Antioxidant, Antimicrobial and Cosmeceutical Potential of Wild Mushroom Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mushroom Material
2.2. Mushroom Extracts
2.3. Phenolic Composition
2.3.1. Total Phenol Content (TPC)
2.3.2. Ortho-Diphenol Content
2.3.3. Flavonoid Content
2.4. In Vitro Antioxidant Capacity
2.4.1. DPPH Radical Scavenging Activity
2.4.2. ABTS Radical Scavenging Activity
2.4.3. FRAP
2.5. Polyphenolic Analysis by High-Performance Liquid Chromatography with Diode Array Detector (HPLC-DAD)
2.6. Antimicrobial Activity
Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
2.7. Determination of Anti-Hyaluronidase Activity
2.8. Determination of Anti-Tyrosinase Activity
2.9. Preparation of Cosmetic Creams
2.10. Stability Studies
2.10.1. Centrifuging Test
2.10.2. Thermal Test
2.10.3. pH Test
2.11. Phenolic Contents and Antioxidant Activity of the Cosmetic Creams
2.12. Statistical Analysis
3. Results and Discussion
3.1. Phenolic Composition and Antioxidant Activity
3.2. Phenolic Profile
3.3. Antibacterial Activity
3.4. Cosmeceutical Properties
3.5. Incorporation of Extracts from I. hispidus and P. tinctorius in a Cosmetic Cream
3.5.1. Cream Stability Studies
3.5.2. Phenolic Contents and In Vitro Antioxidant Capacity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qaderi, M.M.; Martel, A.B.; Strugnell, C.A. Environmental Factors Regulate Plant Secondary Metabolites. Plants 2023, 12, 447. [Google Scholar] [CrossRef]
- Abdelshafy, A.M.; Belwal, T.; Liang, Z.; Wang, L.; Li, D.; Luo, Z.; Li, L. A comprehensive review on phenolic compounds from edible mushrooms: Occurrence, biological activity, application and future prospective. Crit. Rev. Food Sci. Nutr. 2022, 62, 6204–6224. [Google Scholar] [CrossRef]
- de la Rosa, L.A.; Moreno-Escamilla, J.O.; Rodrigo-García, J.; Alvarez-Parrilla, E. Phenolic Compounds. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Yahia, E.M., Ed.; Woodhead Publishing: Cambridge, UK, 2019; pp. 253–271. [Google Scholar]
- Leal, A.R.; Barros, L.; Barreira, J.C.M.; Sousa, M.J.; Martins, A.; Santos-Buelga, C.; Ferreira, I.C.F.R. Portuguese wild mushrooms at the “pharma–nutrition” interface: Nutritional characterization and antioxidant properties. Food Res. Int. 2013, 50, 1–9. [Google Scholar] [CrossRef]
- Kumar, K.; Mehra, R.; Guiné, R.P.F.; Lima, M.J.; Kumar, N.; Kaushik, R.; Ahmed, N.; Yadav, A.N.; Kumar, H. Edible Mushrooms: A Comprehensive Review on Bioactive Compounds with Health Benefits and Processing Aspects. Foods 2021, 10, 2996. [Google Scholar] [CrossRef]
- Walton, E.L. Buried treasure: Unlocking the secrets of medicinal mushrooms. Biomed. J. 2014, 37, 339–342. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.W.; Zhao, W.; Zhong, J.J. Biotechnological production and application of ganoderic acids. Appl. Microbiol. Biotechnol. 2010, 87, 457–466. [Google Scholar] [CrossRef]
- Ryvarden, L.; Gilbertson, R.L. European Polypores, Part 1; Fungiflora: Oslo, Norway, 1993; Volume 6. [Google Scholar]
- Wang, Z.-X.; Feng, X.-l.; Liu, C.; Gao, J.-m.; Qi, J. Diverse Metabolites and Pharmacological Effects from the Basidiomycetes. Inonotus Hispidus. Antibiot. 2022, 11, 1097. [Google Scholar] [CrossRef]
- Yang, H.; Li, S.; Qu, Y.; Li, L.; Li, Y.; Wang, D. Anti-Colorectal Cancer Effects of Inonotus hispidus (Bull.: Fr.) P. Karst. Spore Powder through Regulation of Gut Microbiota-Mediated JAK/STAT Signaling. Nutrients 2022, 14, 3299. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hao, J.; Liu, Z.; Li, Z.; Teng, L.; Wang, D. Inonotus hispidus Protects against Hyperlipidemia by Inhibiting Oxidative Stress and Inflammation through Nrf2/NF-κB Signaling in High Fat Diet Fed Mice. Nutrients 2022, 14, 3477. [Google Scholar] [CrossRef] [PubMed]
- Machado-Carvalho, L.; Martins, T.; Aires, A.; Marques, G. Optimization of Phenolic Compounds Extraction and Antioxidant Activity from Inonotus hispidus Using Ultrasound-Assisted Extraction Technology. Metabolites 2023, 13, 524. [Google Scholar] [CrossRef]
- Grangeia, C.; Heleno, S.A.; Barros, L.; Martins, A.; Ferreira, I.C.F.R. Effects of trophism on nutritional and nutraceutical potential of wild edible mushrooms. Food Res. Int. 2011, 44, 1029–1035. [Google Scholar] [CrossRef]
- Pringle, N.A.; van de Venter, M.; Boukes, G.J.; Koekemoer, T.C. Therapeutic potential of selected South African macrofungi in diabetic wound healing: An in vitro evaluation. S. Afr. J. Bot. 2021, 138, 337–347. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, D.; You, Y.; Zeng, S.; Li, Y.; Tang, Q.; Han, G.; Liu, A.; Feng, C.; Li, C.; et al. Nutritional composition of boletus mushrooms from Southwest China and their antihyperglycemic and antioxidant activities. Food Chem. 2016, 211, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Hu, Y.; Duan, X.; Tang, T.; Shen, Y.; Hu, B.; Liu, A.; Chen, H.; Li, C.; Liu, Y. Characterization and antioxidant activities of polysaccharides from thirteen boletus mushrooms. Int. J. Biol. Macromol. 2018, 113, 1–7. [Google Scholar] [CrossRef]
- Gouvinhas, I.; Santos, R.A.; Queiroz, M.; Leal, C.; Saavedra, M.J.; Dominguez-Perles, R.; Rodrigues, M.; Barros, A.I.R.N.A. Monitoring the antioxidant and antimicrobial power of grape (Vitis vinifera L.) stems phenolics over long-term storage. Ind. Crop. Prod. 2018, 126, 83–91. [Google Scholar] [CrossRef]
- Mena, P.; García-Viguera, C.; Navarro-Rico, J.; Moreno, D.A.; Bartual, J.; Saura, D.; Martí, N. Phytochemical characterisation for industrial use of pomegranate (Punica granatum L.) cultivars grown in Spain. J. Sci. Food Agric. 2011, 91, 1893–1906. [Google Scholar] [CrossRef]
- Bolanos de la Torre, A.A.S.; Henderson, T.; Nigam, P.S.; Owusu-Apenten, R.K. A universally calibrated microplate ferric reducing antioxidant power (FRAP) assay for foods and applications to Manuka honey. Food Chem. 2015, 174, 119–123. [Google Scholar] [CrossRef]
- Teixeira-Guedes, C.I.; Oppolzer, D.; Barros, A.I.; Pereira-Wilson, C. Impact of cooking method on phenolic composition and antioxidant potential of four varieties of Phaseolus vulgaris L. and Glycine max L. LWT 2019, 103, 238–246. [Google Scholar] [CrossRef] [Green Version]
- Aires, A.; Carvalho, R. Kiwi fruit residues from industry processing: Study for a maximum phenolic recovery yield. J. Food Sci. Technol. 2020, 57, 4265–4276. [Google Scholar] [CrossRef]
- Taofiq, O.; Heleno, S.A.; Calhelha, R.C.; Alves, M.J.; Barros, L.; Barreiro, M.F.; González-Paramás, A.M.; Ferreira, I.C. Development of Mushroom-Based Cosmeceutical Formulations with Anti-Inflammatory, Anti-Tyrosinase, Antioxidant, and Antibacterial Properties. Molecules 2016, 21, 1372. [Google Scholar] [CrossRef] [Green Version]
- Veiga, A.; Toledo, M.; Rossa, L.S.; Mengarda, M.; Stofella, N.C.F.; Oliveira, L.J.; Gonçalves, A.G.; Murakami, F.S. Colorimetric microdilution assay: Validation of a standard method for determination of MIC, IC(50%), and IC(90%) of antimicrobial compounds. J. Microbiol. Methods 2019, 162, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.; Rodrigues, F.; Castro, F.; Aires, A.; Marques, G.; Saavedra, M.J. Antimicrobial, Antibiofilm, and Antioxidant Properties of Boletus edulis and Neoboletus luridiformis Against Multidrug-Resistant ESKAPE Pathogens. Front. Nutr. 2022, 8, 773346. [Google Scholar] [CrossRef] [PubMed]
- Łyko, L.; Olech, M.; Nowak, R. LC-ESI-MS/MS Characterization of Concentrated Polyphenolic Fractions from Rhododendron luteum and Their Anti-Inflammatory and Antioxidant Activities. Molecules 2022, 27, 827. [Google Scholar] [CrossRef]
- Paczkowska-Walendowska, M.; Cielecka-Piontek, J. Chitosan as a Functional Carrier for the Local Delivery Anti-Inflammatory Systems Containing Scutellariae baicalensis radix Extract. Pharmaceutics 2022, 14, 2148. [Google Scholar] [CrossRef] [PubMed]
- No, J.K.; Soung, D.Y.; Kim, Y.J.; Shim, K.H.; Jun, Y.S.; Rhee, S.H.; Yokozawa, T.; Chung, H.Y. Inhibition of tyrosinase by green tea components. Life Sci. 1999, 65, PL241–PL246. [Google Scholar] [CrossRef]
- Rodrigues Ueoka, A.; Pedriali Moraes, C.A. Development and Stability Evaluation of Liquid Crystal-Based Formulations Containing Glycolic Plant Extracts and Nano-Actives. Cosmetics 2018, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Salem, Y.; Rajha, H.N.; Franjieh, D.; Hoss, I.; Manca, M.L.; Manconi, M.; Castangia, I.; Perra, M.; Maroun, R.G.; Louka, N. Stability and Antioxidant Activity of Hydro-Glyceric Extracts Obtained from Different Grape Seed Varieties Incorporated in Cosmetic Creams. Antioxidants 2022, 11, 1348. [Google Scholar] [CrossRef]
- Adeel, S.; Habiba, M.; Kiran, S.; Iqbal, S.; Abrar, S.; Hassan, C.M. Utilization of Colored Extracts for the Formulation of Ecological Friendly Plant-Based Green Products. Sustainability 2022, 14, 11758. [Google Scholar] [CrossRef]
- Zan, L.F.; Qin, J.C.; Zhang, Y.M.; Yao, Y.H.; Bao, H.Y.; Li, X. Antioxidant hispidin derivatives from medicinal mushroom Inonotus hispidus. Chem. Pharm. Bull. 2011, 59, 770–772. [Google Scholar] [CrossRef] [Green Version]
- Zhou, R.; Yang, H.; Lu, T.; Zhao, Y.; Zheng, W. Ultraviolet radiation promotes the production of hispidin polyphenols by medicinal mushroom Inonotus obliquus. Fungal Biol. 2022, 126, 775–785. [Google Scholar] [CrossRef]
- Shomali, N.; Onar, O.; Alkan, T.; Demirtaş, N.; Akata, I.; Yildirim, Ö. Investigation of the Polyphenol Composition, Biological Activities, and Detoxification Properties of Some Medicinal Mushrooms from Turkey. Turk. J. Pharm. Sci. 2019, 16, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Sebastiana, M.; Pereira, V.T.; Alcântara, A.; Pais, M.S.; Silva, A.B. Ectomycorrhizal inoculation with Pisolithus tinctorius increases the performance of Quercus suber L. (cork oak) nursery and field seedlings. New For. 2013, 44, 937–949. [Google Scholar] [CrossRef]
- Cairney, J.W.G.; Chambers, S.M. Interactions between Pisolithus tinctorius and its hosts: A review of current knowledge. Mycorrhiza 1997, 7, 117–131. [Google Scholar] [CrossRef]
- Butkhup, L.; Samappito, W.; Jorjong, S. Evaluation of bioactivities and phenolic contents of wild edible mushrooms from northeastern Thailand. Food Sci. Biotechnol. 2018, 27, 193–202. [Google Scholar] [CrossRef]
- Nowacka, N.; Nowak, R.; Drozd, M.; Olech, M.; Los, R.; Malm, A. Analysis of phenolic constituents, antiradical and antimicrobial activity of edible mushrooms growing wild in Poland. LWT 2014, 59, 689–694. [Google Scholar] [CrossRef]
- Yildiz, O.; Can, Z.; Laghari, A.Q.; Şahin, H.; Malkoç, M. Wild Edible Mushrooms as a Natural Source of Phenolics and Antioxidants. J. Food Biochem. 2015, 39, 148–154. [Google Scholar] [CrossRef]
- Palacios, I.; Lozano, M.; Moro, C.; D’Arrigo, M.; Rostagno, M.A.; Martínez, J.A.; García-Lafuente, A.; Guillamón, E.; Villares, A. Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chem. 2011, 128, 674–678. [Google Scholar] [CrossRef]
- Ferreira, I.C.; Barros, L.; Abreu, R.M. Antioxidants in wild mushrooms. Curr. Med. Chem. 2009, 16, 1543–1560. [Google Scholar] [CrossRef] [Green Version]
- Yaltirak, T.; Aslim, B.; Ozturk, S.; Alli, H. Antimicrobial and antioxidant activities of Russula delica Fr. Food Chem. Toxicol. 2009, 47, 2052–2056. [Google Scholar] [CrossRef]
- Lee, I.K.; Yun, B.S. Styrylpyrone-class compounds from medicinal fungi Phellinus and Inonotus spp., and their medicinal importance. J. Antibiot. 2011, 64, 349–359. [Google Scholar] [CrossRef]
- Gill, M.; Lally, D.A. A naphthalenoid pulvinic acid derivative from the fungus Pisolithus tinctorius. Phytochemistry 1985, 24, 1351–1354. [Google Scholar] [CrossRef]
- Jung, J.Y.; Lee, I.K.; Seok, S.J.; Lee, H.J.; Kim, Y.H.; Yun, B.S. Antioxidant polyphenols from the mycelial culture of the medicinal fungi Inonotus xeranticus and Phellinus linteus. J. Appl. Microbiol. 2008, 104, 1824–1832. [Google Scholar] [CrossRef] [PubMed]
- Martinčič, R.; Mravljak, J.; Švajger, U.; Perdih, A.; Anderluh, M.; Novič, M. In Silico Discovery of Novel Potent Antioxidants on the Basis of Pulvinic Acid and Coumarine Derivatives and Their Experimental Evaluation. PLoS ONE 2015, 10, e0140602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meunier, S.; Desage-El Murr, M.; Nowaczyk, S.; Le Gall, T.; Pin, S.; Renault, J.P.; Boquet, D.; Créminon, C.; Saint-Aman, E.; Valleix, A.; et al. A powerful antiradiation compound revealed by a new high-throughput screening method. Chembiochem 2004, 5, 832–840. [Google Scholar] [CrossRef]
- Ayobami, O.; Brinkwirth, S.; Eckmanns, T.; Markwart, R. Antibiotic resistance in hospital-acquired ESKAPE-E infections in low- and lower-middle-income countries: A systematic review and meta-analysis. Emerg. Microbes Infect. 2022, 11, 443–451. [Google Scholar] [CrossRef]
- Alves, M.J.; Ferreira, I.C.; Dias, J.; Teixeira, V.; Martins, A.; Pintado, M. A review on antimicrobial activity of mushroom (Basidiomycetes) extracts and isolated compounds. Planta Med. 2012, 78, 1707–1718. [Google Scholar] [CrossRef] [Green Version]
- Angelini, P.; Girometta, C.; Tirillini, B.; Moretti, S.; Covino, S.; Cipriani, M.; D’Ellena, E.; Angeles, G.; Federici, E.; Savino, E.; et al. A comparative study of the antimicrobial and antioxidant activities of Inonotus hispidus fruit and their mycelia extracts. Int. J. Food Prop. 2019, 22, 768–783. [Google Scholar] [CrossRef] [Green Version]
- Fux, C.A.; Shirtliff, M.; Stoodley, P.; Costerton, J.W. Can laboratory reference strains mirror “real-world” pathogenesis? Trends Microbiol. 2005, 13, 58–63. [Google Scholar] [CrossRef]
- Hume, E.B.; Flanagan, J.; Masoudi, S.; Zhu, H.; Cole, N.; Willcox, M.D. Soft contact lens disinfection solution efficacy: Clinical Fusarium isolates vs. ATCC 36031. Optom. Vis. Sci. 2009, 86, 415–419. [Google Scholar] [CrossRef]
- Mohammadinia, M.; Rahmani, S.; Eslami, G.; Ghassemi-Broumand, M.; Aghazadh Amiri, M.; Aghaie, G.; Tabatabaee, S.M.; Taheri, S.; Behgozin, A. Contact lens disinfecting solutions antibacterial efficacy: Comparison between clinical isolates and the standard ISO ATCC strains of Pseudomonas aeruginosa and Staphylococcus aureus. Eye 2012, 26, 327–330. [Google Scholar] [CrossRef] [Green Version]
- Pala, S.A.; Wani, A.H.; Ganai, B.A. Antimicrobial potential of some wild Macromycetes collected from Kashmir Himalayas. Plant Sci. Today 2019, 6, 137–146. [Google Scholar] [CrossRef]
- Ecevit, K.; Barros, A.A.; Silva, J.M.; Reis, R.L. Preventing Microbial Infections with Natural Phenolic Compounds. Future Pharmacol. 2022, 2, 460–498. [Google Scholar] [CrossRef]
- Pancu, D.F.; Scurtu, A.; Macasoi, I.G.; Marti, D.; Mioc, M.; Soica, C.; Coricovac, D.; Horhat, D.; Poenaru, M.; Dehelean, C. Antibiotics: Conventional Therapy and Natural Compounds with Antibacterial Activity-A Pharmaco-Toxicological Screening. Antibiotics 2021, 10, 401. [Google Scholar] [CrossRef] [PubMed]
- Takó, M.; Kerekes, E.B.; Zambrano, C.; Kotogán, A.; Papp, T.; Krisch, J.; Vágvölgyi, C. Plant Phenolics and Phenolic-Enriched Extracts as Antimicrobial Agents against Food-Contaminating Microorganisms. Antioxidants 2020, 9, 165. [Google Scholar] [CrossRef] [Green Version]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev. 2019, 18, 241–272. [Google Scholar] [CrossRef] [Green Version]
- Badalyan, S.M.; Barkhudaryan, A.; Rapior, S. Medicinal Macrofungi as Cosmeceuticals: A Review. Int. J. Med. Mushrooms 2022, 24, 1–13. [Google Scholar] [CrossRef]
- Wu, Y.; Choi, M.-H.; Li, J.; Yang, H.; Shin, H.-J. Mushroom Cosmetics: The Present and Future. Cosmetics 2016, 3, 22. [Google Scholar] [CrossRef]
- Hyde, K.D.; Bahkali, A.H.; Moslem, M.A. Fungi—An unusual source for cosmetics. Fungal Divers. 2010, 43, 1–9. [Google Scholar] [CrossRef]
- Taofiq, O.; González-Paramás, A.M.; Martins, A.; Barreiro, M.F.; Ferreira, I.C.F.R. Mushrooms extracts and compounds in cosmetics, cosmeceuticals and nutricosmetics—A review. Ind. Crop. Prod. 2016, 90, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Liyanaarachchi, G.D.; Samarasekera, J.K.R.R.; Mahanama, K.R.R.; Hemalal, K.D.P. Tyrosinase, elastase, hyaluronidase, inhibitory and antioxidant activity of Sri Lankan medicinal plants for novel cosmeceuticals. Ind. Crop. Prod. 2018, 111, 597–605. [Google Scholar] [CrossRef]
- Pintus, F.; Floris, S.; Fais, A.; Era, B.; Porcedda, C.; Tuberoso, C.I.G.; Caddeo, C. Euphorbia characias Extract: Inhibition of Skin Aging-Related Enzymes and Nanoformulation. Plants 2022, 11, 1849. [Google Scholar] [CrossRef] [PubMed]
- Chien, C.C.; Tsai, M.L.; Chen, C.C.; Chang, S.J.; Tseng, C.H. Effects on tyrosinase activity by the extracts of Ganoderma lucidum and related mushrooms. Mycopathologia 2008, 166, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Kim, H.I.; Kim, J.H.; Kwon, O.C.; Son, E.S.; Lee, C.S.; Park, Y.J. Effects of Ganodermanondiol, a New Melanogenesis Inhibitor from the Medicinal Mushroom Ganoderma lucidum. Int. J. Mol. Sci. 2016, 17, 1798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Ding, Z.; Xu, P.; Wang, Y.; Gu, Z.; Qian, Z.; Shi, G.; Zhang, K. Methyl lucidenate F isolated from the ethanol-soluble-acidic components of Ganoderma lucidum is a novel tyrosinase inhibitor. Biotechnol. Bioprocess. Eng. 2011, 16, 457–461. [Google Scholar] [CrossRef]
- Çayan, F.; Deveci, E.; Tel-Çayan, G.; Duru, M.E. Identification and quantification of phenolic acid compounds of twenty-six mushrooms by HPLC–DAD. J. Food Meas. Charact. 2020, 14, 1690–1698. [Google Scholar] [CrossRef]
- Blaak, J.; Staib, P. The Relation of pH and Skin Cleansing. Curr. Probl. Dermatol. 2018, 54, 132–142. [Google Scholar] [CrossRef]
- Srisuksomwong, P.; Kaenhin, L.; Mungmai, L. Collagenase and Tyrosinase Inhibitory Activities and Stability of Facial Cream Formulation Containing Cashew Leaf Extract. Cosmetics 2023, 10, 17. [Google Scholar] [CrossRef]
- de Lima Cherubim, D.J.; Buzanello Martins, C.V.; Oliveira Fariña, L.; da Silva de Lucca, R.A. Polyphenols as natural antioxidants in cosmetics applications. J. Cosmet. Dermatol. 2020, 19, 33–37. [Google Scholar] [CrossRef]
- Hoang, H.T.; Moon, J.-Y.; Lee, Y.-C. Natural Antioxidants from Plant Extracts in Skincare Cosmetics: Recent Applications, Challenges and Perspectives. Cosmetics 2021, 8, 106. [Google Scholar] [CrossRef]
Phenolic Composition | |||
---|---|---|---|
Wild Mushrooms | Total Phenols (mg GA/g dw) | Ortho-Diphenols (mg CA/g dw) | Flavonoids (mg Catechin/g dw) |
B. regius | 13.73 ± 0.67 e | 5.98 ± 0.44 e | 5.11 ± 0.51 e |
G. lucidum | 7.87 ± 0.51 f | 5.49 ± 0.22 f | 3.17 ± 0.26 f |
I. hispidus | 84.30 ± 5.27 a | 190.60 ± 2.08 a | 96.03 ± 4.69 a |
L. fragrans | 16.46 ± 0.60 c | 5.02 ± 0.62 g | 5.72 ± 0.36 d |
P. tinctorius | 68.10 ± 9.72 b | 63.88 ± 4.45 b | 58.18 ± 2.67 b |
S. luridus | 15.00 ± 1.87 de | 10.77 ± 0.48 c | 6.60 ± 0.42 c |
S. mendax | 13.95 ± 1.76 de | 8.93 ± 1.24 d | 6.00 ± 0.36 d |
X. subtomentosus | 15.52 ± 1.37 d | 4.97 ± 0.53 g | 2.37 ± 0.15 g |
Antioxidant Activity | |||
---|---|---|---|
Wild Mushrooms | ABTS (µM Trolox/g dw) | DPPH (µM Trolox/g dw) | FRAP (µM Trolox/g dw) |
B. regius | 118.00 ± 32.24 cd | 361.80 ± 47.76 d | 108.60 ± 36.09 d |
G. lucidum | 73.22 ± 47.49 ef | 40.22 ± 3.27 e | 55.00 ± 2.87 f |
I. hispidus | 929.70 ± 88.54 a | 1271.00 ± 24.82 a | 1292.00 ± 84.03 a |
L. fragrans | 101.20 ± 35.24 cdef | 412.60 ± 57.43 cd | 104.90 ± 3.86 d |
P. tinctorius | 519.10 ± 70.45 b | 1291.00 ± 240.00 a | 128.30 ± 5.55 c |
S. luridus | 137.20 ± 29.32 c | 633.10 ± 111.90 b | 156.20 ± 6.78 b |
S. mendax | 113.70 ± 36.59 cde | 718.00 ± 187.00 b | 156.60 ± 7.65 b |
X. subtomentosus | 73.89 ± 15.01 f | 472.10 ± 86.29 c | 66.44 ± 2.30 e |
Phenolic Compound | B. regius | G. lucidum | I. hispidus | L. fragrans | P. tinctorius | S. luridus | S. mendax | X. subtomentosus |
---|---|---|---|---|---|---|---|---|
Caffeic acid | n.d. | n.d. | 3.06 ± 0.26 | n.d. | n.d. | n.d. | n.d. | n.d. |
Diosmetin | n.d. | n.d. | n.d. | n.d. | n.d. | 9.99 ± 4.70 | 4.10 ± 0.53 | n.d. |
Ellagic acid | n.d. | n.d. | n.d. | n.d. | 8.64 ± 1.65 | n.d. | n.d. | n.d. |
Epigallocatechin gallate | n.d. | n.d. | n.d. | n.d. | 89.93 ± 16.26 | n.d. | n.d. | 13.61 ± 1.34 |
Catechin gallate | n.d. | n.d. | n.d. | 6.03 ± 3.91 | n.d. | n.d. | n.d. | n.d. |
Gallic acid | 13.00 ± 2.27 | 4.22 ± 0.98 | 2.60 ± 0.69 | 22.24 ± 1.70 | 2.49 ± 0.47 | 16.92 ± 1.39 | 34.96 ± 7.38 | 20.41 ± 1.57 |
Gallic acid isomer I | 22.08 ± 3.42 | n.d. | 6.86 ± 0.41 | 15.21 ± 6.16 | n.d. | 19.78 ± 6.28 | 32.67 ± 5.64 | 15.00 ± 1.46 |
Glycitin (glycitein-7-O-glucoside) | n.d. | n.d. | 1.06 ± 0.22 | n.d. | n.d. | n.d. | n.d. | n.d. |
Hispidin | n.d. | n.d. | 482.10 ± 26.67 | n.d. | n.d. | n.d. | n.d. | n.d. |
Hispidin-like compound I | n.d. | n.d. | 31.47 ± 1.20 | n.d. | n.d. | n.d. | n.d. | n.d. |
Hispidin-like compound II | n.d. | n.d. | 8.38 ± 0.74 | n.d. | n.d. | n.d. | n.d. | n.d. |
Hispidin-like compound III | n.d. | n.d. | 6.06 ± 1.21 | n.d. | n.d. | n.d. | n.d. | n.d. |
Hispidin-like compound IV | n.d. | n.d. | 12.05 ± 0.69 | n.d. | n.d. | n.d. | n.d. | n.d. |
Hispidin-like compound V | n.d. | n.d. | 76.15 ± 8.73 | n.d. | n.d. | n.d. | n.d. | n.d. |
Homogentisic acid (2,5-dihydroxyphenylacetic acid) | n.d. | n.d. | n.d. | 57.58 ± 14.96 | n.d. | n.d. | n.d. | n.d. |
Homogentisic acid derivative I | n.d. | n.d. | n.d. | n.d. | n.d. | 6.66 ± 1.75 | 13.30 ± 1.18 | n.d. |
Homogentisic acid derivative II | n.d. | n.d. | n.d. | n.d. | n.d. | 4.42 ± 0.49 | n.d. | n.d. |
Homogentisic acid derivative III | n.d. | n.d. | n.d. | n.d. | n.d. | 4.20 ± 1.04 | n.d. | n.d. |
Isorhamnetin | n.d. | n.d. | 31.86 ± 5.07 | n.d. | 10.75 ± 1.91 | n.d. | n.d. | n.d. |
Kaempferol-7-O-glucoside | n.d. | n.d. | n.d. | n.d. | 24.59 ± 3.30 | n.d. | n.d. | n.d. |
Luteolin-7-O-glucoside | n.d. | n.d. | 10.33 ± 0.93 | 15.48 ± 1.62 | n.d. | n.d. | n.d. | n.d. |
Luteolin-4′-O-glucoside | n.d. | n.d. | 25.31 ± 0.80 | n.d. | n.d. | n.d. | n.d. | n.d. |
Morin | 38.13 ± 3.28 | n.d. | n.d. | 10.77 ± 0.93 | n.d. | 16.13 ± 1.12 | 35.39 ± 3.10 | n.d. |
Myricetin | n.d. | n.d. | 24.50 ± 2.14 | n.d. | n.d. | 3.79 ± 0.63 | n.d. | n.d. |
Naringenin | n.d. | 24.69 ± 0.30 | n.d. | n.d. | n.d. | n.d. | n.d. | 25.57 ± 2.35 |
Norbadione A | n.d. | n.d. | n.d. | n.d. | 351.30 ± 24.60 | n.d. | n.d. | n.d. |
p-Hydroxybenzoic acid | 26.04 ± 4.17 | 0.91 ± 0.06 | 7.80 ± 0.39 | 19.42 ± 3.79 | n.d. | 19.80 ± 0.76 | 41.03 ± 8.49 | 18.64 ± 2.87 |
Rutin (quercetin-3-O-rutinoside) | 9.90 ± 1.94 | n.d. | n.d. | n.d. | n.d. | n.d. | 9.93 ± 0.76 | n.d. |
Bacterial Isolates (Code) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
E. faecium (MJMC 531-B) | MS S. aureus (MJMC 109) | MR S. aureus (MJMC 534-B) | MR S. aureus (MJMC 565-A) | S. aureus (ATCC 25923) | ||||||
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
B. regius | 20 | >20 | 20 | >20 | 5 | 20 | 5 | 20 | 5 | 10 |
G. lucidum | 20 | 20 | 20 | 20 | 10 | 20 | 5 | 5 | 5 | 20 |
I. hispidus | 5 | 10 | 5 | 10 | 1.25 | 1.25 | 0.625 | 1.25 | 0.625 | 2.5 |
L. fragrans | 2.5 | 5 | 2.5 | 5 | 2.5 | 2.5 | 0.3125 | 0.3125 | 0.3125 | 2.5 |
P. tinctorius | 5 | 20 | 5 | 20 | 1.25 | 2.5 | <0.156 | 5 | 0.625 | 5 |
S. luridus | 10 | >20 | 10 | >20 | 2.5 | 5 | 5 | 10 | 5 | 10 |
S. mendax | 20 | >20 | 20 | >20 | 5 | 5 | 5 | 10 | 5 | 5 |
X. subtomentosus | 20 | >20 | 20 | >20 | 20 | 20 | NI | - | 20 | 20 |
Control (CN) | <0.156 | - | <0.156 | - | <0.156 | - | <0.156 | - | <0.156 | - |
Bacterial Isolates (Code) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
A. baumannii (MJMC 525) | E. aerogenes (MJMC 534-A) | K. pneumoniae (MJH 513) | P. aeruginosa (MJH 540) | E. coli (ATCC 25922) | ||||||
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
B. regius | 20 | >20 | 10 | >20 | 10 | 20 | 10 | 10 | 10 | 10 |
G. lucidum | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
I. hispidus | 10 | 20 | 10 | >20 | 10 | 20 | NI | - | 5 | 5 |
L. fragrans | 0.625 | 5 | 1.25 | 2.5 | 10 | 10 | 20 | 20 | 2.5 | 2.5 |
P. tinctorius | 10 | 10 | 5 | 10 | 5 | 5 | 5 | 10 | 5 | 5 |
S. luridus | 10 | >20 | 10 | 20 | 10 | 10 | 10 | 10 | 10 | 10 |
S. mendax | 10 | 10 | 20 | 20 | 10 | 10 | 20 | 20 | 10 | 10 |
X. subtomentosus | 20 | >20 | NI | - | 20 | 20 | 20 | 20 | 20 | 20 |
Control (CN) | >20 | - | <0.156 | - | <0.156 | - | <0.156 | - | <0.156 | - |
Wild Mushrooms | 0.1 mg/mL | 1.0 mg/mL | 10.0 mg/mL |
---|---|---|---|
B. regius | 0.1 ± 0.1% B; d | 0.7 ± 0.7% B; f | 4.7 ± 1.0% A; d |
G. lucidum | 8.4 ± 4.3% B; b | 9.7 ± 2.6% B; d | 71.3 ± 7.5% A; b |
I. hispidus | 1.8 ± 1.6% B; c | 23.2 ± 4.1% AB; c | 91.1 ± 11.2% A; a |
L. fragrans | 0.1 ± 0.2% B; d | 31.3 ± 6.4% AB; b | 49.9 ± 5.9% A; c |
P. tinctorius | 24.9 ± 6.9% B; a | 95.2 ± 3.8% A; a | n.d. |
S. luridus | 0.7 ± 1.1% B; cd | 3.6 ± 2.9% AB; e | 76.8 ± 8.2% A; ab |
S. mendax | 0.4 ± 0.5% B; d | 1.6 ± 1.5% B; ef | 77.9 ± 8.6% A; ab |
X. subtomentosus | 9.6 ± 1.7% B; b | 33.2 ± 6.3% AB; b | 54.6 ± 6.5% A; c |
Wild Mushrooms | 0.1 mg/mL | 1.0 mg/mL | 10.0 mg/mL |
---|---|---|---|
B. regius | 24.2 ± 5.8% A; a | 24.6 ± 1.6% A; a | 25.1 ± 2.5% A; b |
G. lucidum | 13.5 ± 3.7% B; dcd | 14.5 ± 2.0% B; d | 40.4 ± 2.2% A; a |
I. hispidus | 14.3 ± 5.3% B; bd | 21.9 ± 1.7% A; b | n.d. |
L. fragrans | 14.5 ± 2.3% A; d | 15.1 ± 2.2% A; d | 19.7 ± 4.9% A; bc |
P. tinctorius | 17.9 ± 3.2% B; bc | 29.2 ± 4.9% A; a | n.d. |
S. luridus | 14.4 ± 7.9% B; bd | 14.5 ± 1.1% B; d | 42.0 ± 4.4% A; a |
S. mendax | 14.7 ± 3.9% A; bd | 14.8 ± 1.4% A; d | 15.1 ± 2.2% A; c |
X. subtomentosus | 17.9 ± 2.3% B; ab | 18.9 ± 3.2% AB; c | 24.4 ± 2.5% A; b |
Parameters | |||||||
---|---|---|---|---|---|---|---|
Conditions | Formulations | Color | Homogeneity | Feel on Skin | Phase Separation | pH | |
Initial | C | White | Good | Smooth | No | 4.67 | |
IH | Mustard yellow | Good | Smooth | No | 4.59 | ||
PT | Brown | Good | Smooth | No | 4.63 | ||
IH + PT | Brown | Good | Smooth | No | 4.68 | ||
30 Days | 4 °C | C | White | Good | Smooth | No | 4.61 |
IH | Mustard yellow | Good | Smooth | No | 4.55 | ||
PT | Brown | Good | Smooth | No | 4.57 | ||
IH + PT | Brown | Good | Smooth | No | 4.53 | ||
25 °C | C | White | Good | Smooth | No | 4.63 | |
IH | Mustard yellow | Good | Smooth | No | 4.57 | ||
PT | Brown | Good | Smooth | No | 4.53 | ||
IH + PT | Brown | Good | Smooth | No | 4.52 | ||
40 °C | C | White | Good | Smooth | No | 4.85 | |
IH | Mustard yellow | Good | Smooth | No | 4.76 | ||
PT | Brown | Good | Smooth | No | 4.81 | ||
IH + PT | Brown | Good | Smooth | No | 4.79 | ||
Heating and Cooling Cycles | C | White | Good | Smooth | No | 4.81 | |
IH | Mustard yellow | Good | Smooth | No | 4.79 | ||
PT | Brown | Good | Smooth | No | 4.86 | ||
IH + PT | Brown | Good | Smooth | No | 4.80 |
Creams | Total Phenols (mg GA/g Cream) | DPPH (µM Trolox/g Cream) |
---|---|---|
C | 3.52 ± 0.39 c | 6.78 ± 1.63 c |
IH | 6.91 ± 0.34 a | 24.42 ± 2.23 a |
PT | 4.94 ± 0.49 b | 8.60 ± 2.39 c |
IH + PT | 6.64 ± 0.85 a | 13.92 ± 3.10 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, T.; Machado-Carvalho, L.; Aires, A.; Saavedra, M.J.; Marques, G. Antioxidant, Antimicrobial and Cosmeceutical Potential of Wild Mushroom Extracts. Appl. Microbiol. 2023, 3, 562-579. https://doi.org/10.3390/applmicrobiol3020040
Martins T, Machado-Carvalho L, Aires A, Saavedra MJ, Marques G. Antioxidant, Antimicrobial and Cosmeceutical Potential of Wild Mushroom Extracts. Applied Microbiology. 2023; 3(2):562-579. https://doi.org/10.3390/applmicrobiol3020040
Chicago/Turabian StyleMartins, Tânia, Liliana Machado-Carvalho, Alfredo Aires, Maria José Saavedra, and Guilhermina Marques. 2023. "Antioxidant, Antimicrobial and Cosmeceutical Potential of Wild Mushroom Extracts" Applied Microbiology 3, no. 2: 562-579. https://doi.org/10.3390/applmicrobiol3020040
APA StyleMartins, T., Machado-Carvalho, L., Aires, A., Saavedra, M. J., & Marques, G. (2023). Antioxidant, Antimicrobial and Cosmeceutical Potential of Wild Mushroom Extracts. Applied Microbiology, 3(2), 562-579. https://doi.org/10.3390/applmicrobiol3020040