Assessing the Microbial Impact on the Performance of Bentonite Clay at Different Thermo-Hydro-Geochemical Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. MX-80 Wyoming Bentonite
2.2. Stenotrophomonas Bentonitica BII-R7T
2.3. Experimental Solutions and Growth Media
2.3.1. Batch Solution Experiments
2.3.2. Plate Count Testing
2.3.3. In Situ X-ray Diffraction Analysis
2.3.4. Washing of Bentonite
2.3.5. Ion Chromatography Analysis (Acetate Concentration)
2.3.6. Electron Microscopy Analysis
2.3.7. ICP-OES Chemical Analysis
2.4. Statistics
3. Results
3.1. Bacterial Growth with Bentonite
3.1.1. Swelling Capacity of MX-80 Bentonite with/without S. bentonitica
3.1.2. In Situ Temperature, Humidity, and Salinity Changes in the Presence of S. bentonitica
4. Discussion
4.1. Influence of Bentonite and Solution Composition on the Growth of S. bentonitica
4.2. Influence of S. bentonitica on the Swelling of MX-80
4.3. Influence of Hydro-Geochemical Parameters on the Swelling of MX-80 Bentonite
4.3.1. Swelling Capacity of Bentonite
4.3.2. Reduced Peak Intensity
4.3.3. Influence of Temperature
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, J.S.; Kwon, S.K.; Sanchez, M.; Cho, G.C. Geological storage of high level nuclear waste. KSCE J. Civ. Eng. 2011, 15, 721–737. [Google Scholar] [CrossRef]
- Grambow, B. Geological disposal of radioactive waste in Clay. Elements 2016, 12, 239–245. [Google Scholar] [CrossRef]
- Bors, J.; Dultz, S.; Riebe, B. Retention of radionuclides by organophilic bentonite. Eng. Geol. 1999, 54, 195–206. [Google Scholar] [CrossRef]
- Kozai, N. Sorption characteristics of americium on buffer material. In Progress Report on Safety Research on Radioactive Waste Management for the Period April 1996 to March 1998; Ohnuki, T., Muraoka, S., Banba, T., Eds.; Japan Atomic Energy Research Institute: Ibaraki, Japan, 1998; pp. 21–25. [Google Scholar]
- Keto, P. Natural Clays as Backfilling Materials in Different Backfilling Concepts; Posiva Oy: Eurajoki, Finland, 2004. [Google Scholar]
- Stroes-Gascoyne, S.; Hamon, C.J.; Maak, P.; Russell, S. The effects of the physical properties of highly compacted smectitic clay (bentonite) on the culturability of indigenous microorganisms. Appl. Clay Sci. 2010, 47, 155–162. [Google Scholar] [CrossRef]
- Rutqvist, J.; Zheng, L.; Chen, F.; Liu, H.H.; Birkholzer, J. Modeling of coupled thermo-hydro-mechanical processes with links to geochemistry associated with bentonite-backfilled repository tunnels in clay formations. Rock Mech. Rock Eng. 2014, 47, 167–186. [Google Scholar] [CrossRef]
- Delage, P.; Cui, Y.J.; Tang, A. Clays in radioactive waste disposal Clays in radioactive waste disposal. J. Rock Mech. Geotech. Eng. 2010, 2, 111–123. [Google Scholar] [CrossRef]
- Hofmann, U.; Klemen, R. Verlust der Austauschfähigkeit von Lithiumionen an Bentonit durch Erhitzung. Z. Anorg. Chem. 1950, 262, 95–99. [Google Scholar] [CrossRef]
- Greene-Kelly, K. Irreversible dehydration in montmorillonite, part II. Clay Miner. Bull. 1953, 2, 52–56. [Google Scholar] [CrossRef]
- Weiss, A.; Koch, G. Über einen Zusammenhang zwischen dem Verlust des innerkristallinen Quellungsvermögens beim Erhitzen und dem Schichtaufbau bei glimmerartigen Schichtsilikaten. Z. Naturforschung B 1961, 16, 68–69. [Google Scholar] [CrossRef]
- Gates, W.P.; Bouazza, A.; Jock Churchman, G. Bentonite clay keeps pollutants at bay. Elements 2009, 5, 105–110. [Google Scholar] [CrossRef]
- Bauer, A.; Velde, B. Smectite transformation in high molar KOH solutions. Clay Miner. 1999, 32, 259–273. [Google Scholar] [CrossRef]
- Herbert, H.-J.; Kasbohm, J.; Moog, H.C.; Henning, K.H. Long-term behaviour of the Wyoming bentonite MX-80 in high saline solutions. Appl. Clay Sci. 2004, 26, 275–291. [Google Scholar] [CrossRef]
- Hofmann, H. Einfluss Konzentrierter Salzlösungen auf die Physiko-Chemischen Eigenschaften Quellfähiger Tonminerale: Konsequenzen für den Einsatz von Bentonit als Versatzmaterial in Einem Endlager für Schwach- und Mittelradioaktive Abfälle in Salzformationen. Ph.D. Thesis, University Heidelberg, Heidelberg, Germany, 2003. [Google Scholar]
- Hofmann, H.; Bauer, A.; Warr, L.N. Behavior of smectite in strong salt brines under conditions relevant to the disposal of low- to medium-grade nuclear waste. Clays Clay Miner. 2004, 52, 14–24. [Google Scholar] [CrossRef]
- Kasbohm, J.; Pusch, R.; Henning, K.-H. Short Term Experiments with Different Bentonites in Saline Solutions. In Berichte der DTTG; Nüesch, R., Emmerich, K., Eds.; Karlsruhe1432-7007; Deutsche Ton- und Tonmineralgruppe e.V.: Karlsruhe, Genmany, 2004; p. 47. [Google Scholar]
- Suzuki, S.; Sazarashi, M.; Akimoto, T.; Haginuma, M.; Suzuki, K. A study of the mineralogical alteration of bentonite in saline water. Appl. Clay Sci. 2008, 41, 190–198. [Google Scholar] [CrossRef]
- Kaufhold, S.; Dohrmann, R. Stability of bentonites in salt solutions III—Calcium hydroxide. Appl. Clay Sci. 2011, 51, 300–307. [Google Scholar] [CrossRef]
- Stober, I.; Bucher, K. Origin of salinity of deep groundwater in crystalline rocks. Terra Nov. 2002, 11, 181–185. [Google Scholar] [CrossRef]
- Pearson, F.J.; Arcos, D.; Bath, A.; Boisson, J.Y.; Fernández, A.M.; Gäbler, H.E.; Gaucher, E.; Gautschi, A.; Griffault, L.; Hernán, P.; et al. Mont Terri Project—Geochemistry of Water in the Opalinus Clay Formation at the Mont Terri Rock Laboratory; Federal Office for Water and Geology: Bern, Switzerland, 2003. [Google Scholar]
- Herbert, H.J.; Kasbohm, J.; Sprenger, H.; Fernández, A.M.; Reichelt, C. Swelling pressures of MX-80 bentonite in solutions of different ionic strength. Phys. Chem. Earth 2008, 33, S327–S342. [Google Scholar] [CrossRef]
- Adamcova, J.; Hanusova, I.; Ponavic, M.; Prikryl, R. Alteration processes in bentonites. In Book of Abstracts of 18th Clay Conference in Czech Republic; Stastny, M., Ed.; Czech National Clay Group: Prague, Czech Republic, 2008; p. 19. [Google Scholar]
- Bauer, A.; Schafer, T.; Dohrmann, R.; Hoffmann, H.; Kim, J.I. Smectite stability in acid salt solutions and the fate of Eu, Th and U in solution. Clay Miner. 2001, 36, 93–103. [Google Scholar] [CrossRef]
- Ferrage, E.; Lanson, B.; Sakharov, B.A.; Drits, V.A. Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I: Montmorillonite hydration properties. Am. Mineral. 2005, 90, 1358–1374. [Google Scholar] [CrossRef]
- Kaufhold, S.; Dohrmann, R. Stability of bentonites in salt solutions|sodium chloride. Appl. Clay Sci. 2009, 45, 171–177. [Google Scholar] [CrossRef]
- Lopez-Fernandez, M.; Cherkouk, A.; Vilchez-Vargas, R.; Jauregui, R.; Pieper, D.; Boon, N.; Sanchez-Castro, I.; Merroun, M.L. Bacterial Diversity in Bentonites, Engineered Barrier for Deep Geological Disposal of Radioactive Wastes. Microb. Ecol. 2015, 70, 922–935. [Google Scholar] [CrossRef]
- Chapelle, F.H. Ground-Water Microbiology and Geochemistry; John Wiley & Sons: Hoboken, NJ, USA, 1993. [Google Scholar]
- Brown, A.D. Microbial Water Stress Physiology. Principles and Perspectives; John Wiley & Sons: Hoboken, NJ, USA, 1990. [Google Scholar]
- Courdouan-Metz, A. Nature and Reactivity of Dissolved Organic Matter in Clay Formations Evaluated for the Storage of Radioactive Waste. Ph.D. Thesis, Swiss Federal Institute of Technology in Zurich, Zurich, Switzerland, 2008. [Google Scholar]
- Courdouan, A.; Christl, I.; Wersin, P.; Kretzschmar, R. Nature and reactivity of dissolved organic matter in the Opalinus Clay and Callovo-Oxfordian Formations. In Proceedings of the Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, Lille, France, 17–20 September 2007. [Google Scholar]
- Leupin, O.X.; Bernier-Latmani, R.; Bagnoud, A.; Moors, H.; Leys, N.; Wouters, K.; Stroes-Gascoyne, S. Fifteen years of microbiological investigation in Opalinus Clay at the Mont Terri rock laboratory (Switzerland). Swiss J. Geosci. 2017, 110, 343–354. [Google Scholar] [CrossRef]
- Ehrlich, H.L. Microbes as geologic agents: Their role in mineral formation. Geomicrobiol. J. 1999, 16, 135–153. [Google Scholar] [CrossRef]
- Gorshkov, A.I.; Drits, V.A.; Dubinina, G.A.; Bogdanova, O.A.; Sivtsov, A.V. The role of bacterial activity in the formation of hydrothermal Fe–Mn-formations in the northern part of the Lau Basin (south-western part of the Pacific Ocean). Izv. Akad. Nauk Seriya Geol. 1992, 9, 84–93. [Google Scholar]
- Kawano, M.; Tomita, K. Microbial biomineralization in weathered volcanic ash deposit and formation of biogenic minerals by experimental incubation. Am. Mineral. 2001, 86, 400–410. [Google Scholar] [CrossRef]
- Kohler, B.; Singer, A.; Stoffers, P. Biogenic nontronite from marine white smoker chimneys. Clays Clay Miner. 1994, 42, 689–701. [Google Scholar] [CrossRef]
- Cuadros, J. Clay minerals interaction with microorganisms: A review. Clay Miner. 2017, 52, 235–261. [Google Scholar] [CrossRef]
- Kaufhold, S.; Dohrmann, R. Stability of bentonites in salt solutions II. Potassium chloride solution—Initial step of illitization? Appl. Clay Sci. 2010, 49, 98–107. [Google Scholar] [CrossRef]
- He, Y.; Ye, W.M.; Chen, Y.G.; Cui, Y.J. Effects of K + solutions on swelling behavior of compacted GMZ bentonite. Eng. Geol. 2019, 249, 241–248. [Google Scholar] [CrossRef]
- Xiang, G.; Ye, W.; Xu, Y.; Jalal, F.E. Swelling deformation of Na-bentonite in solutions containing different cations. Eng. Geol. 2020, 277, 105757. [Google Scholar] [CrossRef]
- Sauzeat, E.; Villiéras, T.F.; François, M.; Pelletier, M.; Barrés, O.; Yvon, J.; Guillaume, D.; Dubbessy, J.; Pfeiffert, C.; Ruck, R.; et al. Caractérisation minéralogique, cristallochimique et texturale de l’argile MX-80. Rapport ANDRA No CRP0ENG 2001, 01–001. [Google Scholar]
- Perdrial, J.N.; Warr, L.N.; Perdrial, N.; Lett, M.C.; Elsass, F. Interaction between smectite and bacteria: Implications for bentonite as backfill material in the disposal of nuclear waste. Chem. Geol. 2009, 34, 281–294. [Google Scholar] [CrossRef]
- López-Fernández, M.; Fernández-Sanfrancisco, O.; Moreno-García, A.; Martín-Sánchez, I.; Sánchez-Castro, I.; Merroun, M.L. Microbial communities in bentonite formations and their interactions with uranium. Appl. Geochem. 2014, 49, 77–86. [Google Scholar] [CrossRef]
- Sánchez-Castro, I.; Ruiz-Fresneda, M.A.; Bakkali, M.; Kämpfer, P.; Glaeser, S.P.; Busse, H.J.; López-Fernández, M.; Martínez-Rodríguez, P.; Merroun, M.L. Stenotrophomonas bentonitica sp. nov., isolated from bentonite formations. Int. J. Syst. Evol. Microbiol. 2017, 67, 2779–2786. [Google Scholar] [CrossRef] [PubMed]
- Ruiz Fresneda, M.A.; Delgado Martín, J.; Gómez Bolívar, J.; Fernández Cantos, M.V.; Bosch-Estévez, G.; Martínez Moreno, M.F.; Merroun, M.L. Green synthesis and biotransformation of amorphous Se nanospheres to trigonal 1D Se nanostructures: Impact on Se mobility within the concept of radioactive waste disposal. Environ. Sci. Nano 2018, 5, 2103–2116. [Google Scholar] [CrossRef]
- Ruiz-Fresneda, M.A.; Lopez-Fernandez, M.; Martinez-Moreno, M.F.; Cherkouk, A.; Ju-Nam, Y.; Ojeda, J.J.; Moll, H.; Merroun, M.L. Molecular Binding of EuIII/CmIIIby S tenotrophomonas bentonitica and Its Impact on the Safety of Future Geodisposal of Radioactive Waste. Environ. Sci. Technol. 2020, 54, 15180–15190. [Google Scholar] [CrossRef]
- Joseph, C.; Schmeide, K.; Sachs, S.; Brendler, V.; Geipel, G.; Bernhard, G. Sorption of uranium(VI) onto Opalinus Clay in the absence and presence of humic acid in Opalinus Clay pore water. Chem. Geol. 2011, 284, 240–250. [Google Scholar] [CrossRef]
- Pearson, F.J. Opalinus Clay Experimental Water: A1Type, Version 980318; Paul Scherrer Institut: Villigen, Switzerland, 1998. [Google Scholar]
- Schleicher, A.M.; Mitzscherling, J.; Bonitz, M.; Genderjahn, S.; Wagner, D. Mineralogical, geochemical and microbial dataset for assessing the impact of S. bentonitica in different solutions on the performance of bentonite clay at changing thermo-hydro-chemical conditions. GFZ Data Serv. 2024. [Google Scholar] [CrossRef]
- Courdouan, A.; Christl, I.; Meylan, S.; Wersin, P.; Kretzschmar, R. Characterization of dissolved organic matter in anoxic rock extracts and in situ pore water of the Opalinus Clay. Appl. Geochem. 2007, 22, 2926–2939. [Google Scholar] [CrossRef]
- Miles, A.A.; Misra, S.S.; Irwin, J.O. The estimation of the bactericidal power of the blood. J. Hyg. 1938, 38, 732–749. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- McNaught, A.D.; Wilkinson, A. IUPAC. Compendium of Chemical Terminology, 2nd ed.; Blackwell Scientific Publications: Oxford, UK, 1997. [Google Scholar] [CrossRef]
- Eberl, D.D.; Hower, J. The hdrothermal transformation of sodium and potassium smectite into mixed-layer clay. Clays Clay Miner. 1977, 25, 215–227. [Google Scholar] [CrossRef]
- Inoue, A. Potassium fixation by clay minerals during hydrothermal treatment. Clays Clay Miner. 1983, 31, 81–91. [Google Scholar] [CrossRef]
- Komareni, S.; White, W.B. Hydrothermal reaction of strontium and transuranic simulator elements with clay minerals, zeolites and shales. Clays Clay Miner. 1983, 31, 113–121. [Google Scholar] [CrossRef]
- Kasbohm, J.; Venz, C.; Henning, K.-H.; Herbert, H.-J. Zu Aspekten einer Lang- zeitsicherheit von Bentonit in hochsalinaren Lösungen. In Berichte der Deutschen Ton- und Tonmineralgruppe e.V.-Beiträge zur Jahrestagung; Stengele, H., Plötze, M., Eds.; ETH Zürich: Zurich, Switzerland, 2000; pp. 158–170. [Google Scholar]
- Finsterle, S.; Muller, R.A.; Baltzer, R.; Payer, J.; Rector, J.W. Thermal evolution near heat-generating nuclear waste canisters disposed in horizontal drillholes. Energies 2019, 12, 596. [Google Scholar] [CrossRef]
- Merchant, S.S.; Helmann, J.D. Elemental Economy. Microbial Strategies for Optimizing Growth in the Face of Nutrient Limitation. In Advances in Microbial Physiology, 1st ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Perez Rodriguez, J.L.; Carretero, M.I.; Maqueda, C. Behaviour of sepiolite, vermiculite and montmorillonite as supports in anaerobic digesters. Appl. Clay Sci. 1989, 4, 69–82. [Google Scholar] [CrossRef]
- Bothe, H.; Ferguson, S.; Newton, W.E. Biology of the Nitrogen Cycle; Elsevier Science: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Kutvonen, H.; Rajala, P.; Carpén, L.; Bomberg, M. Nitrate and ammonia as nitrogen sources for deep subsurface microorganisms. Front. Microbiol. 2015, 6, 1079. [Google Scholar] [CrossRef]
- Landeweert, R.; Hoffland, E.; Finlay, R.D.; Kuyper, T.W.; van Breemen, N. Linking plants to rocks: Ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol. Evol. 2001, 16, 248–254. [Google Scholar] [CrossRef]
- Kieft, T.L. Size matters: Dwarf cells in soil and subsurface terrestrial environments. In Non-Culturable Microorganisms in the Environment; Colwell, R.R., Grimes, D.J., Eds.; ASM Press: Washington, DC, USA, 2000; pp. 19–46. [Google Scholar]
- Curry, K.J.; Bennett, R.H.; Mayer, L.M.; Curry, A.; Abril, M.; Biesiot, P.M.; Hulbert, M.H. Direct visualization of clay microfabric signatures driving organic matter preservation in fine-grained sediment. Geochim. Cosmochim. Acta 2007, 71, 1709–1720. [Google Scholar] [CrossRef]
- Chorover, J.; Amistadi, M.K. Reaction of forest floor organic matter at goethite, birnessite and smectite surfaces. Geochim. Cosmochim. Acta 2001, 65, 95–109. [Google Scholar] [CrossRef]
- Murphy, E.M.; Zachara, J.M.; Smith, S.C.; Phillips, J.L.; Wietsma, T.W. Interaction of hydrophobic organic compounds with mineral-bound humic substances. Environ. Sci. Technol. 1994, 28, 1291–1299. [Google Scholar] [CrossRef] [PubMed]
- Schlautman, M.A.; Morgan, J.J. Adsorption of aquatic humic substances on colloidal-size aluminum oxide particles: Influence of solution chemistry. Geochim. Cosmochim. Acta 1994, 58, 4293–4303. [Google Scholar] [CrossRef]
- Arnarson, T.S.; Keil, R.G. The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles. Mar. Chem. 2000, 71, 309–320. [Google Scholar] [CrossRef]
- Luque-Almagro, V.M.; Gates, A.J.; Moreno-Vivián, C.; Ferguson, S.J.; Richardson, D.J.; Roldan, M.D. Bacterial nitrate assimilation: Gene distribution and regulation. Biochem. Soc. Trans. 2011, 39, 1838–1843. [Google Scholar] [CrossRef] [PubMed]
- Bashandy, S.R.; Abd-Alla, M.H.; Dawood, M.F.A. Alleviation of the toxicity of oily wastewater to canola plants by the N2-fixing, aromatic hydrocarbon biodegrading bacterium Stenotrophomonas maltophilia-SR1. Appl. Soil Ecol. 2020, 154, 103654. [Google Scholar] [CrossRef]
- Ramos, P.L.; Van Trappen, S.; Thompson, F.L.; Rocha, R.C.S.; Barbosa, H.R.; de Vos, P.; Moreira-Filho, C.A. Screening for endophytic nitrogen-fixing bacteria in Brazilian sugar cane varieties used in organic farming and description of stenotrophomonas Pavanii sp. nov. Int. J. Syst. Evol. Microbiol. 2011, 61, 926–931. [Google Scholar] [CrossRef]
- Simoni, S.F.; Bosma, T.N.P.; Harms, H.; Zehnder, A.J.B. Bivalent Cations Increase Both the Subpopulation of Adhering Bacteria Sand Columns. Environ. Sci. Technol. 2000, 34, 1011–1017. [Google Scholar] [CrossRef]
- Sánchez-Castro, I.; Bakkali, M.; Merroun, M.L. Draft genome sequence of Stenotrophomonas bentonitica BII-R7, a selenite-reducing bacterium isolated from Spanish bentonites. Genome Announc. 2017, 5, 7–9. [Google Scholar] [CrossRef]
- MacEwan, D.M.C.; Wilson, M.J. Interlayer and intercalation complexes of clay minerals. In Crystal Structure of Clay Minerals and their X-ray Identification; Brindley, G.W., Brown, G., Eds.; Mineralogical Society: London, UK, 1980; pp. 197–242. [Google Scholar]
- Lagaly, G. Reaktionen der Tonminerale. In Tonminerale und Tone: Struktur, Eigenschaften und Einsatz in Industrie und Umwelt; Jasmund, K., Lagaly, G., Eds.; Steinkopff Verlag: Darmstadt, Germany, 1993; pp. 89–167. [Google Scholar]
- Wintermute, E.H.; Silver, P.A. Emergent cooperation in microbial metabolism. Mol. Syst. Biol. 2010, 6, 407. [Google Scholar] [CrossRef]
- Boivin-Jahns, V.; Ruimy, R.; Bianchi, A.; Daumas, S.; Christen, R. Bacterial diversity in a deep-subsurface clay environment. Appl. Environ. Microbiol. 1996, 62, 3405–3412. [Google Scholar] [CrossRef]
- Mitzscherling, J.; Genderjahn, S.; Schleicher, A.M.; Bartholomäus, A.; Kallmeyer, J.; Wagner, D. Clay-associated microbial communities and their relevance for a nuclear waste repository in the Opalinus Clay rock formation. Microbiologyopen 2023, 12, e1370. [Google Scholar] [CrossRef]
- Suzuki, S.; Prayongphan, S.; Ichikawa, Y.; Chae, B.G. In situ observations of the swelling of bentonite aggregates in NaCl solution. Appl. Clay Sci. 2005, 29, 89–98. [Google Scholar] [CrossRef]
- Pusch, R.; Karnland, O.; Hökmark, H. GMM-A General Microstructural Model for Qualitative and Quantitative Studies on Smectite Clays; Swedish Nuclear Fuel and Waste Management Co.: Stockholm, Sweden, 1990. [Google Scholar]
- Castellanos, E.; Villar, M.V.; Romero, E.; Lloret, A.; Gens, A. Chemical impact on the hydro-mechanical behaviour of high-density FEBEX bentonite. Phys. Chem. Earth 2008, 33, S516–S526. [Google Scholar] [CrossRef]
- Karnland, O.; Olsson, S.; Nilsson, U. Mineralogy and Sealing Properties of Various Bentonites and Smectite-Rich Clay Materials; TR-06-30; Swedish Nuclear Fuel and Waste Management Co.: Stockholm, Sweden, 2006; pp. 3–70. [Google Scholar]
- Komine, H.; Yasuhara, K.; Murakami, S. Swelling characteristics of bentonites in artificial seawater. Can. Geotech. J. 2009, 46, 177–189. [Google Scholar] [CrossRef]
- Siddiqua, S.; Blatz, J.; Siemens, G. Evaluation of the impact of pore fluid chemistry on the hydromechanical behaviour of clay-based sealing materials. Can. Geotech. J. 2011, 48, 199–213. [Google Scholar] [CrossRef]
- Lee, J.O.; Lim, J.G.; Kang, I.M.; Sangki, K. Swelling pressures of compacted Ca-bentonite. Eng. Geol. 2012, 129–130, 20–26. [Google Scholar] [CrossRef]
- Chun-Ming, Z.; Wei-Min, Y.; Yong-Gui, C.; Bao, C.; Yu-Jun, C. Influence of salt solutions on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite. Eng. Geol. 2013, 166, 74–80. [Google Scholar] [CrossRef]
- Sato, H. Quantification of exchangable cations in interlayer of Tsukinuno Sodium-Montmorillonite. Mater. Res. Soc. Symp. Proc. 2009, 1193, 2–7. [Google Scholar] [CrossRef]
- Dohrmann, R.; Genske, D.; Karnland, O.; Kaufhold, S.; Kiviranta, L.; Olsson, S.; Plötze, M.; Sandén, T.; Sellin, P.; Svensson, D.; et al. Interlaboratory CEC and exchangeable cation study of bentonite buffer materials: I. Cu(II)-triethylenetetramine method. Clays Clay Miner. 2012, 60, 162–175. [Google Scholar] [CrossRef]
- Segad, M.; Jönsson, B.; Åkesson, T.; Cabane, B. Ca/Na montmorillonite: Structure, forces and swelling properties. Langmuir 2010, 26, 5782–5790. [Google Scholar] [CrossRef]
- Liu, L. Colloids and Surfaces A: Physicochemical and Engineering Aspects Prediction of swelling pressures of different types of bentonite in dilute solutions. Colloids Surf. A Physicochem. Eng. Asp. 2013, 434, 303–318. [Google Scholar] [CrossRef]
- Push, R. The Buffer and Backfill Handbook Part 1—Definitions, Basic Relationships, and Laboratory Methods; SKB Technical Report SKB-TR-02-20; Swedish Nuclear Fuel and Waste Management Co.: Stockholm, Sweden, 2002. [Google Scholar]
- Push, R. The Buffer and Backfill Handbook Part 2—Materials and Techniques; SKB Technical Report SKB-TR-02-12; Swedish Nuclear Fuel and Waste Management Co.: Stockholm, Sweden, 2002. [Google Scholar]
- O’Brien Fabric of kaolinite and illite floccules. Clays Clay Miner. 1971, 19, 353–359. [CrossRef]
- Schleicher, A.M.; Warr, L.N.; Van Der Pluijm, B.A. On the origin of mixed-layered clay minerals from the San Andreas Fault at 2.5–3 km vertical depth (SAFOD drillhole at Parkfield, California). Contrib. Mineral. Petrol. 2009, 157, 173–187. [Google Scholar] [CrossRef]
- Villar, M.V.; Lloret, A. Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite. Appl. Clay Sci. 2004, 26, 337–350. [Google Scholar] [CrossRef]
- Colten-Bradley, V.A. Role of Pressure in Smectite Dehydration—Effects on Geopressure and Smectite-To-Illite Transformation. Am. Assoc. Pet. Geol. Bull. 1987, 71, 1414–1427. [Google Scholar] [CrossRef]
- Ikari, M.J.; Saffer, D.M.; Marone, C. Effect of hydration state on the frictional properties of montmorillonite-based fault gouge. J. Geophys. Res. Solid Earth. 2007, 112, 1–12. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitzscherling, J.; Schleicher, A.M.; Genderjahn, S.; Bonitz, M.; Wagner, D. Assessing the Microbial Impact on the Performance of Bentonite Clay at Different Thermo-Hydro-Geochemical Conditions. Appl. Microbiol. 2024, 4, 1091-1109. https://doi.org/10.3390/applmicrobiol4030074
Mitzscherling J, Schleicher AM, Genderjahn S, Bonitz M, Wagner D. Assessing the Microbial Impact on the Performance of Bentonite Clay at Different Thermo-Hydro-Geochemical Conditions. Applied Microbiology. 2024; 4(3):1091-1109. https://doi.org/10.3390/applmicrobiol4030074
Chicago/Turabian StyleMitzscherling, Julia, Anja M. Schleicher, Steffi Genderjahn, Marie Bonitz, and Dirk Wagner. 2024. "Assessing the Microbial Impact on the Performance of Bentonite Clay at Different Thermo-Hydro-Geochemical Conditions" Applied Microbiology 4, no. 3: 1091-1109. https://doi.org/10.3390/applmicrobiol4030074
APA StyleMitzscherling, J., Schleicher, A. M., Genderjahn, S., Bonitz, M., & Wagner, D. (2024). Assessing the Microbial Impact on the Performance of Bentonite Clay at Different Thermo-Hydro-Geochemical Conditions. Applied Microbiology, 4(3), 1091-1109. https://doi.org/10.3390/applmicrobiol4030074