Salmonella: Role in Internal and External Environments and Potential as a Therapeutic Tool
Abstract
:1. Introduction
2. Emerging Salmonella Variants
3. Salmonella in the External Environment
4. Salmonella Biofilm in Body Systems (Internal)
5. Salmonella Combatting Non-Infectious Diseases Including Cancer
5.1. Drug with a Pro-Drug Activating Enzyme
5.2. Induction of Cell Death
5.3. Post-Translational Gene Silencing
6. Salmonella as an Anti-Viral
7. Future Developments
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banerji, S.; Simon, S.; Tille, A.; Fruth, A.; Flieger, A. Genome-Based Salmonella Serotyping as the New Gold Standard. Sci. Rep. 2020, 10, 4333. [Google Scholar] [CrossRef] [PubMed]
- Petrin, S.; Wijnands, L.; Benincà, E.; Mughini-Gras, L.; Delfgou-van Asch, E.H.M.; Villa, L.; Orsini, M.; Losasso, C.; Olsen, J.E.; Barco, L. Assessing Phenotypic Virulence of Salmonella Enterica across Serovars and Sources. Front. Microbiol. 2023, 14, 1184387. [Google Scholar] [CrossRef] [PubMed]
- Chattaway, M.A.; Dallman, T.J.; Larkin, L.; Nair, S.; McCormick, J.; Mikhail, A.; Hartman, H.; Godbole, G.; Powell, D.; Day, M.; et al. The Transformation of Reference Microbiology Methods and Surveillance for Salmonella with the Use of Whole Genome Sequencing in England and Wales. Front. Public Health 2019, 7, 317. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, G.M.; Morin, P.M. Salmonella Serotyping Using Whole Genome Sequencing. Front. Microbiol. 2018, 9, 2993. [Google Scholar] [CrossRef]
- Bao, D.; Chen, L.; Shen, W.; Xu, X.; Zhu, L.; Wang, Y.; Wu, Y.; He, X.; Zhu, F.; Li, H. Genomic epidemiology of ceftriaxone-resistant non-typhoidal Salmonella enterica strain in China. BMC Genom. 2024, 25, 974. [Google Scholar] [CrossRef]
- Davies, N.; Jørgensen, F.; Willis, C.; McLauchlin, J.; Chattaway, M.A. Whole genome sequencing reveals antimicrobial resistance determinants (AMR genes) of Salmonella enterica recovered from raw chicken and ready-to-eat leaves imported into England between 2014 and 2019. J. Appl. Microbiol. 2022, 133, 2569–2582. [Google Scholar] [CrossRef]
- Stevens, E.L.; Carleton, H.A.; Beal, J.; Tillman, G.E.; Lindsey, R.L.; Lauer, A.C.; Pightling, A.; Jarvis, K.G.; Ottesen, A.; Ramachandran, P.; et al. Use of Whole Genome Sequencing by the Federal Interagency Collaboration for Genomics for Food and Feed Safety in the United States. J. Food Prot. 2022, 85, 755–772. [Google Scholar] [CrossRef]
- Casimiro-Soriguer, C.S.; Pérez-Florido, J.; Robles, E.A.; Lara, M.; Aguado, A.; Rodríguez Iglesias, M.A.; Lepe, J.A.; García, F.; Pérez-Alegre, M.; Andújar, E.; et al. The integrated genomic surveillance system of Andalusia (SIEGA) provides a One Health regional resource connected with the clinic. Sci. Rep. 2024, 14, 19200. [Google Scholar] [CrossRef]
- Kariuki, S.; Revathi, G.; Kariuki, N.; Kiiru, J.; Mwituria, J.; Muyodi, J.; Githinji, J.W.; Kagendo, D.; Munyalo, A.; Hart, C.A. Invasive Multidrug-Resistant Non-Typhoidal Salmonella Infections in Africa: Zoonotic or Anthroponotic Transmission? J. Med. Microbiol. 2006, 55, 585–591. [Google Scholar] [CrossRef]
- Gal-Mor, O.; Boyle, E.C.; Grassl, G.A. Same Species, Different Diseases: How and Why Typhoidal and Non-Typhoidal Salmonella Enterica Serovars Differ. Front. Microbiol. 2014, 5, 391. [Google Scholar] [CrossRef]
- Thiennimitr, P.; Winter, S.E.; Bäumler, A.J. Salmonella, the host and its microbiota. Curr. Opin. Microbiol. 2012, 15, 108–114. [Google Scholar] [CrossRef] [PubMed]
- WHO Bacterial Priority Pathogens List, 2024: Bacteria Pathogens of Public Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; World Health Organisation: Geneva, Switzerland, 2024.
- WHO Global Research Agenda for Antimicrobial Resistance in Human Health; World Health Organisation: Geneva, Switzerland, 2023.
- Van Puyvelde, S.; de Block, T.; Sridhar, S.; Bawn, M.; Kingsley, R.A.; Ingelbeen, B.; Beale, M.A.; Barbé, B.; Jeon, H.J.; Mbuyi-Kalonji, L.; et al. A genomic appraisal of invasive Salmonella Typhimurium and associated antibiotic resistance in sub-Saharan Africa. Nat. Commun. 2023, 14, 6392. [Google Scholar] [CrossRef] [PubMed]
- Uche, I.V.; MacLennan, C.A.; Saul, A. A Systematic Review of the Incidence, Risk Factors and Case Fatality Rates of Invasive Non-typhoidal Salmonella (INTS) Disease in Africa (1966 to 2014). PLoS. Negl. Trop Dis. 2017, 11, e0005118. [Google Scholar] [CrossRef] [PubMed]
- Feasey, N.A.; Dougan, G.; Kingsley, R.A.; Heyderman, R.S.; Gordon, M.A. Invasive Non-Typhoidal Salmonella Disease: An Emerging and Neglected Tropical Disease in Africa. Lancet 2012, 379, 2489–2499. [Google Scholar] [CrossRef]
- Kingsley, R.A.; Msefula, C.L.; Thomson, N.R.; Kariuki, S.; Holt, K.E.; Gordon, M.A.; Harris, D.; Clarke, L.; Whitehead, S.; Sangal, V. Epidemic Multiple Drug Resistant Salmonella Typhimurium Causing Invasive Disease in Sub-Saharan Africa Have a Distinct Genotype. Genome Res. 2009, 19, 2279–2287. [Google Scholar] [CrossRef]
- Reddy, E.A.; Shaw, A.V.; Crump, J.A. Community-Acquired Bloodstream Infections in Africa: A Systematic Review and Meta-Analysis. Lancet Infect. Dis. 2010, 10, 417–432. [Google Scholar] [CrossRef]
- Brent, A.J.; Oundo, J.O.; Mwangi, I.; Ochola, L.; Lowe, B.; Berkley, J.A. Salmonella Bacteremia in Kenyan Children. Pediatr. Infect. Dis. J. 2006, 25, 230–236. [Google Scholar] [CrossRef]
- Lyamuya, M.; Nadjm, B.; Mtove, G.; Reyburn, H.; Morpeth, S.C.; Shao, J.F.; Saganda, W.; Mwako, M.; Morrissey, A.B.; Amos, B. Contrasting Epidemiology of Salmonella Typhi and Non-Typhi Salmonella Bloodstream Infections at Two Sites in Northern Tanzania. Int. J. Infect. Dis. 2008, 12, S23. [Google Scholar] [CrossRef]
- Smith, A.M.; Mthanti, M.A.; Haumann, C.; Tyalisi, N.; Boon, G.P.G.; Sooka, A.; Keddy, K.H. Nosocomial Outbreak of Salmonella Enterica Serovar Typhimurium Primarily Affecting a Pediatric Ward in South Africa in 2012. J. Clin. Microbiol. 2014, 52, 627–631. [Google Scholar] [CrossRef]
- Galán-Relaño, Á.; Valero Díaz, A.; Huerta Lorenzo, B.; Gómez-Gascón, L.; Mena Rodríguez, M.Á.; Carrasco Jiménez, E.; Pérez Rodríguez, F.; Astorga Márquez, R.J. Salmonella and Salmonellosis: An Update on Public Health Implications and Control Strategies. Animals 2023, 13, 3666. [Google Scholar] [CrossRef]
- Qin, X.; Yang, M.; Cai, H.; Liu, Y.; Gorris, L.; Aslam, M.Z.; Jia, K.; Sun, T.; Wang, X.; Dong, Q. Antibiotic Resistance of Salmonella Typhimurium Monophasic Variant 1,4,[5],12:i:-in China: A Systematic Review and Meta-Analysis. Antibiotics 2022, 11, 532. [Google Scholar] [CrossRef] [PubMed]
- Espunyes, J.; Illera, L.; Dias-Alves, A.; Lobato, L.; Ribas, M.P.; Manzanares, A.; Ayats, T.; Marco, I.; Cerdà-Cuéllar, M. Eurasian griffon vultures carry widespread antimicrobial resistant Salmonella and Campylobacter of public health concern. Sci. Total Environ. 2022, 844, 157189. [Google Scholar] [CrossRef] [PubMed]
- Gorski, L.; Liang, A.S.; Walker, S.; Carychao, D.; Aviles Noriega, A.; Mandrell, R.E.; Cooley, M.B. Salmonella enterica Serovar Diversity, Distribution, and Prevalence in Public-Access Waters from a Central California Coastal Leafy Green-Growing Region from 2011 to 2016. Appl. Environ. Microbiol. 2022, 88, e0183421. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.Y.; Zhang, L.; Yang, J.T.; Wei, H.J.; Zhang, Y.H.; Wang, J.Y.; Liu, W.Z.; Jiang, H.X. Diversity of evolution in MDR monophasic S. Typhimurium among food animals and food products in Southern China from 2011 to 2018. Int. J. Food Microbiol. 2024, 412, 110572. [Google Scholar] [CrossRef]
- Plumb, I.D.; Brown, A.C.; Stokes, E.K.; Chen, J.C.; Carleton, H.; Tolar, B.; Sundararaman, P.; Saupe, A.; Payne, D.C.; Shah, H.J.; et al. Increased Multidrug-Resistant Salmonella enterica I Serotype 4,[5],12:i:- Infections Associated with Pork, United States, 2009-2018. Emerg. Infect. Dis. 2023, 29, 314–322. [Google Scholar] [CrossRef]
- Egan, D.A.; Naughton, V.; Dooley, J.S.; Naughton, P.J. Detection of Salmonella Enterica Serovar Rissen in Slaughter Pigs in Northern Ireland. AiM 2017, 7, 513–522. [Google Scholar] [CrossRef]
- Zhou, A.; Li, J.; Xu, Z.; Ni, J.; Guo, J.; Yao, Y.-F.; Wu, W. Whole-Genome Comparative and Pathogenicity Analysis of Salmonella Enterica Subsp. Enterica Serovar Rissen. G3: Genes Genomes Genet. 2020, 10, 2159–2170. [Google Scholar] [CrossRef]
- EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control). The European Union One Health 2021 Zoonoses Report. EFSA J. 2022, 20, e07666. [Google Scholar] [CrossRef]
- Prasertsee, T.; Chuammitri, P.; Deeudom, M.; Chokesajjawatee, N.; Santiyanont, P.; Tadee, P.; Nuangmek, A.; Tadee, P.; Sheppard, S.K.; Pascoe, B.; et al. Core genome sequence analysis to characterize Salmonella enterica serovar Rissen ST469 from a swine production chain. Int. J. Food Microbiol. 2019, 304, 68–74. [Google Scholar] [CrossRef]
- Elbediwi, M.; Shi, D.; Biswas, S.; Xu, X.; Yue, M. Changing patterns of Salmonella enterica serovar Rissen from humans, food animals, and animal-derived foods in China, 1995–2019. Front. Microbiol. 2021, 12, 702909. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Xu, H.; Chu, C.; Wang, J.; Jiao, X.; Li, Q. Whole-Genome Sequencing Analysis Reveals Pig as the Main Reservoir for Persistent Evolution of Salmonella Enterica Serovar Rissen Causing Human Salmonellosis. Food Res. Int. 2022, 154, 111007. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cheng, M.; Chen, C.-C.; Chang, C.-Y.; Tsai, Y.-C.; Yang, J.-M.; Wu, T.; Huang, C.-H.; Hung, C.-F. Salmonella Immunotherapy Engineered with Highly Efficient Tumor Antigen Coating Establishes Antigen-Specific CD8+ T Cell Immunity and Increases in Antitumor Efficacy with Type I Interferon Combination Therapy. OncoImmunology 2023, 13, 2298444. [Google Scholar] [CrossRef] [PubMed]
- Silveira, L.; Pinto, M.; Isidro, J.; Pista, Â.; Themudo, P.; Vieira, L.; Machado, J.; Gomes, J.P. Multidrug-Resistant Salmonella Enterica Serovar Rissen Clusters Detected in Azores Archipelago, Portugal. Int. J. Genom. 2019, 2019, 1860275. [Google Scholar] [CrossRef] [PubMed]
- Robinson, E.J.; Gregory, J.; Mulvenna, V.; Segal, Y.; Sullivan, S.G. Effect of Temperature and Rainfall on Sporadic Salmonellosis Notifications in Melbourne, Australia 2000–2019: A Time-Series Analysis. Foodborne Pathog. Dis. 2022, 19, 341–348. [Google Scholar] [CrossRef]
- Brandl, M.T.; Ivanek, R.; Allende, A.; Munther, D.S. Predictive Population Dynamics of Escherichia Coli O157:H7 and Salmonella Enterica on Plants: A Mechanistic Mathematical Model Based on Weather Parameters and Bacterial State. Appl. Envrion. Microbiol. 2023, 89, e00700-23. [Google Scholar] [CrossRef]
- Magossi, G.; Bai, J.; Cernicchiaro, N.; Jones, C.; Porter, E.; Trinetta, V. Seasonal Presence of Salmonella Spp., Salmonella Typhimurium and Its Monophasic Variant Serotype I 4, [5],12:I:-, In Selected United States Swine Feed Mills. Foodborne Pathog. Dis. 2019, 16, 276–281. [Google Scholar] [CrossRef]
- Akil, L.; Ahmad, H.A.; Reddy, R.S. Effects of climate change on Salmonella infections. Foodborne Pathog. Dis. 2014, 11, 974–980. [Google Scholar] [CrossRef]
- Simko, I.; Zhou, Y.; Brandl, M.T. Downy Mildew Disease Promotes the Colonization of Romaine Lettuce by Escherichia Coli O157:H7 and Salmonella Enterica. BMC Microbiol 2015, 15, 19. [Google Scholar] [CrossRef]
- Zwe, Y.H.; Ten, M.M.Z.; Pang, X.; Wong, C.H.; Li, D. Differential Survivability of Two Genetically Similar Salmonella Thompson Strains on Pre-Harvest Sweet Basil (Ocimum Basilicum) Leaves. Front. Microbiol. 2021, 12, 740983. [Google Scholar] [CrossRef]
- Anikeeva, O.; Hansen, A.; Varghese, B.; Borg, M.; Zhang, Y.; Xiang, J.; Bi, P. The impact of increasing temperatures due to climate change on infectious diseases. BMJ 2024, 387, e079343. [Google Scholar] [CrossRef]
- Billah, M.M.; Raham, M.S. Salmonella in the environment: A review on ecology, antimicrobial resistance, seafood contaminations, and human health implications. J. Hazard. Mater. Adv. 2024, 13, 100407. [Google Scholar] [CrossRef]
- Dietrich, J.; Hammerl, J.A.; Johne, A.; Kappenstein, O.; Loeffler, C.; Nöckler, K.; Rosner, B.; Spielmeyer, A.; Szabo, I.; Richter, M.H. Impact of climate change on foodborne infections and intoxications. J. Health Monit. 2023, 8 (Suppl S3), 78–92. [Google Scholar] [CrossRef] [PubMed]
- Black, Z.; Balta, I.; Black, L.; Naughton, P.J.; Dooley, J.S.G.; Corcionivoschi, N. The Fate of Foodborne Pathogens in Manure Treated Soil. Front. Microbiol. 2021, 12, 781357. [Google Scholar] [CrossRef]
- Kowalska, B. Fresh Vegetables and Fruit as a Source of Salmonella Bacteria. Ann. Agric. Envrion. Med. 2023, 30, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Musa, L.; Toppi, V.; Stefanetti, V.; Spata, N.; Rapi, M.C.; Grilli, G.; Addis, M.F.; di Giacinto, G.; Franciosini, M.P.; Casagrande Proietti, P. High Biofilm-Forming Multidrug-Resistant Salmonella Infantis Strains from the Poultry Production Chain. Antibiotics 2024, 13, 595. [Google Scholar] [CrossRef]
- Ćwiek, K.; Korzekwa, K.; Tabiś, A.; Bania, J.; Bugla-Płoskońska, G.; Wieliczko, A. Antimicrobial Resistance and Biofilm Formation Capacity of Salmonella enterica Serovar Enteritidis Strains Isolated from Poultry and Humans in Poland. Pathogens 2020, 9, 643. [Google Scholar] [CrossRef]
- Harrell, J.E.; Hahn, M.M.; D’Souza, S.J.; Vasicek, E.M.; Sandala, J.L.; Gunn, J.S.; McLachlan, J.B. Salmonella Biofilm Formation, Chronic Infection, and Immunity Within the Intestine and Hepatobiliary Tract. Front. Cell. Infect. Microbiol. 2021, 10, 624622. [Google Scholar] [CrossRef]
- Jorge, P.; Magalhães, A.P.; Grainha, T.; Alves, D.; Sousa, A.M.; Lopes, S.P.; Pereira, M.O. Antimicrobial resistance three ways: Healthcare crisis, major concepts and the relevance of biofilms. FEMS Microbiol. Ecol. 2019, 95, fiz115. [Google Scholar] [CrossRef]
- Vestby, L.K.; Grønseth, T.; Simm, R.; Nesse, L.L. Bacterial Biofilm and its Role in the Pathogenesis of Disease. Antibiotics 2020, 9, 59. [Google Scholar] [CrossRef]
- Fan, S.; Headey, D.; Rue, C.; Thomas, T. Food Systems for Human and Planetary Health: Economic Perspectives and Challenges. Annu. Rev. Resour. Econ. 2021, 13, 131–156. [Google Scholar] [CrossRef]
- Carrasco, E.; Morales-Rueda, A.; García-Gimeno, R.M. Cross-Contamination and Recontamination by Salmonella in Foods: A Review. Food Res. Int. 2012, 45, 545–556. [Google Scholar] [CrossRef]
- Byun, K.-H.; Han, S.H.; Yoon, J.; Park, S.H.; Ha, S.-D. Efficacy of Chlorine-Based Disinfectants (Sodium Hypochlorite and Chlorine Dioxide) on Salmonella Enteritidis Planktonic Cells, Biofilms on Food Contact Surfaces and Chicken Skin. Food Control 2021, 123, 107838. [Google Scholar] [CrossRef]
- Rossi, C.; Chaves-López, C.; Možina, S.S.; di Mattia, C.; Scuota, S.; Luzzi, I.; Jenič, T.; Paparella, A.; Serio, A. Salmonella Enterica Adhesion: Effect of Cinnamomum Zeylanicum Essential Oil on Lettuce. LWT 2019, 111, 16–22. [Google Scholar] [CrossRef]
- Seo, H.-J.; Kang, S.-S. Inhibitory Effect of Bacteriocin Produced by Pediococcus acidilactici on the Biofilm Formation of Salmonella Typhimurium. Food Control 2020, 117, 107361. [Google Scholar] [CrossRef]
- Lamas, A.; Fernandez-No, I.C.; Miranda, J.M.; Vázquez, B.; Cepeda, A.; Franco, C.M. Biofilm Formation and Morphotypes of Salmonella Enterica Subsp. Arizonae Differs from Those of Other Salmonella Enterica Subspecies in Isolates from Poultry Houses. J. Food Prot. 2016, 79, 1127–1134. [Google Scholar] [CrossRef]
- Fuentes, D.N.; Calderón, P.F.; Acuña, L.G.; Rodas, P.I.; Paredes-Sabja, D.; Fuentes, J.A.; Gil, F.; Calderón, I.L. Motility Modulation by the Small Non-Coding RNA SroC In SalmonellaTyphimurium. FEMS Microbiol. Lett. 2015, 362, fnv135. [Google Scholar] [CrossRef]
- Ryan, D.; Mukherjee, M.; Suar, M. The Expanding Targetome of Small RNAs in Salmonella Typhimurium. Biochimie 2017, 137, 69–77. [Google Scholar] [CrossRef]
- Lamas, A.; Paz-Mendez, A.M.; Regal, P.; Vazquez, B.; Miranda, J.M.; Cepeda, A.; Franco, C.M. Food Preservatives Influence Biofilm Formation, Gene Expression and Small RNAs in Salmonella Enterica. LWT 2018, 97, 1–8. [Google Scholar] [CrossRef]
- Steenackers, H.; Hermans, K.; Vanderleyden, J.; de Keersmaecker, S.C.J. Salmonella Biofilms: An Overview on Occurrence, Structure, Regulation and Eradication. Food Res. Int. 2012, 45, 502–531. [Google Scholar] [CrossRef]
- Gerstel, U.; Römling, U. The CsgD Promoter, a Control Unit for Biofilm Formation in Salmonella Typhimurium. Res. Microbiol. 2003, 154, 659–667. [Google Scholar] [CrossRef]
- Ahmad, I.; Cimdins, A.; Beske, T.; Römling, U. Detailed Analysis of C-Di-GMP Mediated Regulation of CsgD Expression in Salmonella Typhimurium. BMC Microbiol. 2017, 17, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sokaribo, A.S.; Hansen, E.G.; McCarthy, M.; Desin, T.S.; Waldner, L.L.; MacKenzie, K.D.; Mutwiri, G.; Herman, N.J.; Herman, D.J.; Wang, Y. Metabolic Activation of CsgD in the Regulation of Salmonella Biofilms. Microorganisms 2020, 8, 964. [Google Scholar] [CrossRef] [PubMed]
- Monte, J.; Abreu, A.; Borges, A.; Simões, L.; Simões, M. Antimicrobial Activity of Selected Phytochemicals against Escherichia coli and Staphylococcus aureus and Their Biofilms. Pathogens 2014, 3, 473–498. [Google Scholar] [CrossRef]
- Seixas, R.; Machado, J.; Bernardo, F.; Vilela, C.; Oliveira, M. Biofilm Formation by Salmonella Enterica Serovar 1,4,[5],12:I:- Portuguese Isolates: A Phenotypic, Genotypic, and Socio-Geographic Analysis. Curr. Microbiol. 2014, 68, 670–677. [Google Scholar] [CrossRef]
- Seixas, R.; Santos, T.R.; Machado, J.; Tavares, L.; Bernardo, F.; Semedo-Lemsaddek, T.; Oliveira, M. Phenotypic and Molecular Characterization Of Salmonella1,4,[5],12:I:- R-Type ASSuT Isolates from Humans, Animals, and Environment in Portugal, 2006–2011. Foodborne Pathog. Dis. 2016, 13, 633–641. [Google Scholar] [CrossRef]
- Dwyer, B.E.; Newton, K.L.; Kisiela, D.; Sokurenko, E.V.; Clegg, S. Single Nucleotide Polypmorphisms of FimH Associated with Adherence and Biofilm Formation by Serovars of Salmonella Enterica. Microbiology 2011, 157, 3162–3171. [Google Scholar] [CrossRef]
- Latasa, C.; Roux, A.; Toledo-Arana, A.; Ghigo, J.; Gamazo, C.; Penadés, J.R.; Lasa, I. BapA, a Large Secreted Protein Required for Biofilm Formation and Host Colonization of Salmonella Enterica Serovar Enteritidis. Mol. Microbiol. 2005, 58, 1322–1339. [Google Scholar] [CrossRef]
- Guttula, D.; Yao, M.; Baker, K.; Yang, L.; Goult, B.T.; Doyle, P.S.; Yan, J. Calcium-Mediated Protein Folding and Stabilization of Salmonella Biofilm-Associated Protein A. J. Mol. Biol. 2019, 431, 433–443. [Google Scholar] [CrossRef]
- Pradhan, J.; Pradhan, D.; Sahu, J.K.; Mishra, S.; Mallick, S.; Das, S.; Negi, V.D. A Novel RspA Gene Regulates Biofilm Formation and Virulence of Salmonella Typhimurium. Microb. Pathog. 2023, 185, 106432. [Google Scholar] [CrossRef]
- Von Hertwig, A.M.; Prestes, F.S.; Nascimento, M.S. Biofilm Formation and Resistance to Sanitizers by Salmonella Spp. Isolated from the Peanut Supply Chain. Food Res. Int. 2022, 152, 110882. [Google Scholar] [CrossRef]
- Beuchat, L.R.; Komitopoulou, E.; Beckers, H.; Betta, R.P.; Bourdichon, F.; Fanning, S.; Joosten, H.M.; Ter Kuile, B.H. Low-water activity foods: Increased concern as vehicles of foodborne pathogens. J. Food Prot. 2013, 76, 150–172. [Google Scholar] [CrossRef] [PubMed]
- Finn, S.; Condell, O.; McClure, P.; Amézquita, A.; Fanning, S. Mechanisms of Survival, Responses and Sources of Salmonella in Low-Moisture Environments. Front. Microbiol. 2013, 4, 331. [Google Scholar] [CrossRef] [PubMed]
- Podolak, R.; Enache, E.; Stone, W.; Black, D.G.; Elliott, P.H. Sources and Risk Factors for Contamination, Survival, Persistence, and Heat Resistance of Salmonella in Low-Moisture Foods. J. Food Prot. 2010, 73, 1919–1936. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Wei, C.-I. Biofilm Formation by Multidrug-Resistant Salmonella Enterica Serotype Typhimurium Phage Type DT104 and Other Pathogens. J. Food Prot. 2007, 70, 22–29. [Google Scholar] [CrossRef]
- Solano, C.; García, B.; Valle, J.; Berasain, C.; Ghigo, J.; Gamazo, C.; Lasa, I. Genetic Analysis of Salmonella Enteritidis Biofilm Formation: Critical Role of Cellulose. Mol. Microbiol. 2002, 43, 793–808. [Google Scholar] [CrossRef]
- Lee, S.; Chen, J. Genes of Salmonella Enterica Serovar Enteritidis Involved in Biofilm Formation. Appl. Microbiol. 2024, 4, 771–781. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y. Genetic Determinants of Salmonella Enterica Critical for Attachment and Biofilm Formation. Int. J. Food Microbiol. 2020, 320, 108524. [Google Scholar] [CrossRef]
- Eran, Z.; Akçelik, M.; Yazıcı, B.C.; Özcengiz, G.; Akçelik, N. Regulation of Biofilm Formation by MarT in Salmonella Typhimurium. Mol. Biol. Rep. 2020, 47, 5041–5050. [Google Scholar] [CrossRef]
- Hahn, M.M.; Gunn, J.S. Salmonella Extracellular Polymeric Substances Modulate Innate Phagocyte Activity and Enhance Tolerance of Biofilm-Associated Bacteria to Oxidative Stress. Microorganisms 2020, 8, 253. [Google Scholar] [CrossRef]
- Simm, R.; Ahmad, I.; Rhen, M.; Le Guyon, S.; Römling, U. Regulation of Biofilm Formation in Salmonella Enterica Serovar Typhimurium. Future Microbiol. 2014, 9, 1261–1282. [Google Scholar] [CrossRef]
- Gonzalez-Escobedo, G.; Marshall, J.M.; Gunn, J.S. Chronic and Acute Infection of the Gall Bladder by Salmonella Typhi: Understanding the Carrier State. Nat. Rev. Microbiol. 2011, 9, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Gunn, J.S.; Marshall, J.M.; Baker, S.; Dongol, S.; Charles, R.C.; Ryan, E.T. Salmonella Chronic Carriage: Epidemiology, Diagnosis, and Gallbladder Persistence. Trends Microbiol. 2014, 22, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.M.; Flechtner, A.D.; La Perle, K.M.; Gunn, J.S. Visualization of Extracellular Matrix Components within Sectioned Salmonella Biofilms on the Surface of Human Gallstones. PLoS ONE 2014, 9, e89243. [Google Scholar] [CrossRef] [PubMed]
- Crawford, R.W.; Rosales-Reyes, R.; Ramírez-Aguilar, M.d.l.L.; Chapa-Azuela, O.; Alpuche-Aranda, C.; Gunn, J.S. Gallstones Play a Significant Role in Salmonella Spp. Gallbladder Colonization and Carriage. Proc. Natl. Acad. Sci. USA 2010, 107, 4353–4358. [Google Scholar] [CrossRef]
- Crawford, R.W.; Reeve, K.E.; Gunn, J.S. Flagellated but Not Hyperfimbriated Salmonella Enterica Serovar Typhimurium Attaches to and Forms Biofilms on Cholesterol-Coated Surfaces. J. Bacteriol. 2010, 192, 2981–2990. [Google Scholar] [CrossRef]
- Gonzalez-Escobedo, G.; Gunn, J.S. Identification of Salmonella Enterica Serovar Typhimurium Genes Regulated during Biofilm Formation on Cholesterol Gallstone Surfaces. Infect. Immun. 2013, 81, 3770–3780. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Liang, Y.-H.; Chen, C.-L.; Chiu, C.-H. Characterization of Salmonella Resistance to Bile during Biofilm Formation. J. Microbiol. Immunol. Infect. 2020, 53, 518–524. [Google Scholar] [CrossRef]
- González, J.F.; Hahn, M.M.; Gunn, J.S. Chronic biofilm-based infections: Skewing of the immune response. Pathog. Dis. 2018, 76, fty023. [Google Scholar] [CrossRef]
- Ehrhardt, K.; Becker, A.-L.; Grassl, G.G. Determinants of persistent Salmonella infections. Curr. Opin. Immunol. 2023, 82, 102306. [Google Scholar] [CrossRef]
- Desai, S.K.; Zhou, Y.; Dilawari, R.; Routh, A.L.; Popov, V.; Kenney, L.J. RpoS Activates Formation of Salmonella Typhi Biofilms and Drives Persistence in the Gall Bladder. bioRxiv 2024. [Google Scholar] [CrossRef]
- Di Domenico, E.G.; Cavallo, I.; Pontone, M.; Toma, L.; Ensoli, F. Biofilm Producing Salmonella Typhi: Chronic Colonization and Development of Gallbladder Cancer. Int. J. Mol. Sci. 2017, 18, 1887. [Google Scholar] [CrossRef] [PubMed]
- Scanu, T.; Spaapen, R.M.; Bakker, J.M.; Pratap, C.B.; Wu, L.; Hofland, I.; Broeks, A.; Shukla, V.K.; Kumar, M.; Janssen, H. Salmonella Manipulation of Host Signaling Pathways Provokes Cellular Transformation Associated with Gallbladder Carcinoma. Cell Host Microbe 2015, 17, 763–774. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, S.A.; Sikorski, M.J.; Levine, M.M. Chronic Salmonella Typhi Carriage at Sites Other than the Gallbladder. PLoS. Negl. Trop Dis. 2023, 17, e0011168. [Google Scholar] [CrossRef] [PubMed]
- Solano, C.; Sesma, B.; Alvarez, M.; Urdaneta, E.; Garcia-Ros, D.; Calvo, A.; Gamazo, C. Virulent Strains of Salmonella Enteritidis Disrupt the Epithelial Barrier of Caco-2 and HEp-2 Cells. Arch. Microbiol. 2001, 175, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Ledeboer, N.A.; Jones, B.D. Exopolysaccharide Sugars Contribute to Biofilm Formation by Salmonella Enterica Serovar Typhimurium on HEp-2 Cells and Chicken Intestinal Epithelium. J. Bacteriol. 2005, 187, 3214–3226. [Google Scholar] [CrossRef]
- Ledeboer, N.A.; Frye, J.G.; McClelland, M.; Jones, B.D. Salmonella Enterica Serovar Typhimurium Requires the Lpf, Pef, and Tafi Fimbriae for Biofilm Formation on HEp-2 Tissue Culture Cells and Chicken Intestinal Epithelium. Infect. Immun. 2006, 74, 3156–3169. [Google Scholar] [CrossRef]
- Lamprokostopoulou, A.; Monteiro, C.; Rhen, M.; Römling, U. Cyclic Di-GMP Signalling Controls Virulence Properties of Salmonella enterica serovar Typhimurium at the Mucosal Lining. Environ. Microbiol. 2010, 12, 40–53. [Google Scholar] [CrossRef]
- Lamprokostopoulou, A.; Römling, U. Yin and Yang of Biofilm Formation and Cyclic Di-GMP Signaling of the Gastrointestinal Pathogen Salmonella enterica Serovar Typhimurium. J. Innate Immun. 2022, 14, 275–292. [Google Scholar] [CrossRef]
- Lam, L.H.; Monack, D.M. Intraspecies Competition for Niches in the Distal Gut Dictate Transmission during Persistent Salmonella Infection. PLoS. Pathog. 2014, 10, e1004527. [Google Scholar] [CrossRef]
- Desai, S.K.; Kenney, L.J. Switching lifestyles is an in vivo Adaptive Strategy of Bacterial Pathogens. Front. Cell. Infect. Microbiol. 2019, 9, 421. [Google Scholar] [CrossRef]
- Desai, S.K.; Padmanabhan, A.; Harshe, S.; Zaidel-Bar, R.; Kenney, L.J. Salmonella Biofilms Program Innate Immunity for Persistence in Caenorhabditis Elegans. Proc. Natl. Acad. Sci. USA 2019, 116, 12462–12467. [Google Scholar] [CrossRef] [PubMed]
- Marzel, A.; Desai, P.T.; Goren, A.; Schorr, Y.I.; Nissan, I.; Porwollik, S.; Valinsky, L.; McClelland, M.; Rahav, G.; Gal-Mor, O. Persistent Infections by Non typhoidal Salmonella in Humans: Epidemiology and Genetics. Clin. Infect. Dis. 2016, 62, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Barnhart, M.M.; Chapman, M.R. Curli Biogenesis and Function. Annu. Rev. Microbiol. 2006, 60, 131–147. [Google Scholar] [CrossRef] [PubMed]
- Tursi, S.A.; Tükel, Ç. Curli-Containing Enteric Biofilms Inside and Out: Matrix Composition, Immune Recognition, and Disease Implications. Microbiol. Mol. Biol. Rev. 2018, 82, 10–1128. [Google Scholar] [CrossRef]
- Kao, S.; Serfecz, J.; Sudhakar, A.; Likosky, K.; Romiyo, V.; Tursi, S.; Tükel, Ç.; Wilson, J.W. Salmonella Enterica serovar Typhimurium STM1266 Encodes a Regulator of Curli Biofilm Formation: : the brfS gene. FEMS Microbiol. Lett. 2023, 370, fnad012. [Google Scholar] [CrossRef]
- Miller, A.L.; Bessho, S.; Grando, K.; Tükel, Ç. Microbiome or Infections: Amyloid-Containing Biofilms as a Trigger for Complex Human Diseases. Front. Immunol. 2021, 12, 638867. [Google Scholar] [CrossRef]
- McAnearney, S.; McCall, D. Salmonella Osteomyelitis. Ulst. Med. J. 2015, 84, 171–172. [Google Scholar] [PubMed] [PubMed Central]
- Huang, Z.; Wang, C.; Shi, T.; Wu, B.; Chen, Y.; Li, W.; Fang, X.; Zhang, W. Salmonella Osteomyelitis in Adults: A Systematic Review. Orthop. Surg. 2021, 13, 1135–1140. [Google Scholar] [CrossRef]
- McLeod, N.; Lastinger, A.; Bryan, N.; Kieffer, T.; Wolfe, T. Salmonella Neck Abscess in a Diabetic. IDCases 2019, 17, e00541. [Google Scholar] [CrossRef]
- Tu, T.-Y.; Yeh, C.-Y.; Hung, Y.-M.; Chang, R.; Chen, H.-H.; Wei, J.C.-C. Association Between a History of Nontyphoidal Salmonella and the Risk of Systemic Lupus Erythematosus: A Population-Based, Case-Control Study. Front. Immunol. 2021, 12, 725996. [Google Scholar] [CrossRef]
- Hedrich, C.M.; Hofmann, S.R.; Pablik, J.; Morbach, H.; Girschick, H.J. Autoinflammatory Bone Disorders with Special Focus on Chronic Recurrent Multifocal Osteomyelitis (CRMO). Pediatr. Rheumatol. 2013, 11, 47. [Google Scholar] [CrossRef] [PubMed]
- Taddio, A.; Ferrara, G.; Insalaco, A.; Pardeo, M.; Gregori, M.; Finetti, M.; Pastore, S.; Tommasini, A.; Ventura, A.; Gattorno, M. Dealing with Chronic Non-Bacterial Osteomyelitis: A Practical Approach. Pediatr. Rheumatol. 2017, 15, 87. [Google Scholar] [CrossRef] [PubMed]
- El Hag, M.; Feng, Z.; Su, Y.; Wang, X.; Yassin, A.; Chen, S.; Peng, D.; Liu, X. Contribution of the CsgA and BcsA Genes to Salmonella Enterica Serovar Pullorum Biofilm Formation and Virulence. Avian Pathol. 2017, 46, 541–547. [Google Scholar] [CrossRef]
- Olubisose, E.T.; Ajayi, A.; Adeleye, A.I.; Smith, S.I. Molecular and Phenotypic Characterization of Efflux Pump and Biofilm in Multi-Drug Resistant Non-Typhoidal Salmonella Serovars Isolated from Food Animals and Handlers in Lagos Nigeria. One Health Outlook 2021, 3, 2. [Google Scholar] [CrossRef]
- Lin, I.; Van, T.; Smooker, P. Live-Attenuated Bacterial Vectors: Tools for Vaccine and Therapeutic Agent Delivery. Vaccines 2015, 3, 940–972. [Google Scholar] [CrossRef]
- Cheminay, C.; Hensel, M. Rational Design of Salmonella Recombinant Vaccines. Int. J. Med. Microbiol. 2008, 298, 87–98. [Google Scholar] [CrossRef]
- Lavelle, E.C.; Ward, R.W. Mucosal Vaccines—Fortifying the Frontiers. Nat. Rev. Immunol. 2022, 22, 236–250. [Google Scholar] [CrossRef]
- Kong, W.; Brovold, M.; Koeneman, B.A.; Clark-Curtiss, J.; Curtiss, R. Turning Self-Destructing Salmonella into a Universal DNA Vaccine Delivery Platform. Proc. Natl. Acad. Sci. USA 2012, 109, 19414–19419. [Google Scholar] [CrossRef]
- Chiu, T.-W.; Peng, C.-J.; Chen, M.-C.; Hsu, M.-H.; Liang, Y.-H.; Chiu, C.-H.; Fang, J.-M.; Lee, Y.C. Constructing Conjugate Vaccine against Salmonella Typhimurium Using Lipid-A Free Lipopolysaccharide. J. Biomed. Sci. 2020, 27, 89. [Google Scholar] [CrossRef]
- Shah, P.K.; Chyu, K.-Y.; Dimayuga, P.C.; Nilsson, J. Vaccine for Atherosclerosis. J. Am. Coll. Cardiol. 2014, 64, 2779–2791. [Google Scholar] [CrossRef]
- Yurina, V. Live Bacterial Vectors—A Promising DNA Vaccine Delivery System. Med. Sci. 2018, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Hauer, A.D.; van Puijvelde, G.H.M.; Peterse, N.; de Vos, P.; van Weel, V.; van Wanrooij, E.J.A.; Biessen, E.A.L.; Quax, P.H.A.; Niethammer, A.G.; Reisfeld, R.A. Vaccination Against VEGFR2 Attenuates Initiation and Progression of Atherosclerosis. ATVB 2007, 27, 2050–2057. [Google Scholar] [CrossRef]
- McCarthy, E.F. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop. J. 2006, 26, 154–158. [Google Scholar] [PubMed] [PubMed Central]
- Avogadri, F.; Martinoli, C.; Petrovska, L.; Chiodoni, C.; Transidico, P.; Bronte, V.; Longhi, R.; Colombo, M.P.; Dougan, G.; Rescigno, M. Cancer Immunotherapy Based on Killing of Salmonella-Infected Tumor Cells. Cancer Res. 2005, 65, 3920–3927. [Google Scholar] [CrossRef]
- Levine, P.; Gould-Suarez, M. Colorectal Cancer Screening Recommendations. JAMA 2016, 316, 1715. [Google Scholar] [CrossRef]
- Duijster, J.; Mughini-Gras, L.; Franz, E.; Neefjes, J. RF-298 Occupational Risk of Salmonellosis and Campylobacteriosis: A Nationwide Population-Based Registry study. Occup. Environ. Med. 2021, 78, A144–A145. [Google Scholar]
- Liang, K.; Tian, Z.; Chen, X.; Li, M.; Zhang, X.; Bian, X.; Ali, M.K.; Kong, Q. Attenuated Salmonella Typhimurium with Truncated LPS and Outer Membrane-Displayed RGD Peptide for Cancer Therapy. Biomed. Pharmacother. 2022, 155, 113682. [Google Scholar] [CrossRef]
- Aganja, R.P.; Sivasankar, C.; Senevirathne, A.; Lee, J.H. Salmonella as a Promising Curative Tool against Cancer. Pharmaceutics 2022, 14, 2100. [Google Scholar] [CrossRef]
- Van Elsland, D.M.; Duijster, J.W.; Zhang, J.; Stévenin, V.; Zhang, Y.; Zha, L.; Xia, Y.; Franz, E.; Sun, J.; Mughini-Gras, L. Repetitive Non-Typhoidal Salmonella Exposure Is an Environmental Risk Factor for Colon Cancer and Tumor Growth. Cell Rep. Med. 2022, 3, 100852. [Google Scholar] [CrossRef]
- Shanker, E.B.; Sun, J. Salmonella Infection Acts as an Environmental Risk Factor for Human Colon Cancer. Cell Insight 2023, 2, 100125. [Google Scholar] [CrossRef]
- Mi, Z.; Feng, Z.C.; Li, C.; Yang, X.; Ma, M.T.; Rong, P.F. Salmonella-Mediated Cancer Therapy: An Innovative Therapeutic Strategy. J. Cancer 2019, 10, 4765–4776. [Google Scholar] [CrossRef] [PubMed]
- Badie, F.; Ghandali, M.; Tabatabaei, S.A.; Safari, M.; Khorshidi, A.; Shayestehpour, M.; Mahjoubin-Tehran, M.; Morshedi, K.; Jalili, A.; Tajiknia, V.; et al. Use of Salmonella Bacteria in Cancer Therapy: Direct, Drug Delivery and Combination Approaches. Front. Oncol. 2021, 11, 624759. [Google Scholar] [CrossRef]
- Wang, D.; Wei, X.; Kalvakolanu, D.V.; Guo, B.; Zhang, L. Perspectives on Oncolytic Salmonella in Cancer Immunotherapy-A Promising Strategy. Front. Immunol. 2021, 12, 615930. [Google Scholar] [CrossRef] [PubMed]
- Felgner, S.; Kocijancic, D.; Pawar, V.; Weiss, S. Biomimetic Salmonella: A Next-Generation Therapeutic Vector? Trends Microbiol. 2016, 24, 850–852. [Google Scholar] [CrossRef] [PubMed]
- Felgner, S.; Kocijancic, D.; Frahm, M.; Curtiss, R.; Erhardt, M.; Weiss, S. OptimizingSalmonella Entericaserovar Typhimurium for Bacteria-Mediated Tumor Therapy. Gut Microbes 2016, 7, 171–177. [Google Scholar] [CrossRef]
- Felgner, S.; Kocijancic, D.; Frahm, M.; Heise, U.; Rohde, M.; Zimmermann, K.; Falk, C.; Erhardt, M.; Weiss, S. Engineered Salmonella Enterica Serovar Typhimurium Overcomes Limitations of Anti-Bacterial Immunity in Bacteria-Mediated Tumor Therapy. OncoImmunology 2018, 7, e1382791. [Google Scholar] [CrossRef]
- Wang, C.-Z.; Kazmierczak, R.A.; Eisenstark, A. Strains, Mechanism, and Perspective: Salmonella-Based Cancer Therapy. Int. J. Microbiol. 2016, 2016, 5678702. [Google Scholar] [CrossRef]
- Chang, W.W.; Lai, C.H.; Chen, M.C.; Liu, C.F.; Kuan, Y.D.; Lin, S.T.; Lee, C.H. Salmonella enhance chemosensitivity in tumor through connexin 43 upregulation. Int. J. Cancer 2013, 133, 1926–1935. [Google Scholar] [CrossRef]
- Lee, C.H.; Wu, C.L.; Shiau, A.L. Salmonella choleraesuis as an anticancer agent in a syngeneic model of orthotopic hepatocellular carcinoma. Int. J. Cancer 2008, 122, 930–935. [Google Scholar] [CrossRef]
- Broadway, K.M.; Denson, E.A.P.; Jensen, R.V.; Scharf, B.E. Rescuing Chemotaxis of the Anticancer Agent Salmonella Enterica Serovar Typhimurium VNP20009. J. Biotechnol. 2015, 211, 117–120. [Google Scholar] [CrossRef]
- Hoffman, R.M.; Zhao, M. Methods for Tumor Targeting with Salmonella Typhimurium A1-R. In Bacterial Therapy of Cancer: Methods and Protocols; Humana Press: New York, NY, USA, 2016; pp. 143–164. [Google Scholar] [CrossRef]
- Jia, L.-J.; Xu, H.-M.; Ma, D.-Y.; Hu, Q.-G.; Huang, X.-F.; Jiang, W.-H.; Li, S.-F.; Jia, K.-Z.; Huang, Q.-L.; Hua, Z.-C. Enhanced Therapeutic Effect by Combination of Tumor-Targeting Salmonella and Endostatin in Murine Melanoma Model. Cancer Biol. Ther. 2005, 4, 840–845. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, Y.; Nakamura, A.; Imai, T.; Murakami, T. Infection of Tumor Cells with Salmonella Typhimurium Mimics Immunogenic Cell Death and Elicits Tumor-Specific Immune Responses. PNAS Nexus 2023, 3, pgad484. [Google Scholar] [CrossRef] [PubMed]
- Pérez Jorge, G.; Gontijo, M.T.P.; Brocchi, M. Salmonella Enterica and Outer Membrane Vesicles Are Current and Future Options for Cancer Treatment. Front. Cell. Infect. Microbiol. 2023, 13, 1293351. [Google Scholar] [CrossRef] [PubMed]
- Pangilinan, C.R.; Lee, C.-H. Highlights of Immunomodulation in Salmonella-Based Cancer Therapy. Biomedicines 2021, 9, 1566. [Google Scholar] [CrossRef]
- Tan, W.; Duong, M.T.-Q.; Zuo, C.; Qin, Y.; Zhang, Y.; Guo, Y.; Hong, Y.; Zheng, J.H.; Min, J.-J. Targeting of Pancreatic Cancer Cells and Stromal Cells Using Engineered Oncolytic Salmonella Typhimurium. Mol. Ther. 2022, 30, 662–671. [Google Scholar] [CrossRef]
- Zheng, J.H.; Nguyen, V.H.; Jiang, S.-N.; Park, S.-H.; Tan, W.; Hong, S.H.; Shin, M.G.; Chung, I.-J.; Hong, Y.; Bom, H.-S. Two-Step Enhanced Cancer Immunotherapy with Engineered Salmonella Typhimurium Secreting Heterologous Flagellin. Sci. Transl. Med. 2017, 9, eaak9537. [Google Scholar] [CrossRef]
- Al-Saafeen, B.H.; Al-Sbiei, A.; Bashir, G.; Mohamed, Y.A.; Masad, R.J.; Fernandez-Cabezudo, M.J.; al-Ramadi, B.K. Attenuated Salmonella Potentiate PD-L1 Blockade Immunotherapy in a Preclinical Model of Colorectal Cancer. Front. Immunol. 2022, 13, 1017780. [Google Scholar] [CrossRef]
- Senevirathne, A.; Hajam, I.A. Exploring the Potential of Salmonella-Mediated Anti-Sense RCAS1 RNA Therapy in Combatting Aggressive Breast Cancer. Mol. Ther. Nucleic Acids 2024, 35, 102089. [Google Scholar] [CrossRef]
- Ruby, T.; McLaughlin, L.; Gopinath, S.; Monack, D. Salmonella’s Long-Term Relationship with Its Host. FEMS Microbiol. Rev. 2012, 36, 600–615. [Google Scholar] [CrossRef]
- Alfaqeer, N.; Wall, D. Enhancing the Natural Toxicity of Salmonella Typhimurium towards Tumours. Access Microbiol. 2020, 2, 349. [Google Scholar] [CrossRef]
- Leschner, S.; Weiss, S. Salmonella—Allies in the Fight against Cancer. J. Mol. Med. 2010, 88, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Leschner, S.; Westphal, K.; Dietrich, N.; Viegas, N.; Jablonska, J.; Lyszkiewicz, M.; Lienenklaus, S.; Falk, W.; Gekara, N.; Loessner, H. Tumor Invasion of Salmonella Enterica Serovar Typhimurium Is Accompanied by Strong Hemorrhage Promoted by TNF-α. PLoS ONE 2009, 4, e6692. [Google Scholar] [CrossRef] [PubMed]
- Roe, J.M.; Seely, K.; Bussard, C.J.; Eischen Martin, E.; Mouw, E.G.; Bayles, K.W.; Hollingsworth, M.A.; Brooks, A.E.; Dailey, K.M. Hacking the Immune Response to Solid Tumors: Harnessing the Anti-Cancer Capacities of Oncolytic Bacteria. Pharmaceutics 2023, 15, 2004. [Google Scholar] [CrossRef] [PubMed]
- Kocijancic, D.; Felgner, S.; Schauer, T.; Frahm, M.; Heise, U.; Zimmermann, K.; Erhardt, M.; Weiss, S. Local Application of Bacteria Improves Safety of Salmonella-Mediated Tumor Therapy and Retains Advantages of Systemic Infection. Oncotarget 2017, 8, 49988–50001. [Google Scholar] [CrossRef]
- Kocijancic, D.; Leschner, S.; Felgner, S.; Komoll, R.-M.; Frahm, M.; Pawar, V.; Weiss, S. Therapeutic Benefit of Salmonella Attributed to LPS and TNF-α Is Exhaustible and Dictated by Tumor Susceptibility. Oncotarget 2017, 8, 36492–36508. [Google Scholar] [CrossRef]
- Frahm, M.; Felgner, S.; Kocijancic, D.; Rohde, M.; Hensel, M.; Curtiss, R.; Erhardt, M.; Weiss, S. Efficiency of Conditionally Attenuated Salmonella Enterica Serovar Typhimurium in Bacterium-Mediated Tumor Therapy. mBio 2015, 6, 10–1128. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, W.; Toneri, M.; Zhang, N.; Kiyuna, T.; Murakami, T.; Nelson, S.D.; Dry, S.M.; Li, Y.; Li, S. Toxicology and Efficacy of Tumor-Targeting Salmonella Typhimurium A1-R Compared to VNP 20009 in a Syngeneic Mouse Tumor Model in Immunocompetent Mice. Oncotarget 2017, 8, 54616–54628. [Google Scholar] [CrossRef]
- Renteria-Flores, F.I.; García-Chagollán, M.; Jave-Suárez, L.F. Bactofection, Bacterial-Mediated Vaccination, and Cancer Therapy: Current Applications and Future Perspectives. Vaccines 2024, 12, 968. [Google Scholar] [CrossRef]
- NCT01099631 IL-2 Expressing, Attenuated Salmonella Typhimurium in Unresectable Hepatic Spread. Available online: https://www.clinicaltrials.gov/study/NCT01099631 (accessed on 28 October 2024).
- Raman, V.; Howell, L.M.; Bloom, S.M.K.; Hall, C.L.; Wetherby, V.E.; Minter, L.M.; Kulkarni, A.A.; Forbes, N.S. Intracellular Salmonella Delivery of an Exogenous Immunization Antigen Refocuses CD8 T Cells against Cancer Cells, Eliminates Pancreatic Tumors and Forms Antitumor Immunity. Front. Immunol. 2023, 14, 1228532. [Google Scholar] [CrossRef]
- Zha, L.; Garrett, S.; Sun, J. Salmonella Infection in Chronic Inflammation and Gastrointestinal Cancer. Diseases 2019, 7, 28. [Google Scholar] [CrossRef]
- Massa, P.E.; Paniccia, A.; Monegal, A.; de Marco, A.; Rescigno, M. Salmonella Engineered to Express CD20-Targeting Antibodies and a Drug-Converting Enzyme Can Eradicate Human Lymphomas. Blood J. Am. Soc. Hematol. 2013, 122, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.-X.; Wang, X.-H.; Xu, X.; Chen, W.-J.; Wei, J.; Chen, T.-T.; Wei, H. Anti-Tumor Effects of Engineered VNP20009-Abvec-Igκ-MPD-1 Strain in Melanoma Mice via Combining the Oncolytic Therapy and Immunotherapy. Pharmaceutics 2022, 14, 2789. [Google Scholar] [CrossRef] [PubMed]
- Pawelek, J.M.; Low, K.B.; Bermudes, D. Tumor-Targeted Salmonella as a Novel Anti-Melanoma Vector. Melanoma Res. 1997, 7 (Suppl. S1), S141. [Google Scholar] [CrossRef]
- Low, K.B.; Murray, S.R.; Pawelek, J.; Bermudes, D. Isolation and Analysis of Suppressor Mutations in Tumor-Targeted MsbB Salmonella. In Bacterial Therapy of Cancer: Methods and Protocols; Humana Press: New York, NY, USA, 2016; pp. 95–123. [Google Scholar] [CrossRef]
- Tang, W.; He, Y.; Zhou, S.; Ma, Y.; Liu, G. A Novel Bifidobacterium Infantis-Mediated TK/GCV Suicide Gene Therapy System Exhibits Antitumor Activity in a Rat Model of Bladder Cancer. J. Exp. Clin. Cancer Res. 2009, 28, 155. [Google Scholar] [CrossRef]
- Zhou, S.; Lin, Y.; Zhao, Z.; Lai, Y.; Lu, M.; Shao, Z.; Mo, X.; Mu, Y.; Liang, Z.; Wang, X. Targeted Deprivation of Methionine with Engineered Salmonella Leads to Oncolysis and Suppression of Metastasis in Broad Types of Animal Tumor Models. Cell Rep. Med. 2023, 4, 101070. [Google Scholar] [CrossRef]
- Thorburn, A. Death Receptor-Induced Cell Killing. Cell. Signal. 2004, 16, 139–144. [Google Scholar] [CrossRef]
- Thorburn, J.; Moore, F.; Rao, A.; Barclay, W.W.; Thomas, L.R.; Grant, K.W.; Cramer, S.D.; Thorburn, A. Selective Inactivation of a Fas-Associated Death Domain Protein (FADD)-Dependent Apoptosis and Autophagy Pathway in Immortal Epithelial Cells. MBoC 2005, 16, 1189–1199. [Google Scholar] [CrossRef]
- Loeffler, M.; Le’Negrate, G.; Krajewska, M.; Reed, J.C. Inhibition of Tumor Growth Using Salmonella Expressing Fas Ligand. J. Natl. Cancer Inst. 2008, 100, 1113–1116. [Google Scholar] [CrossRef]
- Chen, J.; Wei, D.; Zhuang, H.; Qiao, Y.; Tang, B.; Zhang, X.; Wei, J.; Fang, S.; Chen, G.; Du, P. Proteomic Screening of Anaerobically Regulated Promoters from Salmonella and Its Antitumor Applications. Mol. Cell. Proteom. 2011, 10, M111.009399. [Google Scholar] [CrossRef]
- Chen, J.; Yang, B.; Cheng, X.; Qiao, Y.; Tang, B.; Chen, G.; Wei, J.; Liu, X.; Cheng, W.; Du, P. Salmonella-Mediated Tumor-Targeting TRAIL Gene Therapy Significantly Suppresses Melanoma Growth in Mouse Model. Cancer Sci. 2012, 103, 325–333. [Google Scholar] [CrossRef]
- Chen, T.; Zhao, X.; Ren, Y.; Wang, Y.; Tang, X.; Tian, P.; Wang, H.; Xin, H. Triptolide Modulates Tumour-Colonisation and Anti-Tumour Effect of Attenuated Salmonella Encoding DNase I. Appl. Microbiol. Biotechnol. 2019, 103, 929–939. [Google Scholar] [CrossRef] [PubMed]
- Ryan, R.M.; Green, J.; Williams, P.J.; Tazzyman, S.; Hunt, S.; Harmey, J.H.; Kehoe, S.C.; Lewis, C.E. Bacterial Delivery of a Novel Cytolysin to Hypoxic Areas of Solid Tumors. Gene Ther. 2009, 16, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Guan, G.; Zhao, M.; Liu, L.; Jin, C.; Sun, K.; Zhang, D.; Yu, D.; Cao, H.; Lu, Y.-Q.; Wen, L. Salmonella Typhimurium Mediated Delivery of Apoptin in Human Laryngeal Cancer. Int. J. Med. Sci. 2013, 10, 1639–1648. [Google Scholar] [CrossRef] [PubMed]
- Xiong, D.; Song, L.; Chen, Y.; Jiao, X.; Pan, Z. Salmonella Enteritidis Activates Inflammatory Storm via SPI-1 and SPI-2 to Promote Intracellular Proliferation and Bacterial Virulence. Front. Cell. Infect. Microbiol. 2023, 13, 1158888. [Google Scholar] [CrossRef]
- Lu, X.; Qin, W.; Li, J.; Tan, N.; Pan, D.; Zhang, H.; Xie, L.; Yao, G.; Shu, H.; Yao, M. The Growth and Metastasis of Human Hepatocellular Carcinoma Xenografts Are Inhibited by Small Interfering RNA Targeting to the Subunit ATP6L of Proton Pump. Cancer Res. 2005, 65, 6843–6849. [Google Scholar] [CrossRef]
- Xiang, S.; Keates, A.C.; Fruehauf, J.; Yang, Y.; Guo, H.; Nguyen, T.; Li, C.J. In Vitro and In Vivo Gene Silencing by TransKingdom RNAi (TkRNAi). In siRNA and miRNA Gene Silencing: From Bench to Bedside; Humana Press: New York, NY, USA, 2009; pp. 1–14. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhao, P.; Zhou, Z.; Liu, J.; Qin, L.; Wang, H. Using Attenuated Salmonella Typhi as Tumor Targeting Vector for MDR1 SiRNA Delivery: An Experimental Study. Cancer Biol. Ther. 2007, 6, 555–560. [Google Scholar] [CrossRef]
- Lu, R.; Wu, S.; Zhang, Y.; Xia, Y.; Zhou, Z.; Kato, I.; Dong, H.; Bissonnette, M.; Sun, J. Salmonella Protein AvrA Activates the STAT3 Signalling Pathway in Colon Cancer. Neoplasia 2016, 18, 307–316. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, X.; Zhou, Y.; Zhang, C.; Hua, Z.-C. A Salmonella Typhimurium Mutant Strain Capable of RNAi Delivery. Cancer Biol. Ther. 2014, 15, 1068–1076. [Google Scholar] [CrossRef]
- Blache, C.A.; Manuel, E.R.; Kaltcheva, T.I.; Wong, A.N.; Ellenhorn, J.D.I.; Blazar, B.R.; Diamond, D.J. Data from Systemic Delivery of Salmonella Typhimurium Transformed with IDO ShRNA Enhances Intratumoral Vector Colonization and Suppresses Tumor Growth. Cancer Res. 2012, 72, 6447–6456. [Google Scholar] [CrossRef]
- Phan, T.; Nguyen, V.H.; D’Alincourt, M.S.; Manuel, E.R.; Kaltcheva, T.; Tsai, W.; Blazar, B.R.; Diamond, D.J.; Melstrom, L.G. Salmonella-Mediated Therapy Targeting Indoleamine 2, 3-Dioxygenase 1 (IDO) Activates Innate Immunity and Mitigates Colorectal Cancer Growth. Cancer Gene Ther. 2020, 27, 235–245. [Google Scholar] [CrossRef]
- Sivasankar, C.; Hewawaduge, C.; Muthuramalingam, P.; Lee, J.H. Tumor-Targeted Delivery of Lnc Antisense RNA against RCAS1 by Live-Attenuated Tryptophan-Auxotrophic Salmonella Inhibited 4T1 Breast Tumors and Metastasis in Mice. Mol. Ther. Nucleic Acids 2023, 34, 102053. [Google Scholar] [CrossRef] [PubMed]
- Karpenko, L.I.; Danilenko, A.V.; Bazhan, S.I.; Danilenko, E.D.; Sysoeva, G.M.; Kaplina, O.N.; Volkova, O.Y.; Oreshkova, S.F.; Ilyichev, A.A. Attenuated Salmonella enteritidis E23 as a vehicle for the rectal delivery of DNA vaccine coding for HIV-1 polyepitope CTL immunogen. Microb. Biotechnol. 2012, 5, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhao, S.; Tan, W.; Wang, T.; Wu, S.; Wang, C.; Jiang, Y.; Zhou, T.; Zhang, Z.; Zhao, L. Attenuated Salmonella carrying plasmid co-expressing HPV16 L1 and siRNA-E6 for cervical cancer therapy. Sci. Rep. 2021, 11, 20083. [Google Scholar] [CrossRef]
- Yoon, W.; Park, Y.; Kim, S.; Bang, I.S. Development of an Oral Salmonella-Based Vaccine Platform against SARS-CoV-2. Vaccines 2022, 10, 67. [Google Scholar] [CrossRef] [PubMed]
- Prayoga, W. Concurrent emergencies: Overlapping Salmonella and COVID-19 concerns in public health strategies and preparedness. Front. Public Health 2024, 12, 1331052. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Yasmeen, N.; Pandey, A.; Ahmad Chaudhary, A.; Alawam, A.S.; Ahmad Rudayni, H.; Islam, A.; Lakhawat, S.S.; Sharma, P.K.; Shahid, M. Antibiotic Adjuvants: Synergistic Tool to Combat Multi-Drug Resistant Pathogens. Front. Cell. Infect. Microbiol. 2023, 13, 1293633. [Google Scholar] [CrossRef]
- Puyol McKenna, P.; Naughton, P.J.; Dooley, J.S.G.; Ternan, N.G.; Lemoine, P.; Banat, I.M. Microbial Biosurfactants: Antimicrobial Activity and Potential Biomedical and Therapeutic Exploits. Pharmaceuticals 2024, 17, 138. [Google Scholar] [CrossRef]
- Sun, H.; Wan, Y.; Du, P.; Bai, L. The Epidemiology of Monophasic Salmonella Typhimurium. Foodborne Pathog. Dis. 2020, 17, 87–97. [Google Scholar] [CrossRef]
- D’Incau, M.; Salogni, C.; Giovannini, S.; Ruggeri, J.; Scali, F.; Tonni, M.; Formenti, N.; Guarneri, F.; Pasquali, P.; Alborali, G.L. Occurrence of Salmonella Typhimurium and Its Monophasic Variant (4, [5],12:I:-) In Healthy and Clinically Ill Pigs in Northern Italy. Porc. Health Manag. 2021, 7, 34. [Google Scholar] [CrossRef]
- Qin, X.; Xiao, L.; Li, J.; Yang, M.; Yang, C.; Dong, Q. Molecular Characterization and Antibiotic Resistance of Salmonella Enterica Serovar 1,4,[5],12:I:- Environmental Isolates from Poultry Farms. Food Qual. Saf. 2022, 6, fyac062. [Google Scholar] [CrossRef]
- Larkin, L.; Pardos de la Gandara, M.; Hoban, A.; Pulford, C.; Jourdan-Da Silva, N.; de Valk, H.; Browning, L.; Falkenhorst, G.; Simon, S.; Lachmann, R. Investigation of an International Outbreak of Multidrug-Resistant Monophasic Salmonella Typhimurium Associated with Chocolate Products, EU/EEA and United Kingdom, February to April. Eurosurveillance 2022, 2022, 27. [Google Scholar] [CrossRef]
Gene Responsible | Function | Reference |
---|---|---|
flgK, rfbA | Flagella, lipopolysaccharide production | [72] |
bcsABZC, bcsEFG | Synthesis of exopolysaccharide cellulose | [73] |
EutE, Sufs/SufE, OmpL CopG | Biosynthesis of aldehyde; dehydrogenase; cysteine desulfurase transporter protein; ribbon helix protein | [74] |
Cdg, trx, rtx | Decrease in biofilm mass | [75] |
fadI | Rate of biofilm formation | [75] |
marT | General regulation of biofilm-related genes | [76] |
fimA, fimH | Adherence-mediated biofilm formation | [77] |
bapA | Biofilm mass formation | [78,79] |
rspA | Temperature regulation of biofilm formation | [80] |
Approach | Method | Reference |
---|---|---|
Delivery of oncolytic viruses (OVs) | ||
Intracellular-delivering Salmonella to carry OVs into cancer cells | [148] | |
Immune system regulating properties | ||
Intracellular infection of melanoma | [149] | |
Combination treatments | ||
Deliver cytolysin to tumours | [150,151] | |
Salmonella bioimaging to target metastatic tumours | [146] | |
Genetically engineered Salmonella | ||
Immune cytokines | [147] | |
Anti-cancer drugs | [152] | |
Expressing enzymes to activate anti-cancer pro-drugs | [153] | |
Expressing tumour-specific antibodies | [154] | |
Expressing oncogene silencing RNA | [155] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naughton, P.J.; Naughton, V.R.; Dooley, J.S.G. Salmonella: Role in Internal and External Environments and Potential as a Therapeutic Tool. Appl. Microbiol. 2024, 4, 1515-1533. https://doi.org/10.3390/applmicrobiol4040104
Naughton PJ, Naughton VR, Dooley JSG. Salmonella: Role in Internal and External Environments and Potential as a Therapeutic Tool. Applied Microbiology. 2024; 4(4):1515-1533. https://doi.org/10.3390/applmicrobiol4040104
Chicago/Turabian StyleNaughton, Patrick J., Violetta R. Naughton, and James S. G. Dooley. 2024. "Salmonella: Role in Internal and External Environments and Potential as a Therapeutic Tool" Applied Microbiology 4, no. 4: 1515-1533. https://doi.org/10.3390/applmicrobiol4040104
APA StyleNaughton, P. J., Naughton, V. R., & Dooley, J. S. G. (2024). Salmonella: Role in Internal and External Environments and Potential as a Therapeutic Tool. Applied Microbiology, 4(4), 1515-1533. https://doi.org/10.3390/applmicrobiol4040104