Safety and Effects of Intravaginal Administration of Lacticaseibacillus rhamnosus CRL1332 Immobilized on Nanofibers in a Murine Experimental Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms and Culture Conditions
2.2. Production of Nanofibers with L. rhamnosus CRL1332
2.3. Female BALB/c Mice as Experimental Model
2.4. Sampling of Animals and Analytical Procedures
2.4.1. Microbiological Analysis
2.4.2. Cytological and Histological Analysis
2.4.3. Ultrastructural Analysis
2.5. Statistical Analysis
3. Results
3.1. Effect of Intravaginal Administration of L. rhamnosus CRL1332 Immobilized on Nanofibers on the Cultivable Vaginal Microbiota of BALB/c Mice
3.2. Cytological and Histological Analysis
3.3. Ultrastructural Morphological Analysis
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Puebla-Barragan, S.; Reid, G. Probiotics in Cosmetic and Personal Care Products: Trends and Challenges. Molecules 2021, 26, 1249. [Google Scholar] [CrossRef]
- Nader-Macías, M.E.F.; De Gregorio, P.R.; Silva, J.A. Probiotic lactobacilli in formulas and hygiene products for the health of the urogenital tract. Pharmacol. Res. Perspect. 2021, 9, e00787. [Google Scholar] [CrossRef]
- Škrlec, K.; Zupančič, Š.; Prpar Mihevc, S.; Kocbek, P.; Kristl, J.; Berlec, A. Development of electrospun nanofibers that enable high loading and long-term viability of probiotics. Eur. J. Pharm. Biopharm. 2019, 136, 108–119. [Google Scholar] [CrossRef]
- Silva, J.A.; De Gregorio, P.R.; Rivero, G.; Abraham, G.A.; Nader-Macías, M.E.F. Immobilization of vaginal Lactobacillus in polymeric nanofibers for its incorporation in vaginal probiotic products. Eur. J. Pharm. Sci. 2021, 156, 105563. [Google Scholar] [CrossRef]
- Stojanov, S.; Kristl, J.; Zupančič, Š.; Berlec, A. Influence of Excipient Composition on Survival of Vaginal Lactobacilli in Electrospun Nanofibers. Pharmaceutic 2022, 14, 1155. [Google Scholar] [CrossRef]
- Domig, K.J.; Kiss, H.; Petricevic, L.; Viernstein, H.; Unger, F.; Kneifel, W. Strategies for the evaluation and selection of potential vaginal probiotics from human sources: An exemplary study. Benef. Microbes 2014, 5, 263–272. [Google Scholar] [CrossRef]
- De Gregorio, P.R.; Maldonado, N.C.; Pingitore, E.V.; Terraf, M.C.L.; Tomás, M.S.J.; de Ruiz, C.S.; Santos, V.; Wiese, B.; Bru, E.; Paiz, M.C.; et al. Intravaginal administration of gelatine capsules containing freeze-dried autochthonous lactobacilli: A double-blind, randomised clinical trial of safety. Benef. Microbes 2020, 11, 5–17. [Google Scholar] [CrossRef]
- De Gregorio, P.R.; Juárez Tomás, M.S.; Nader-Macías, M.E.F. Immunomodulation of Lactobacillus reuteri CRL1324 on group B Streptococcus vaginal colonization in a murine experimental model. Am. J. Reprod. Immunol. 2016, 75, 23–35. [Google Scholar] [CrossRef]
- Ballini, A.; Santacroce, L.; Cantore, S.; Bottalico, L.; Dipalma, G.; Vito, D.; Saini, R.; Inchingolo, F. Probiotics Improve Urogenital Health in Women. Open Access Maced. J. Med. Sci. 2018, 6, 1845–1850. [Google Scholar] [CrossRef]
- Gorreja, F.; Walker, W.A. The potential role of adherence factors in probiotic function in the gastrointestinal tract of adults and pediatrics: A narrative review of experimental and human studies. Gut Microbes 2022, 14, 2149214. [Google Scholar] [CrossRef]
- European Food Safety Authority. Opinion of the Scientific Committee on a request from EFSA on the introduction of a Qualified Presumption of Safety (QPS) approach for assessment of selected microorganisms referred to EFSA. EFSA J. 2007, 587, 1–16. [Google Scholar] [CrossRef]
- Marzal Alfaro, M.B.; Manrique-Rodríguez, S.; Fernández-Llamazares, C.M. Clinical use of probiotics and practical aspects of their use. Hosp. Nutr. 2013, 28, 68–70. Available online: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0212-16112013000700018&lng=es&tlng=en (accessed on 12 May 2023).
- Nader-Macías, M.E.F.; Silva de Ruiz, C.; Ocaña, V.S.; Juárez Tomas, M.S. Advances in the Knowledge and Clinical Applications of Lactic Acid Bacteria as Probiotics in the Urogenital Tract. Curr. Womens Health Rev. 2008, 4, 240–257. [Google Scholar] [CrossRef]
- Silva de Ruiz, C.; del R. Rey, M.; Nader-Macías, M.E. Structural and ultrastructural studies of the urinary tract of mice inoculated with Lactobacillus fermentum. BJU Int. 2003, 91, 878–882. [Google Scholar] [CrossRef]
- Zárate, G.; Santos, V.; Nader-Macias, M.E. Protective effect of vaginal Lactobacillus paracasei CRL 1289 against urogenital infection produced by Staphylococcus aureus in a mouse animal model. Infect. Dis. Obstet. Gynecol. 2009, 48358. [Google Scholar] [CrossRef]
- Leccese Terraf, M.C. Biofilm-Forming Urogenital Beneficial Lactic Acid Bacteria (BUGB): Basic Studies and Tests in Experimental Animals. Potential Applications in the Prevention of Urinary Tract Infections. Ph.D. Thesis, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucumán, San Miguel de Tucumán, Argentina, 2014. [Google Scholar]
- De Gregorio, P.R.; Juárez Tomás, M.S.; Santos, V.; Nader-Macías, M.E. Beneficial lactobacilli: Effects on the vaginal tract in a murine experimental model. Antonie Leeuwenhoek 2012, 102, 569–580. [Google Scholar] [CrossRef]
- De Gregorio, P.R.; Juárez Tomás, M.S.; Leccese Terraf, M.C.; Nader-Macías, M.E. Preventive effect of Lactobacillus reuteri CRL1324 on Group B Streptococcus vaginal colonization in an experimental mouse model. J. Appl. Microbiol. 2015, 118, 1034–1047. [Google Scholar] [CrossRef] [PubMed]
- De Gregorio, P.R.; Silva, J.A.; Marchesi, A.; Nader-Macias, M.E.F. Anti-Candida activity of beneficial vaginal lactobacilli in in vitro assays and in a murine experimental model. FEMS Yeast Res. 2019, 19, foz008. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.A. Beneficial Lactic Acid Bacteria (BLAB) in the Design of Vaginal Hygiene Formulations. Ph.D. Thesis, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucumán, San Miguel de Tucumán, Argentina, 2021. [Google Scholar]
- Ocana, V.S.; Bru, E.; De Ruiz Holgado, A.A.; Nader-Macias, M.E. Surface characteristics of lactobacilli isolated from human vagina. J. Gen. Appl. Microbiol. 1999, 45, 203–212. [Google Scholar] [CrossRef]
- Juárez Tomás, M.S.; Saralegui Duhart, C.I.; De Gregorio, P.R.; Vera Pingitore, E.; Nader-Macías, M.E. Urogenital pathogen inhibition and compatibility between vaginal Lactobacillus strains to be considered as probiotic candidates. Eur. J. Obstet. Gynecol. Reprod. Biol. 2011, 159, 399–406. [Google Scholar] [CrossRef]
- Leccese Terraf, M.C.; Juárez Tomás, M.S.; Nader-Macías, M.E.; Silva, C. Screening of biofilm formation by beneficial vaginal lactobacilli and influence of culture media components. J. Appl. Microbiol. 2012, 113, 1517–1529. [Google Scholar] [CrossRef]
- Marchesi, A.; Silva, J.A.; Wiese, B.; Nader-Macías, M.E.F. Survival of Beneficial Vaginal Lactobacilli (BVL) to Different Gastrointestinal Tract Conditions. Curr. Pharm. Des. 2020, 26, 3608–3618. [Google Scholar] [CrossRef] [PubMed]
- Marchesi, A.; Silva, J.A.; Ficoseco, C.A.; Wiese, B.; Nader-Macías, M.E.F. Effect of phytoderivatives on the growth of homologous beneficial vaginal lactobacilli (BVL) strains and their compatibility for the design of phytobiotics for the vaginal tract health. World J. Pharm. Pharm. Sci. 2020, 9, 236–261. [Google Scholar] [CrossRef]
- Silva, J.A.; Marchesi, A.; Aristimuño Ficosecco, M.C.; Nader-Macías, M.E.F. Functional and safety characterization of beneficial vaginal lactic acid bacteria for the design of vaginal hygiene products. J. Appl. Microbiol. 2022, 33, 3041–3058. [Google Scholar] [CrossRef] [PubMed]
- De Gregorio, P.R.; Salva, M.S.; Juárez Tomás, M.S.; Nader, M.E.F. Effects of exogenous sex hormones on mouse estrous cycle, vaginal microbiota and immune cells. Scand. J. Lab. Anim. Sci. 2018, 44, 3. [Google Scholar] [CrossRef]
- McLean, A.C.; Valenzuela, N.; Fai, S.; Bennett, S.A. Performing vaginal lavage, crystal violet staining, and vaginal cytological evaluation for mouse estrous cycle staging identification. JoVE 2012, 67, e4389. [Google Scholar] [CrossRef]
- Silva de Ruiz, C.S.; Rey, M.R.; de Ruiz Holgado, A.P.; Nader-Macías, M.E. Experimental administration of estradiol on the colonization of Lactobacillus fermentum and Escherichia coli in the urogenital tract of mice. Biol. Pharm. Bull. 2001, 24, 127–134. [Google Scholar] [CrossRef]
- Dabee, S.; Passmore, J.S.; Heffron, R.; Jaspan, H.B. The Complex Link between the Female Genital Microbiota, Genital Infections, and Inflammation. Infect. Immun. 2021, 89, e00487-20. [Google Scholar] [CrossRef]
- Zupančič, Š.; Škrlec, K.; Kocbek, P.; Kristl, J.; Berlec, A. Effects of electrospinning on the viability of ten species of lactic acid bacteria in poly(ethylene oxide) nanofibers. Pharmaceutics 2019, 11, 483. [Google Scholar] [CrossRef]
- Patras, K.A.; Wang, N.Y.; Fletcher, E.M.; Cavaco, C.K.; Jimenez, A.; Garg, M.; Fierer, J.; Sheen, T.R.; Rajagopal, L.; Doran, K.S. Group B Streptococcus CovR regulation modulates host immune signalling pathways to promote vaginal colonization. Cell. Microbiol. 2013, 15, 1154–1167. [Google Scholar] [CrossRef]
- Joo, H.M.; Kim, K.A.; Myoung, K.S.; Ahn, Y.T.; Lee, J.H.; Huh, C.S.; Han, M.J.; Kim, D.H. Lactobacillus helveticus HY7801 ameliorates vulvovaginal candidiasis in mice by inhibiting fungal growth and NF-κB activation. Int. Immunopharmacol. 2012, 14, 39–46. [Google Scholar] [CrossRef]
- De Gregorio, P.R.; Juares Tomás, M.S.; Leccese Terraf, M.C.; Nader-Macías, M.E.F. In vitro and in vivo effects of beneficial vaginal lactobacilli on pathogens responsible for urogenital tract infections. J. Med. Microbiol. 2014, 63, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Marchesi, A. Advances in the Design of Novel Phytobiotics with Beneficial Vaginal Lactobacilli (BVL). Ph.D. Thesis, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucumán, San Miguel de Tucumán, Argentina, 2020. [Google Scholar]
- De Gregorio, P.R.; Parolin, C.; Abruzzo, A.; Luppi, B.; Protti, M.; Mercolini, L.; Silva, J.A.; Giordani, B.; Marangoni, A.; Nader-Macías, M.E.F.; et al. Biosurfactant from vaginal Lactobacillus crispatus BC1 as a promising agent to interfere with Candida adhesion. Microb. Cell Factories 2020, 19, 133. [Google Scholar] [CrossRef] [PubMed]
- Diep, E.; Schiffman, J.D. Electrospinning Living Bacteria: A Review of Applications from Agriculture to Health Care. ACS Appl. Bio Mater. 2023, 6, 951–964. [Google Scholar] [CrossRef]
- Ilomuanya, M.O.; Bassey, P.O.; Ogundemuren, D.A.; Ubani-Ukoma, U.N.; Tsamis, A.; Fan, Y.; Michalakis, K.; Angsantikul, P.; Usman, A.; Amenaghawon, A.N. Development of Mucoadhesive Electrospun Scaffolds for Intravaginal Delivery of Lactobacilli spp., a Tenside, and Metronidazole for the Management of Bacterial Vaginosis. Pharmaceutics 2023, 15, 1263. [Google Scholar] [CrossRef] [PubMed]
- Vitali, B.; Abruzzo, A.; Parolin, C.; Palomino, R.A.; Dalena, F.; Bigucci, F.; Cerchiara, T.; Luppi, B. Association of Lactobacillus crispatus with fructo-oligosaccharides and ascorbic acid in hydroxypropyl methylcellulose vaginal insert. Carbohydr. Polym. 2016, 136, 1161–1169. [Google Scholar] [CrossRef]
- Nagy, Z.K.; Wagner, I.; Suhajda, Á.; Tobak, T.; Harasztos, A.H.; Vigh, T.; Sóti, P.L. Nanofibrous solid dosage form of living bacteria prepared by electrospinning. Express Polym. Lett. 2014, 8, 352–361. [Google Scholar] [CrossRef]
- Gaaz, T.S.; Sulong, A.B.; Akhtar, M.N.; Kadhum, A.A.; Mohamad, A.B.; Al-Amiery, A.A. Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites. Molecules 2015, 20, 22833–22847. [Google Scholar] [CrossRef]
- Nam, S.; Mooney, D. Polymeric Tissue Adhesives. Chem. Rev. 2021, 121, 11336–11384. [Google Scholar] [CrossRef]
- Gonzalez, J.S.; Maiolo, A.S.; Hoppe, C.E.; Alvarez, V.A. Composite gels based on poly(vinyl alcohol) for biomedical uses. Procedia Mater. Sci. 2012, 1, 483–490. [Google Scholar] [CrossRef]
- Baker, M.I.; Walsh, S.P.; Schwartz, Z.; Boyan, B.D. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100, 1451–1457. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Garg, T.; Goyal, A.K.; Rath, G. Development, optimization and evaluation of polymeric electrospun nanofiber: A tool for local delivery of fluconazole for management of vaginal candidiasis. Artif. Cells Nanomed. Biotechnol. 2016, 44, 524–531. [Google Scholar] [CrossRef]
- Iqbal, Z.; Dilnawaz, F. Nanocarriers For Vaginal Drug Delivery. Recent Pat. Drug Deliv. Formul. 2019, 13, 3–15. [Google Scholar] [CrossRef]
- Reddy, V.S.; Tian, Y.; Zhang, C.; Ye, Z.; Roy, K.; Chinnappan, A.; Ramakrishna, S.; Liu, W.; Ghosh, R. A Review on Electrospun Nanofibers Based Advanced Applications: From Health Care to Energy Devices. Polymers 2021, 13, 3746. [Google Scholar] [CrossRef]
- Daniele, M.; Pascual, L.; Barberis, L. Curative effect of the probiotic strain Lactobacillus fermentum L23 in a murine model of vaginal infection by Gardnerella vaginalis. Lett. Appl. Microbiol. 2014, 59, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.A.; Marchesi, A.; Wiese, B.; Nader-Macias, M.E.F. Technological characterization of vaginal probiotic lactobacilli: Resistance to osmotic stress and strains compatibility. J. Appl. Microbiol. 2019, 127, 1835–1847. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.A.; Alejandra Marchesi, A.; Wiese, B.; Nader-Macias, M.E.F. Screening of autochthonous vaginal beneficial lactobacilli strains by their growth at high temperatures for technological applications. Antonie Leeuwenhoek 2020, 113, 1393–1409. [Google Scholar] [CrossRef]
- Leccese Terraf, M.C.; Mendoza, L.M.; Juárez Tomás, M.S.; Silva, C.; Nader-Macías, M.E. Phenotypic surface properties (aggregation, adhesion and biofilm formation) and presence of related genes in beneficial vaginal lactobacilli. J. Appl. Microbiol. 2014, 117, 1761–1772. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, J.A.; De Gregorio, P.R.; Nader-Macías, M.E.F. Safety and Effects of Intravaginal Administration of Lacticaseibacillus rhamnosus CRL1332 Immobilized on Nanofibers in a Murine Experimental Model. Appl. Microbiol. 2023, 3, 1013-1026. https://doi.org/10.3390/applmicrobiol3030069
Silva JA, De Gregorio PR, Nader-Macías MEF. Safety and Effects of Intravaginal Administration of Lacticaseibacillus rhamnosus CRL1332 Immobilized on Nanofibers in a Murine Experimental Model. Applied Microbiology. 2023; 3(3):1013-1026. https://doi.org/10.3390/applmicrobiol3030069
Chicago/Turabian StyleSilva, Jessica Alejandra, Priscilla Romina De Gregorio, and María Elena Fátima Nader-Macías. 2023. "Safety and Effects of Intravaginal Administration of Lacticaseibacillus rhamnosus CRL1332 Immobilized on Nanofibers in a Murine Experimental Model" Applied Microbiology 3, no. 3: 1013-1026. https://doi.org/10.3390/applmicrobiol3030069
APA StyleSilva, J. A., De Gregorio, P. R., & Nader-Macías, M. E. F. (2023). Safety and Effects of Intravaginal Administration of Lacticaseibacillus rhamnosus CRL1332 Immobilized on Nanofibers in a Murine Experimental Model. Applied Microbiology, 3(3), 1013-1026. https://doi.org/10.3390/applmicrobiol3030069