pest insects: It is not just bacteria. Entomol. Exp. Appl. 2019, 167, 156–170. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 24 November 2024).
- Davis, N.; Proctor, D.; Holmes, S.; Relman, D.; Callahan, B. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 2018, 6, 226. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. Vegan: Community Ecology Package. 2024. Available online: https://github.com/vegandevs/vegan (accessed on 24 November 2024).
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Bonfante, P.; Venice, F. Mucoromycota: Going to the roots of plant-interacting fungi. Fungal Biol. Rev. 2020, 34, 100–113. [Google Scholar] [CrossRef]
- Lima, D.X.; Souza-Motta, C.M.; Lima, C.L.F.D.; Alberto, C.; Souza, F.D.; Ribeiro, J.R.; de Azevedo Santiago, A.L.C.M. Communities of Mucorales (phylum Mucoromycota) in different ecosystems of the Atlantic Forest. Acta Bot. Bras. 2020, 34, 796–806. [Google Scholar] [CrossRef]
- Dzurendova, S.; Losada, C.B.; Dupuy-Galet, B.X.; Fjær, K.; Shapaval, V. Mucoromycota fungi as powerful cell factories for modern biorefinery. Appl. Microbiol. Biotechnol. 2022, 106, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.T.; Santiago, A.L.C.M.d.A.; Kirk, P.M.; Lee, H.B. Discovery of a New Lichtheimia (Lichtheimiaceae, Mucorales) from Invertebrate Niche and Its Phylogenetic Status and Physiological Characteristics. J. Fungi 2023, 9, 317. [Google Scholar] [CrossRef]
- Palmer-Brown, W.; Miranda-CasoLuengo, R.; Wolfe, K.H.; Byrne, K.P.; Murphy, C.D. The CYPome of the model xenobiotic-biotransforming fungus Cunninghamella elegans. Sci. Rep. 2019, 9, 9240. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhu, J.; Zong, O.-K.; Liu, X.-L.; Ren, L.-Y.; Lin, Q.; Qiao, M.; Nie, Y.; Zhang, Z.-D.; Liu, X.-Y. Two New Species in the Family Cunninghamellaceae from China. Mycobiology 2021, 49, 142–150. [Google Scholar] [CrossRef]
- Liu, G.; Zheng, X.; Long, H.; Rao, Z.; Cao, L.; Han, R. Gut Bacterial and Fungal Communities of theWild and Laboratory-Reared Thitarodes Larvae, Host of the Chinese Medicinal Fungus Ophiocordyceps sinensis on Tibetan Plateau. Insects 2021, 12, 327. [Google Scholar] [CrossRef]
- Klüber, P.; Müller, S.; Schmidt, J.; Zorn, H.; Rühl, M. Isolation of Bacterial and Fungal Microbiota Associated with Hermetia illucens Larvae Reveals Novel Insights into Entomopathogenicity. Microorganisms 2022, 10, 319. [Google Scholar] [CrossRef]
- Zheng, X.; Zhu, Q.; Qin, M.; Zhou, Z.; Liu, C.; Wang, L.; Shi, F. The Role of Feeding Characteristics in Shaping Gut Microbiota Composition and Function of Ensifera (Orthoptera). Insects 2022, 13, 719. [Google Scholar] [CrossRef]
- Eke, M.; Tougeron, K.; Hamidovic, A.; Tinkeu, L.S.N.; Hance, T.; Renoz, F. Deciphering the functional diversity of the gut microbiota of the black soldier fly (Hermetia illucens): Recent advances and future challenges. Anim. Microbiome 2023, 5, 40. [Google Scholar] [CrossRef]
- Fernandez-Cassi, X.; Supeanu, A.; Jansson, A.; Boqvist, S.; Vagsholm, I. Novel foods: A risk profile for the house cricket (Acheta domesticus). EFSA 2018, 16, e16082. [Google Scholar] [CrossRef]
- Benoit, J.B.; Yoder, J.A.; Zettler, L.W.; III, H.H.H. Mycoflora of a Trogloxenic Cave Cricket, Hadenoecus cumberlandicus (Orthoptera: Rhaphidophoridae), from Two Small Caves in Northeastern Kentucky. Ann. Entomol. 2004, 97, 989–993. [Google Scholar] [CrossRef]
- Archer, C.R.; Sakaluk, S.K.; Selman, C.; Royle, N.J.; Hunt, J. Oxidative stress and the evolution of sex differences in life span and ageing in the decorated cricket, Gryllodes sigillatus. Evolution 2012, 67, 620–634. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.I.; Min, J.S.; Kwon, M.; Choi, J.-Y.; Lee, S.H. Morphological and molecular characterizations of the Gregarina sp. (Apicomplexa: Protozoa) parasitizing on Phaedon brassicae (Coleoptera: Chrysomelidae). J. Asia. Pac. Entomol. 2014, 17, 1–5. [Google Scholar]
- Zuk, M. Seasonal and individual variation in gregarine parasite levels in the field crickets Gryllus veletis and G. pennsylvanicus. Ecol. Entomol. 1987, 12, 341–348. [Google Scholar] [CrossRef]
- Devetak, D.; Novak, T. Gregarines (Apicomplexa: Eugregarinorida) parasitizing the cave cricket Troglophilus (Orthoptera: Raphidophoridae) in the Slovenian karst. Acta Carsologica 2021. [Google Scholar] [CrossRef]
- Hofstad, T.; Olsen, I.; Eribe, E.R.; Falsen, E.; Collins, M.D.; Lawson, P.A. Dysgonomonas gen. nov. to accommodate Dysgonomonas gadei sp. nov., an organism isolated from a human gall bladder, and Dysgonomonas capnocytophagoides (formerly CDC group DF-3). IJSEM 2000, 50, 2189–2195. [Google Scholar] [CrossRef]
- Gao, X.; Wei, J.; Hao, T.; Yang, T.; Han, X.; Li, M.; Li, X.; Xiong, D.; Zhang, X. Dysgonomonas mossii Strain Shenzhen WH 0221, a New Member of the Genus Dysgonomonas Isolated from the Blood of a Patient with Diabetic Nephropathy, Exhibits Multiple Antibiotic Resistance. ASM 2022, 10, e0238121. [Google Scholar] [CrossRef]
- Bridges, C.M.; Gage, D.J. Development and application of aerobic, chemically defined media for Dysgonomonas. Anaerobe 2021, 67, 102302. [Google Scholar] [CrossRef]
- Suárez-Moo, P.; Cruz-Rosales, M.; Ibarra-Laclette, E.; Desgarennes, D.; Huerta, C.; Lamelas, A. Diversity and Composition of the Gut Microbiota in the Developmental Stages of the Dung Beetle Copris incertus Say (Coleoptera, Scarabaeidae). Front. microbiol. 2020, 11, 1698. [Google Scholar] [CrossRef]
- Ormerod, K.L.; Wood, D.L.A.; Lachner, N.; Gellatly, S.L.; Daly, J.N.; Parsons, J.D.; Dal’Molin, C.G.O.; Palfreyman, R.W.; Nielsen, L.K.; Cooper, M.A.; et al. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome 2016, 4, 36. [Google Scholar] [CrossRef] [PubMed]
- Pavanelo, D.B.; Piloto-Sardiñas, E.; Maitre, A.; Abuin-Denis, L.; Kopacek, P.; Cabezas-Cruz, A.; Fogaça, A.C. Arthropod microbiota: Shaping pathogen establishment and enabling control. Front. Arachn. Sci. 2023, 2, 1297733. [Google Scholar] [CrossRef]
- Nweze, J.E.; Šustr, V.; Brune, A.; Angel, R. Functional similarity, despite taxonomical divergence in the millipede gut microbiota, points to a common trophic strategy. Microbiome 2024, 12, 16. [Google Scholar] [CrossRef]
- Engel, P.; Moran, N.A. The gut microbiota of insects—Diversity in structure and function. FEMS Microbiol. Rev. 2013, 37, 699–735. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Yang, Y.; Zhang, N.; Shen, Y.; Ni, J. Draft Genome Sequence of Dysgonomonas macrotermitis Strain JCM 19375T, Isolated from the Gut of a Termite. Genome Announc. 2015, 3, e00963-15. [Google Scholar] [CrossRef]
- Aldova, E.; Hausner, O.; Brenner, D.J.; Kocmoud, Z.; Schindler, J.; Potuznikova, B.; Petráš, P. Pragia fontium gen. nov., sp. nov. of the Family Entevobacteviaceae, Isolated from Water. Int. J. Bacteriol. 1988, 38, 183–189. [Google Scholar]
- Snopková, K.; Sedlář, K.; Bosák, J.; Chaloupková, E.; Sedláček, I.; Provazník, I.; Šmajs, D. Free-Living Enterobacterium Pragia fontium 24613: Complete Genome Sequence and Metabolic Profiling. Evol. Bioinform. 2017, 13, 1–7. [Google Scholar] [CrossRef]
- Zheng, X.; Zhu, Q.; Zhou, Z.; Wu, F.; Chen, L.; Cao, Q.; Shi, F. Gut bacterial communities across 12 Ensifera (Orthoptera) at different feeding habits and its prediction for the insect with contrasting feeding habits. PLoS ONE 2021, 16, e0250675. [Google Scholar] [CrossRef]
- Jing, T.-Z.; Qi, F.-H.; Wang, Z.-Y. Most dominant roles of insect gut bacteria: Digestion, detoxification, or essential nutrient provision? Microbiome 2020, 8, 38. [Google Scholar] [CrossRef]
- Stieglmeier, M.; Klingl, A.; Alves, R.J.E.; Rittmann, S.K.-M.R.; Melcher, M.; Leisch, N.; Schleper, C. Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota. IJSEM 2014, 64, 2738–2752. [Google Scholar] [CrossRef]
- Sauder, L.A.; Albertsen, M.; Engel, K.; Schwarz, J.; Nielsen, P.H.; Wagner, M.; Neufeld, J.D. Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. ISME 2017, 11, 1142–1157. [Google Scholar] [CrossRef] [PubMed]
- Amores, G.R.; Zepeda-Ramos, G.; García-Fajardo, L.V.; Hernández, E.; Guillén-Navarro, K. The gut microbiome analysis of Anastrepha obliqua reveals inter-kingdom diversity: Bacteria, fungi, and archaea. Arch. Microbiol. 2022, 204, 579. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.M.; Quéméner, E.D.-L.; Gribaldo, S.; Borrel, G. Factors shaping the abundance and diversity of the gut archaeome across the animal kingdom. Nat. Commun. 2022, 13, 3358. [Google Scholar] [CrossRef] [PubMed]
- Green, G.B.; Williams, M.B.; Brandom, J.L.; Chehade, S.B.; Fay, C.X.; Morrow, C.D.; Lawrence, A.L.; Bej, A.K.; A Watts, S. A Bacterial-Sourced Protein Diet Induces Beneficial Shifts in the Gut Microbiome of the Zebrafish, Danio rerio. CDN 2024, 8, 102077. [Google Scholar] [CrossRef]
- Sowers, K.R.; Baron, S.F.; Ferry, J.G. Methanosarcina acetivorans sp. nov., an Acetotrophic Methane- Producing Bacterium Isolated from Marine Sediments. Appl. Environ. Microbiol. 1984, 47, 971–978. [Google Scholar]
- Richter, M.; Sattler, C.; Schöne, C.; Rother, M. Pyruvate-dependent growth of Methanosarcina acetivorans. ASM 2024, 206, e0036323. [Google Scholar] [CrossRef]
- Simankova, M.V.; Parshina, S.N.; Tourova, T.P.; Kolganova, T.V.; Zehnder, A.J.B.; Nozhevnikova, A.N. Methanosarcina lacustris sp. nov., a New Psychrotolerant Methanogenic Archaeon from Anoxic Lake Sediments. Syst. Appl. Microbiol. 2001, 24, 362–367. [Google Scholar] [CrossRef]
- Shimizu, S.; Upadhye, R.; Ishijima, Y.; Naganuma, T. Methanosarcina horonobensis sp. nov., a methanogenic archaeon isolated from a deep subsurface Miocene formation. IJSEM 2011, 61, 2503–2507. [Google Scholar] [CrossRef] [PubMed]
- Lambie, S.C.; Kelly, W.J.; Leahy, S.C.; Li, D.; Reilly, K.; McAllister, T.A.; Valle, E.R.; Attwood, G.T.; Altermann, E. The complete genome sequence of the rumen methanogen Methanosarcina barkeri CM1. Stand. Genomic Sci. 2015, 10, 57. [Google Scholar] [CrossRef]
- Li, D.; Ni, H.; Jiao, S.; Lu, Y.; Zhou, J.; Sun, B.; Liang, Y. Coexistence patterns of soil methanogens are closely tied to methane generation and community assembly in rice paddies. Microbiome 2021, 9, 20. [Google Scholar] [CrossRef]
- Li, Y.; Meng, Z.; Xu, Y.; Shi, Q.; Ma, Y.; Aung, M.; Cheng, Y.; Zhu, W. Interactions between Anaerobic Fungi and Methanogens in the Rumen and Their Biotechnological Potential in Biogas Production from Lignocellulosic Materials. Microorganisms 2021, 9, 190. [Google Scholar] [CrossRef] [PubMed]
- Do, T.H.; Dao, T.K.; Nguyen, H.D.; Truong, N.H. Understanding the Role of Free-Living Bacteria in the Gut of the Lower Termite Coptotermes gestroi Based on Metagenomic DNA Analysis. Insects 2023, 14, 832. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, L.-L.; Liu, L.; Tian, Y.-Q.; Liu, X.-F.; Li, W.-J.; Dai, Y.M. Paludicola psychrotolerans gen. nov., sp. nov., a novel psychrotolerant chitinolytic anaerobe of the family Ruminococcaceae. IJSEM 2017, 67, 4100–4103. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Freitak, D.; Vogel, H.; Ping, L.; Shao, Y.; Cordero, E.A.; Andersen, G.; Westermann, M.; Heckel, D.G.; Boland, W. Complexity and Variability of Gut Commensal Microbiota in Polyphagous Lepidopteran Larvae. PLoS ONE 2012, 7, e36978. [Google Scholar] [CrossRef] [PubMed]
- Benndorf, R.; Martin, K.; Küfner, M.; de Beer, Z.W.; Vollmers, J.; Kaster, A.-K.; Beemelmanns, C. Streptomyces smaragdinus sp. nov., isolated from the gut of the fungus growing-termite Macrotermes natalensis. IJSEM 2020, 70, 5806–5811. [Google Scholar]
- Gouda, M.N.R.; Kumaranag, K.M.; Ramakrishnan, B.; Subramanian, S. Deciphering the complex interplay between gut microbiota and crop residue breakdown in forager and hive bees (Apis mellifera L.). Microbiol. Curr. Res. 2024, 6, 100233. [Google Scholar]
- Bolourian, A.; Mojtahedi, Z. Streptomyces, shared microbiome member of soil and gut, as ‘old friends’ against colon cancer. FEMS Microbiol. Ecol. 2018, 94, fiy120. [Google Scholar] [CrossRef]
- Chevrette, M.G.; Carlson, C.M.; Ortega, H.E.; Thomas, C.; Ananiev, G.E.; Barns, K.J.; Book, A.J.; Cagnazzo, J.; Carlos, C.; Flanigan, W.; et al. The antimicrobial potential of Streptomyces from insect microbiomes. Nat. Commun. 2019, 10, 516. [Google Scholar] [CrossRef]
- Chater, K.G. Streptomyces inside-out: A new perspective on the bacteria that provide us with antibiotics. Phil. Trans. R. Soc. B 2006, 361, 761–768. [Google Scholar] [CrossRef]
- Usuda, D.; Tanaka, R.; Suzuki, M.; Shimozawa, S.; Takano, H.; Hotchi, Y.; Tokunaga, S.; Osugi, I.; Katou, R.; Ito, S.; et al. Obligate aerobic, gram-positive, weak acid-fast, nonmotile bacilli, Tsukamurella tyrosinosolvens: Minireview of a rare opportunistic pathogen. World J. Clin. Cases 2022, 10, 8443–8449. [Google Scholar] [CrossRef]
- Ngoune, J.M.T.; Reveillaud, J.; Sempere, G.; Njiokou, F.; Melachio, T.T.; Abate, L.; Tchioffo, M.T.; Geiger, A. The composition and abundance of bacterial communities residing in the gut of Glossina palpalis palpalis captured in two sites of southern Cameroon. Parasites Vectors 2019, 12, 151. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, X.; Xu, H.; Liu, Y.; Lu, Z. Effects of Host Plant and Insect Generation on Shaping of the Gut Microbiota in the Rice Leaffolder, Cnaphalocrocis medinalis. Front. Microbiol. 2022, 13, 824224. [Google Scholar] [CrossRef] [PubMed]
- Aryal, S.K.; Carter-House, D.; Stajich, J.E.; Dillman, A.R. Microbial associates of the southern mole cricket (Scapteriscus borellii) are highly pathogenic. J. Invertebr. Pathol. 2017, 150, 54–62. [Google Scholar] [CrossRef]
- Zhang, S.; Shu, J.; Xue, H.; Zhang, W.; Zhang, Y.; Liu, Y.; Fang, L.; Wang, Y.; Wang, H. The Gut Microbiota in Camellia Weevils Are Influenced by Plant Secondary Metabolites and Contribute to Saponin Degradation. mSystems 2020, 5, e00692-19. [Google Scholar] [CrossRef]
- Cambronero-Heinrichs, J.C.; Rojas-Gätjens, D.; Baizán, M.; Alvarado-Ocampo, J.; Rojas-Jimenez, K.; Loaiza, R.; Chavarría, M.; Calderón-Arguedas, Ó.; Troyo, A. Highly abundant bacteria in the gut of Triatoma dimidiata (Hemiptera: Reduviidae) can inhibit the growth of Trypanosoma cruzi (Kinetoplastea: Trypanosomatidae). J. Med. Entomol. 2024, 61, 1333–1344. [Google Scholar] [CrossRef] [PubMed]
- Schleifer, K.H.; Kraus, J.; Dvorak, C.; Kilpper-Balz, R.; Collins, M.D.; Fisher, W. Transfer of Streptococcus lactis and Related Streptococci to the Genus Lactococcus gen. nov. Syst. Appl. Microbiol. 1985, 6, 183–195. [Google Scholar] [CrossRef]
- Smith, C.C.; Srygley, R.B.; Healy, F.; Swaminath, K.; Mueller, U.G. Spatial Structure of the Mormon Cricket Gut Microbiome and its Predicted Contribution to Nutrition and Immune Function. Front. Microbiol. 2017, 8, 801. [Google Scholar] [CrossRef]
- Aleknavicius, D.; Lukša, J.; Strazdaite-Žieliene, Ž.; Serviene, E. The Bacterial Microbiota of Edible Insects Acheta domesticus and Gryllus assimilis Revealed by High Content Analysis. Foods 2022, 11, 1073. [Google Scholar] [CrossRef]
- Marín-Miret, J.; Perez-Cobas, A.E.; Domínguez-Santos, R.; Perez-Rocher, B.; Latorre, A.; Moya, A. Adaptability of the gut microbiota of the German cockroach Blattella germanica to a periodic antibiotic treatment. Microbiol. Res. 2024, 287, 127863. [Google Scholar] [CrossRef]
- Lau, C.H.-F.; Capitani, S.; Tien, Y.-C.; Verellen, L.A.; Kithama, M.; Kang, H.; Kiarie, E.G.; Topp, E.; Diarra, M.S.; Fruci, M. Dynamic effects of black soldier fly larvae meal on the cecal bacterial microbiota and prevalence of selected antimicrobial resistant determinants in broiler chickens. Anim. Microbiome 2024, 6, 6. [Google Scholar] [CrossRef]
- Wang, L.; Wu, D.; Zhang, Y.; Li, K.; Wang, M.; Ma, J. Dynamic distribution of gut microbiota in cattle at different breeds and health states. Front. Microbiol. 2023, 14, 1113730. [Google Scholar] [CrossRef] [PubMed]
- Seyedmousavi, S.; Guillot, J.; Arne, P.; Hoog, G.S.d.; Mouton, J.W.; Melchers, W.J.G.; Verweij, P.E. Aspergillus and aspergilloses in wild and domestic animals: A global health concern with parallels to human disease. Med. Mycol. J. 2015, 53, 765–797. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Denis, M.; Guarro, J.; Cano-Lira, J.; Sutton, D.; Wiederhold, N.; de Hoog, G.; Abbott, S.; Decock, C.; Sigler, L.; Gené, J. Phylogeny and taxonomic revision of Microascaceae with emphasis on synnematous fungi. Stud. Mycol. 2016, 83, 193–233. [Google Scholar] [CrossRef] [PubMed]
- Aliyu, H.; Gorte, O.; Maayer, P.d.; Neumann, A.; Ochsenreither, K. Genomic insights into the lifestyles, functional capacities and oleagenicity of members of the fungal family Trichosporonaceae. Sci. Rep. 2020, 10, 2780. [Google Scholar] [CrossRef]
- Chen, Y.; Su, P.; Hyde, K.; Maharachchikumbura, S. Phylogenomics and diversification of Sordariomycetes. Mycosphere 2023, 14, 414–451. [Google Scholar] [CrossRef]
- Rojas-Jiménez, K.; Hernández, M. Isolation of Fungi and Bacteria Associated with the Guts of Tropical Wood-Feeding Coleoptera and Determination of Their Lignocellulolytic Activities. Int. J. Microbiol. 2015, 2015, 285018. [Google Scholar] [CrossRef]
- Ziganshina, E.E.; Mohammed, W.S.; Shagimardanova, E.I.; Vankov, P.Y.; Gogoleva, N.E.; Ziganshin, A.M. Fungal, Bacterial, and Archaeal Diversity in the Digestive Tract of Several Beetle Larvae (Coleoptera). Biomed Res. Int. 2018, 2018, 676543. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A.; Modlinger, R.; Ashraf, M.Z.; Synek, J.; Schlyter, F.; Roy, A. Core Mycobiome and Their Ecological Relevance in the Gut of Five Ips Bark Beetles (Coleoptera: Curculionidae: Scolytinae). Front. microbiol. 2020, 11, 568853. [Google Scholar] [CrossRef]
- Švediene, J.; Raudoniene, V.; Mizeriene, G.; Rimšaite, J.; Davenis, S.A.; Ivinskis, P. First Data on the Investigation of Gut Yeasts in Hermit Beetle (Osmoderma barnabita Motschulsky, 1845) Larvae in Lithuania. J. Fungi 2024, 10, 442. [Google Scholar] [CrossRef]
- Cui, P.; Liu, L.; Huang, Z.; Shi, S.; Kong, K.; Zhang, Y. Diversity, antibacterial activity and chemical analyses of from the Crocothemis servilia. Front. Microbiol. 2022, 13, 970990. [Google Scholar] [CrossRef]
- Majumder, R.; Sutcliffe, B.; Taylor, P.W.; Chapman, T.A. Fruit host-dependent fungal communities in the microbiome of wild Queensland fruit fly larvae. Sci. Rep. 2020, 10, 16550. [Google Scholar] [CrossRef] [PubMed]
- Becchimanzi, A.; Nicoletti, R. Aspergillus-bees: A dynamic symbiotic association. Front. Microbiol. 2022, 13, 968963. [Google Scholar] [CrossRef] [PubMed]
- Miransari, M.; Bahrami, H.A.; Rejali, F.; Malakouti, M.J. Effects of arbuscular mycorrhiza, soil sterilization, and soil compaction on wheat (Triticum aestivum L.) nutrients uptake. Soil Tillage Res. 2009, 104, 48–55. [Google Scholar] [CrossRef]
Domain | Clusters | Parameters | df | SumOfSqs | R2 | F | p-Value |
---|---|---|---|---|---|---|---|
Bacteria | Only exposed | Sex | 1 | 0.1654 | 0.04505 | 2.6410 | 0.016 |
Soil | 1 | 0.2430 | 0.06619 | 3.8805 | 0.006 | ||
Park | 3 | 0.4215 | 0.11481 | 2.2437 | 0.009 | ||
Sex:Soil | 1 | 0.0848 | 0.02311 | 1.3548 | 0.202 | ||
Sex:Park | 3 | 0.3776 | 0.10285 | 2.0100 | 0.018 | ||
Soil:Park | 3 | 0.2499 | 0.06808 | 1.3305 | 0.148 | ||
Residual | 34 | 2.1290 | 0.57992 | ||||
Total | 46 | 3.6712 | 1.00000 | ||||
Control/exposed | Cricket type | 1 | 0.2875 | 0.06321 | 3.4415 | 0.007 | |
Residual | 51 | 4.2606 | 0.93679 | ||||
Total | 52 | 4.5481 | 1.00000 | ||||
Eukaryote | Only exposed | Sex | 1 | 0.4955 | 0.04658 | 2.5991 | 0.050 |
Soil | 1 | 3.2450 | 0.30505 | 17.0200 | 0.001 | ||
Park | 3 | 0.9470 | 0.08902 | 1.6557 | 0.083 | ||
Sex:Soil | 1 | 0.3615 | 0.03399 | 1.8963 | 0.123 | ||
Sex:Park | 3 | 0.6034 | 0.05672 | 1.0549 | 0.381 | ||
Soil:Park | 3 | 0.7908 | 0.07434 | 1.3826 | 0.175 | ||
Residual | 22 | 4.1945 | 0.39430 | ||||
Total | 34 | 10.6378 | 1.00000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, D.; Kelly, C.D.; Lazar, C.S. Environmental and Host Characteristics Shape the Gut Microbiota of the Sand Field Cricket, Gryllus firmus. Appl. Microbiol. 2024, 4, 1534-1548. https://doi.org/10.3390/applmicrobiol4040105
Patel D, Kelly CD, Lazar CS. Environmental and Host Characteristics Shape the Gut Microbiota of the Sand Field Cricket, Gryllus firmus. Applied Microbiology. 2024; 4(4):1534-1548. https://doi.org/10.3390/applmicrobiol4040105
Chicago/Turabian StylePatel, Divya, Clint D. Kelly, and Cassandre Sara Lazar. 2024. "Environmental and Host Characteristics Shape the Gut Microbiota of the Sand Field Cricket, Gryllus firmus" Applied Microbiology 4, no. 4: 1534-1548. https://doi.org/10.3390/applmicrobiol4040105
APA StylePatel, D., Kelly, C. D., & Lazar, C. S. (2024). Environmental and Host Characteristics Shape the Gut Microbiota of the Sand Field Cricket, Gryllus firmus. Applied Microbiology, 4(4), 1534-1548. https://doi.org/10.3390/applmicrobiol4040105