Comparative Effectiveness and Persistence of Antimicrobial Durability in Dry and Wet States of a Novel Antimicrobial Surface Disinfectant
Abstract
:1. Introduction
2. Material and Methods
2.1. Viral Inoculum Preparation and Titration
2.2. Viral Inoculum Wet Testing
2.3. Viral Inoculum Dry Testing
2.4. Counting Procedures for Both Wet and Dry Testing of Viral Inocula
2.5. Bacterial and C. auris Inoculum Preparations
2.6. Bacterial and C. auris Wet Testing
2.7. Bacterial and C. auris Dry Testing
2.8. Counting Procedures for Both Wet and Dry Testing of Bacteria and C. auris
2.9. Data Analysis
3. Results
3.1. Viral Pathogens
3.2. Bacterial Pathogens
3.3. Fungal Pathogens
4. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wißmann, J.E.; Kirchhoff, L.; Brüggemann, Y.; Todt, D.; Steinmann, J.; Steinmann, E. Persistence of pathogens on inanimate surfaces: A narrative review. Microorganisms 2021, 9, 343. [Google Scholar] [CrossRef] [PubMed]
- Marzoli, F.; Bortolami, A.; Pezzuto, A.; Mazzetto, E.; Piro, R.; Terregino, C.; Bonfante, F.; Belluco, S. A systematic review of human coronaviruses survival on environmental surfaces. Sci. Total Environ. 2021, 778, 146191. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, S.J.; Sanderson, R.A.; Rushton, S.P. Control of norovirus infection. Curr. Opin. Gastroenterol. 2019, 35, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Bandara, H.; Samaranayake, L.P. Emerging strategies for environmental decontamination of the nosocomial fungal pathogen Candida auris. J. Med. Microbiol. 2022, 71, 001548. [Google Scholar] [CrossRef]
- Aranke, M.; Moheimani, R.; Phuphanich, M.; Kaye, A.D.; Ngo, A.L.; Viswanath, O.; Herman, J. Disinfectants in interventional practices. Curr. Pain. Headache Rep. 2021, 25, 21. [Google Scholar] [CrossRef]
- Hogan, S.; Zapotoczna, M.; Stevens, N.T.; Humphreys, H.; O’Gara, J.P.; O’Neill, E. In vitro approach for identification of the most effective agents for antimicrobial lock therapy in the treatment of intravascular catheter-related infections caused by Staphylococcus aureus. Antimicrob. Agents Chemother. 2016, 60, 2923–2931. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, R.S.; Harvey, A.; Kettle, L.L.; Payne, J.D.; Russell, S.J. Sorption of poly(hexamethylene biguanide) on cellulose: Mechanism of binding and molecular recognition. Langmuir 2006, 22, 5636–5644. [Google Scholar] [CrossRef]
- Xu, F.-X.; Ooi, C.W.; Liu, B.-L.; Song, C.P.; Chiu, C.-Y.; Wang, C.-Y.; Chang, Y.-K. Antibacterial efficacy of poly(hexamethylene biguanide) immobilized on chitosan/dye-modified nanofiber membranes. Int. J. Biol. Macromol. 2021, 181, 508–520. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Recommendations for Identification of Candida Auris; CDC: Atlanta, GA, USA, 2018. Available online: https://wwwn.cdc.gov/ARIsolateBank/ (accessed on 31 January 2018).
- US Environmental Protection Agency. National Field Study for Coliphage Detection in Groundwater: Methods 1601 and 1602 Evaluation in Regional Aquifers; US EPA Office of Science and Technology: Washington, DC, USA, 2006. [Google Scholar]
- Dawson, D.J.; Paish, A.; Staffell, L.M.; Seymour, I.J.; Appleton, H. Survival of viruses on fresh produce, using MS2 as a surrogate for norovirus. J. Appl. Microbiol. 2005, 98, 203–209. [Google Scholar] [CrossRef]
- Mattison, K.; Karthikeyan, K.; Abebe, M.; Malik, N.; Sattar, S.A.; Farber, J.M.; Bidawid, S. Survival of calicivirus in foods and on surfaces: Experiments with Feline calicivirus as a surrogate for norovirus. J. Food Prot. 2007, 70, 500–503. [Google Scholar] [CrossRef]
- Sanekata, T.; Fukuda, T.; Miura, T.; Morino, H.; Lee, C.; Maeda, K.; Araki, K.; Otake, T.; Kawahata, T.; Shibata, T. Evaluation of the antiviral activity of chlorine dioxide and sodium hypochlorite against Feline calicivirus, human influenza virus, measles virus, Canine distemper virus, human herpesvirus, human adenovirus, canine adenovirus and canine parvovirus. Biocontrol. Sci. 2010, 15, 45–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitehead, K.; McCue, K.A. Virucidal efficacy of disinfectant actives against Feline calicivirus, a surrogate for norovirus, in a short contact time. Am. J. Infect. Control 2010, 38, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Zonta, W.; Mauroy, A.; Farnir, F.; Thiry, E. Comparative virucidal efficacy of seven disinfectants against Murine norovirus and Feline calicivirus, surrogates of human norovirus. Food Env. Virol. 2016, 8, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dancer, S.J. Importance of the environment in methicillin-resistant Staphylococcus aureus acquisition: The case for hospital cleaning. Lancet Infect. Dis. 2008, 8, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Kean, R.; McKloud, E.; Townsend, E.M.; Sherry, L.; Delaney, C.; Jones, B.L.; Williams, C.; Ramage, G. The comparative efficacy of antiseptics against Candida auris biofilms. Int. J. Antimicrob. Agents 2018, 52, 673–677. [Google Scholar] [CrossRef] [Green Version]
- Lerner, A.; Adler, A.; Abu-Hanna, J.; Meitus, I.; Navon-Venezia, S.; Carmeli, Y. Environmental contamination by carbapenem-resistant Enterobacteriaceae. J. Clin. Microbiol. 2013, 51, 177–181. [Google Scholar] [CrossRef] [Green Version]
- Reichel, M.; Schlicht, A.; Ostermeyer, C.; Kampf, G. Efficacy of surface disinfectant cleaners against emerging highly resistant Gram-negative bacteria. BMC Infect. Dis. 2014, 14, 292. [Google Scholar] [CrossRef] [Green Version]
- Wyrzykowska-Ceradini, B.; Calfee, M.; Touati, A.; Wood, J.; Mickelsen, R.; Miller, L.; Colby, M.; Slone, C.; Gatchalian, N.; Pongur, S.; et al. The use of bacteriophage MS2 for the development and application of a virucide decontamination test method for porous and heavily soiled surfaces. J. Appl. Microbiol. 2019, 127, 1315–1326. [Google Scholar] [CrossRef]
- Krebs, F.C.; Miller, S.R.; Ferguson, M.L.; Labib, M.; Rando, R.F.; Wigdahl, B. Polybiguanides, particularly polyethylene hexamethylene biguanide, have activity against human immunodeficiency virus type 1. Biomed. Pharm. 2005, 59, 438–445. [Google Scholar] [CrossRef]
- Sauerbrei, A.; Schacke, M.; Glück, B.; Egerer, R.; Wutzler, P. Validation of biocides against duck hepatitis B virus as a surrogate virus for human hepatitis B virus. J. Hosp. Infect. 2006, 64, 358–365. [Google Scholar] [CrossRef]
- Langlet, J.; Gaboriaud, F.; Duval, J.F.; Gantzer, C. Aggregation and surface properties of f-specific RNA phages: Implication for membrane filtration processes. Water Res. 2008, 42, 2769–2777. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yim, S.L.; Wong, C.H.; Kan, C.W. Study on the development of antiviral spandex fabric coated with poly(hexamethylene biguanide) hydrochloride (PHMB). Polymers 2021, 13, 2122. [Google Scholar] [CrossRef] [PubMed]
- Chindera, K.; Mahato, M.; Sharma, A.K.; Horsley, H.; Kloc-Muniak, K.; Kamaruzzaman, N.F.; Kumar, S.; McFarlane, A.; Stach, J.; Bentin, T.; et al. The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes. Sci. Rep. 2016, 6, 23121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sowlati-Hashjin, S.; Carbone, P.; Karttunen, M. Insights into the polyhexamethylene biguanide (PHMB) mechanism of action on bacterial membrane and DNA: A molecular dynamics study. J. Phys. Chem. B 2020, 124, 4487–4497. [Google Scholar] [CrossRef]
- López-Rojas, R.; Fernández-Cuenca, F.; Serrano-Rocha, L.; Pascual, Á. In vitro activity of a polyhexanide-betaine solution against high-risk clones of multidrug-resistant nosocomial pathogens. Enferm. Infecc. Microbiol. Clin. 2017, 35, 12–19. [Google Scholar] [CrossRef]
- Kaehn, K. Polihexanide: A safe and highly effective biocide. Skin Pharmacol. Physiol. 2010, 23, 7–16. [Google Scholar] [CrossRef]
- Pinto, F.; Maillard, J.Y.; Denyer, S.P.; McGeechan, P. Polyhexamethylene biguanide exposure leads to viral aggregation. J. Appl. Microbiol. 2010, 108, 1880–1888. [Google Scholar] [CrossRef]
- Kite, P.; Eastwood, K.; Sugden, S.; Percival, S.L. Use of in vivo-generated biofilms from hemodialysis catheters to test the efficacy of a novel antimicrobial catheter lock for biofilm eradication in vitro. J. Clin. Microbiol. 2004, 42, 3073–3076. [Google Scholar] [CrossRef] [Green Version]
- Percival, S.; Kite, P.; Eastwood, K.; Murga, R.; Carr, J.; Arduino, M.; Donlan, R.M. Tetrasodium EDTA as a novel central venous catheter lock solution against biofilm. Infect. Control Hosp. Epidemiol. 2005, 26, 515–519. [Google Scholar] [CrossRef]
- Percival, S.L.; Salisbury, A.M. The efficacy of tetrasodium EDTA on biofilms. Adv. Exp. Med. Biol. 2018, 1057, 101–110. [Google Scholar] [CrossRef]
- Lambert, R.J.; Hanlon, G.W.; Denyer, S.P. The synergistic effect of EDTA/antimicrobial combinations on Pseudomonas aeruginosa. J. Appl. Microbiol. 2004, 96, 244–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wettstein, M.; Weik, C.; Holneicher, C.; Häussinger, D. Betaine as an osmolyte in rat liver: Metabolism and cell-to-cell interactions. Hepatology 1998, 27, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Sałek, K.; Zgoła-Grześkowiak, A.; Kaczorek, E. Modification of surface and enzymatic properties of Achromobacter denitrificans and Stenotrophomonas maltophilia in association with diesel oil biodegradation enhanced with alkyl polyglucosides. Colloids Surf. B Biointerfaces 2013, 111, 36–42. [Google Scholar] [CrossRef] [PubMed]
Product | Chemical Constituent |
---|---|
VR * | PHMB 7%, tetrasodium EDTA 1.5%, Dowanaol 5%, betaine 3%, Glucopon 10% |
A | Alkyl (67% C12, 25% C14, 7% C16, 1% C8-C10-C18) dimethyl benzyl ammonium chloride 0.0860%, alkyl (50% C14, 40% C12, 10% C16) dimethyl benzyl ammonium chloride 0.0216%, and other ingredients (99.8924%) |
B | Alkyl (C12 40%, C14 50%, C16 10%) dimethyl benzyl ammonium chloride 0.3% and other ingredients (99.7%) |
C | Water, decyl glucoside (plant-derived cleaning agent), lauramine oxide (plant-based cleaning agent), sodium gluconate (plant-derived water softener), sodium carbonate (mineral-based alkalinity builder), benzothiazoline (synthetic preservative), methylisothiazolinone (synthetic preservative) |
D | Hydrogen peroxide 8.0% and other ingredients (92.0%) |
E | n-Alkyl (60% C14, 30% C16, 5% C12, 5% C18) dimethyl benzyl ammonium chlorides 0.105%, n-alkyl (68% C12, 32% C14) dimethyl ethylbenzyl ammonium chlorides 0.105%, hydrogen peroxide 8.0%, and inert ingredients (91.79%) |
F | Ethyl alcohol 29.4% and other ingredients (70.6%) |
G | Alkyl (50% C14, 40% C12, 10% C16) dimethyl benzyl ammonium chloride 0.200%, octyl decyl dimethyl ammonium chloride 0.150%, didecyl dimethyl ammonium chloride 0.075%, dioctyl dimethyl ammonium chloride 0.075%, and other ingredients (99.500%) |
Disinfectant | Mean ± Standard Deviation log10 Reduction * | ||
---|---|---|---|
30 s Wet Contact | 5 min Wet Contact | 24 h Dry Residue | |
F-specific coliphage MS2 | |||
VR 2.34% | 2.56 ± 0.37 | 3.54 ± 0.17 | 1.30 ± 0.09 |
VR 4.68% | 2.62 ± 0.15 | 3.74 ± 0.10 | 1.44 ± 0.08 |
VR 7.8% | 2.91 ± 0.25 | 4.48 ± 0.23 | 1.62 ± 0.10 |
A | 1.28 ± 0.05 | 2.17 ± 0.09 | 0.40 ± 0.17 |
B | 1.47 ± 0.12 | 2.64 ± 0.16 | 0.72 ± 0.09 |
C | 0.87 ± 0.24 | 2.43 ± 0.24 | 0.49 ± 0.24 |
D | 1.09 ± 0.13 | 2.37 ± 0.06 | 0.74 ± 0.05 |
E | 1.27 ± 0.11 | 3.35 ± 0.08 | 0.25 ± 0.14 |
F | 1.34 ± 0.15 | 3.29 ± 0.11 | 0.45 ± 0.24 |
G | 1.65 ± 0.06 | 2.80 ± 0.01 | 0.56 ± 0.14 |
Feline calicivirus | |||
VR 2.34% | 3.00 ± 0.37 | 3.59 ± 0.05 | 0.58 ± 0.17 |
VR 4.68% | 3.19 ± 0.27 | 4.95 ± 0.66 | 0.95 ± 0.06 |
VR 7.8% | 4.44 ± 1.02 | 5.39 ± 0.33 | 1.57 ± 0.10 |
A | 1.88 ± 0.18 | 2.59 ± 0.09 | 0.33 ± 0.10 |
B | 2.31 ± 0.15 | 3.18 ± 0.06 | 0.40 ± 0.16 |
C | 1.06 ± 0.09 | 2.05 ± 0.15 | 0.19 ± 0.11 |
D | 2.27 ± 0.09 | 3.19 ± 0.08 | 0.28 ± 0.11 |
E | 3.88 ± 1.40 | 3.97 ± 0.01 | 0.25 ± 0.17 |
F | 3.06 ± 0.15 | 4.05 ± 0.09 | 0.16 ± 0.13 |
G | 2.18 ± 0.60 | 3.21 ± 0.01 | 0.25 ± 0.02 |
Comparators | VR 4.68% | VR 7.8% | ||||
---|---|---|---|---|---|---|
Log10 Reduction versus 4.68% (p-Value) * | Log10 Reduction versus 7.8% (p-Value) * | |||||
30 s Wet | 5 min Wet | 24 h Dry | 30 s Wet | 5 min Wet | 24 h Dry | |
F-specific coliphage MS-2 | ||||||
A | 1.34 (<0.001) | 1.56 (<0.0001) | 1.03 (0.002) | 1.08 (0.002) | 2.30 (<0.001) | 1.21 (0.001) |
B | 1.15 (0.001) | 1.09 (0.001) | 0.71 (0.001) | 0.89 (0.006) | 1.83 (<0.001) | 0.89 (0.001) |
C | 1.76 (<0.001) | 1.31 (0.002) | 0.94 (0.006) | 1.54 (0.001) | 2.05 (0.001) | 1.12 (0.004) |
D | 1.53 (≤0.001) | 1.37 (<0.0001) | 0.69 (<0.001) | 1.27 (0.002) | 2.11 (<0.001) | 0.87 (<0.001) |
E | 1.35 (<0.001) | 0.39 (0.013) | 1.19 (<0.001) | 1.09 (0.002) | 1.13 (0.003) | 1.37 (<0.001) |
F | 1.28 (0.001) | 0.45 (0.013) | 0.99 (0.006) | 1.02 (0.005) | 1.19 (0.003) | 1.17 (0.003) |
G | 0.97 (<0.001) | 0.93 (0.006) | 0.88 (0.002) | 0.72 (0.008) | 1.67 (0.009) | 1.06 (0.001) |
Feline calicivirus (FCV) | ||||||
A | 1.30 (0.005) | 2.35 (0.035) | 0.62 (0.002) | 2.55 (0.07) | 2.79 (<0.001) | 1.24 (<0.001) |
B | 0.88 (0.015) | 1.76 (0.06) | 0.55 (0.011) | 2.13 (0.09) | 2.20 (0.001) | 1.17 (0.001) |
C | 2.12 (<0.001) | 2.89 (0.004) | 0.76 (0.001) | 3.37 (0.042) | 3.33 (<0.001) | 1.38 (<0.001) |
D | 0.92 (0.01) | 1.76 (0.06) | 0.67 (0.002) | 2.17 (0.09) | 2.20 (0.001) | 1.29 (<0.001) |
E | 0.29 (0.39) | 0.97 (0.17) | 0.70 (0.006) | 0.55 (0.67) | 1.42 (0.004) | 1.32 (0.001) |
F | 0.13 (0.58) | 0.90 (0.19) | 0.79 (0.002) | 1.38 (0.19) | 1.34 (0.005) | 1.41 (<0.001) |
G | 1.01 (0.007) | 1.73 (0.06) | 0.70 (<0.001) | 2.26 (0.09) | 2.17 (0.001) | 1.32 (<0.0001) |
Disinfectant | Mean ± Standard Deviation log10 Reduction * | ||
---|---|---|---|
30 s Wet Contact | 5 min Wet Contact | 24 h Dry Residue | |
E. coli | |||
VR 2.34% | 4.76 ± 1.20 | 6.45 ± 0.00 | 2.65 ± 0.08 |
VR 4.68% | 6.45 ± 0.00 | 6.45 ± 0.00 | 3.52 ± 0.32 |
VR 7.8% | 6.45 ± 0.00 | 6.45 ± 0.00 | 4.34 ± 0.29 |
A | 2.30 ± 0.44 | 4.35 ± 1.49 | 1.36 ± 0.16 |
B | 3.54 ± 0.38 | 6.45 ± 0.00 | 1.96 ± 0.10 |
C | 1.86 ± 0.15 | 3.17 ± 0.19 | 1.38 ± 0.11 |
D | 2.70 ± 0.25 | 6.45 ± 0.00 | 2.28 ± 0.51 |
E | 2.64 ± 0.20 | 3.70 ± 0.10 | 1.55 ± 0.10 |
F | 4.19 ± 0.40 | 6.45 ± 0.00 | 2.01 ± 0.10 |
G | 3.06 ± 0.28 | 6.45 ± 0.00 | 2.11 ± 0.09 |
P. aeruginosa | |||
VR 2.34% | 2.19 ± 0.33 | 3.90 ± 1.05 | 1.41 ± 0.20 |
VR 4.68% | 2.70 ± 0.28 | 4.64 ± 1.03 | 2.38 ± 0.95 |
VR 7.8% | 4.07 ± 0.93 | 5.36 ± 0.00 | 2.65 ± 0.21 |
A | 1.37 ± 0.52 | 2.38 ± 0.49 | 0.57 ± 0.47 |
B | 5.36 ± 0.00 | 5.36 ± 0.00 | 1.21 ± 0.24 |
C | 0.86 ± 0.45 | 2.68 ± 0.49 | 1.03 ± 0.45 |
D | 2.28 ± 0.08 | 5.36 ± 0.00 | 1.12 ± 0.03 |
E | 2.56 ± 0.57 | 5.36 ± 0.00 | 1.12 ± 0.58 |
F | 2.28 ± 0.18 | 5.36 ± 0.00 | 0.85 ± 0.43 |
G | 1.51 ± 0.27 | 3.74 ± 1.15 | 1.23 ± 0.50 |
S. aureus | |||
VR 2.34% | 3.37 ± 0.20 | 5.63 ± 0.00 | 2.37 ± 0.77 |
VR 4.68% | 4.96 ± 0.94 | 5.63 ± 0.00 | 3.03 ± 0.27 |
VR 7.8% | 5.63 ± 0.00 | 5.63 ± 0.00 | 5.22 ± 1.13 |
A | 3.36 ± 0.51 | 5.63 ± 0.00 | 1.05 ± 0.28 |
B | 5.63 ± 0.00 | 5.63 ± 0.00 | 1.15 ± 0.10 |
C | 1.01 ± 0.46 | 1.67 ± 0.59 | 0.16 ± 0.08 |
D | 3.18 ± 0.25 | 5.63 ± 0.00 | 1.19 ± 0.25 |
E | 2.67 ± 0.10 | 4.50 ± 0.80 | 0.92 ± 0.32 |
F | 3.31 ± 0.44 | 5.63 ± 0.00 | 0.20 ± 0.14 |
G | 3.09 ± 0.26 | 5.63 ± 0.00 | 0.29 ± 0.11 |
Comparators | VR 4.68% | VR 7.8% | ||||
---|---|---|---|---|---|---|
Log10 Reduction versus 4.68% (p-Value) * | Log10 Reduction versus 7.8% (p-Value) * | |||||
30 s Wet | 5 min Wet | 24 h Dry | 30 s Wet | 5 min Wet | 24 h Dry | |
E. coli | ||||||
A | 4.15 (0.006) | 2.09 (0.19) | 2.17 (0.001) | 4.15 (0.006) | 2.09 (0.19) | 2.98 (<0.001) |
B | 2.91 (0.009) | 0.0 (NA) | 1.56 (0.003) | 2.91 (0.009) | 0.0 (NA) | 2.38 (<0.001) |
C | 4.59 (<0.001) | 3.28 (0.002) | 2.14 (0.001) | 4.59 (< 0.001) | 3.28 (0.002) | 2.95 (<0.001) |
D | 3.75 (0.002) | 0.0 (NA) | 1.24 (0.044) | 3.75 (0.002) | 0.0 (NA) | 2.06 (0.008) |
E | 3.81 (0.001) | 2.74 (0.001) | 1.97 (0.001) | 3.81 (0.001) | 2.74 (0.001) | 2.78 (<0.001) |
F | 2.26 (0.015) | 0.0 (NA) | 1.51 (0.003) | 2.26 (0.015) | 0.0 (NA) | 2.32 (<0.001) |
G | 3.39 (0.003) | 0.0 (NA) | 1.41 (0.004) | 3.39 (0.003) | 0.0 (NA) | 2.23 (<0.001) |
P. aeruginosa | ||||||
A | 1.33 (0.03) | 2.25 (0.049) | 1.81 (0.07) | 2.7 (0.023) | 2.98 (0.013) | 2.08 (0.005) |
B | −2.66 (0.005) | −0.73 (0.42) | 1.17 (0.17) | −1.29 (0.19) | 0.0 (NA) | 1.44 (0.003) |
C | 1.84 (0.008) | 1.96 (0.07) | 1.35 (0.14) | 3.21 (0.012) | 2.68 (0.016) | 1.61 (0.01) |
D | 0.42 (0.10) | −0.73 (0.42) | 1.27 (0.20) | 1.79 (0.11) | 0.0 (NA) | 1.53 (0.009) |
E | 0.14 (0.77) | −0.73 (0.42) | 1.27 (0.18) | 1.51 (0.12) | 0.0 (NA) | 1.53 (0.025) |
F | 0.42 (0.15) | −0.06 (0.96) | 1.53 (0.11) | 1.79 (0.056) | 0.67 (0.42) | 1.80 (0.006) |
G | 1.19 (0.012) | 0.90 (0.46) | 1.15 (0.20) | 2.56 (0.02) | 1.63 (0.18) | 1.41 (0.021) |
S. aureus | ||||||
A | 1.60 (0.10) | 0.0 (NA) | 1.98 (0.002) | 2.27 (0.024) | −0.23 (0.42) | 4.17 (0.007) |
B | −0.67 (0.42) | 0.0 (NA) | 1.89 (0.001) | 0.0 (NA) | −0.23 (0.42) | 4.07 (0.035) |
C | 3.95 (0.006) | 3.96 (0.011) | 2.87 (<0.001) | 4.62 (0.005) | 3.72 (0.002) | 5.06 (0.024) |
D | 1.78 (0.06) | 0.0 (NA) | 1.85 (0.002) | 2.45 (0.005) | −0.23 (0.42) | 4.04 (0.008) |
E | 2.29 (0.07) | 1.13 (0.18) | 2.11 (0.002) | 2.96 (0.001) | 0.9 (0.22) | 4.3 (0.007) |
F | 1.65 (0.09) | 0.0 (NA) | 2.83 (<0.001) | 2.32 (0.017) | −0.23 (0.42) | 5.02 (0.023) |
G | 1.87 (0.054) | 0.0 (NA) | 2.75 (<0.001) | 2.54 (0.005) | −0.23 (0.42) | 4.94 (0.024) |
Disinfectant | Mean ± Standard Deviation log10 Reduction * | ||
---|---|---|---|
30 s Wet Contact | 5 min Wet Contact | 24 h Dry Residue | |
VR 2.34% | 2.59 ± 0.05 | 3.47 ± 0.19 | 0.65 ± 0.14 |
VR 4.68% | 3.19 ± 0.08 | 4.84 ± 1.05 | 0.86 ± 0.27 |
VR 7.8% | 3.64 ± 0.13 | 5.58 ± 1.03 | 3.83 ± 1.79 |
A | 0.76 ± 0.06 | 1.61 ± 0.03 | 0.09 ± 0.14 |
B | 0.88 ± 0.04 | 2.00 ± 0.18 | 0.17 ± 0.10 |
C | 0.63 ± 0.07 | 1.22 ± 0.16 | 0.06 ± 0.02 |
D | 0.64 ± 0.08 | 1.79 ± 0.15 | 0.05 ± 0.10 |
E | 2.60 ± 0.02 | 4.91 ± 1.03 | 0.33 ± 0.08 |
F | 2.38 ± 0.11 | 3.87 ± 0.13 | 0.11 ± 0.10 |
G | 0.71 ± 0.04 | 2.03 ± 0.16 | 0.17 ± 0.09 |
Comparators | VR 4.68% | VR 7.8% | ||||
---|---|---|---|---|---|---|
Log10 Reduction versus 4.68% (p-Value) | Log10 Reduction versus 7.8% (p-Value) * | |||||
30 s Wet | 5 min Wet | 24 h Dry | 30 s Wet | 5 min Wet | 24 h Dry | |
Candida auris | ||||||
A | 2.43 (<0.0001) | 3.22 (0.049) | 0.77 (0.025) | 2.88 (<0.0001) | 3.97 (0.032) | 0.93 (0.043) |
B | 2.32 (<0.0001) | 2.84 (0.02) | 0.69 (0.028) | 2.76 (<0.0001) | 3.58 (0.008) | 0.85 (0.0502) |
C | 2.56 (<0.0001) | 3.62 (0.037) | 0.80 (0.053) | 3.01 (<0.0001) | 4.36 (0.024) | 0.96 (0.08) |
D | 2.55 (<0.0001) | 3.04 (0.052) | 0.81 (0.017) | 2.99 (<0.0001) | 3.79 (0.033) | 0.97 (0.035) |
E | 0.59 (<0.001) | −0.07 (0.95) | 0.53 (0.06) | 1.04 (0.006) | 0.67 (0.55) | 0.69 (0.14) |
F | 0.81 (0.001) | 0.97 (0.32) | 0.74 (0.023) | 1.25 (<0.001) | 1.71 (0.14) | 0.91 (0.043) |
G | 2.48 (<0.0001) | 2.81 (0.06) | 0.69 (0.028) | 2.93 (<0.0001) | 3.55 (0.037) | 0.85 (0.051) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerges, B.; Rosenblatt, J.; Jiang, Y.; Raad, I. Comparative Effectiveness and Persistence of Antimicrobial Durability in Dry and Wet States of a Novel Antimicrobial Surface Disinfectant. Appl. Microbiol. 2023, 3, 549-561. https://doi.org/10.3390/applmicrobiol3020039
Gerges B, Rosenblatt J, Jiang Y, Raad I. Comparative Effectiveness and Persistence of Antimicrobial Durability in Dry and Wet States of a Novel Antimicrobial Surface Disinfectant. Applied Microbiology. 2023; 3(2):549-561. https://doi.org/10.3390/applmicrobiol3020039
Chicago/Turabian StyleGerges, Bahgat, Joel Rosenblatt, Ying Jiang, and Issam Raad. 2023. "Comparative Effectiveness and Persistence of Antimicrobial Durability in Dry and Wet States of a Novel Antimicrobial Surface Disinfectant" Applied Microbiology 3, no. 2: 549-561. https://doi.org/10.3390/applmicrobiol3020039
APA StyleGerges, B., Rosenblatt, J., Jiang, Y., & Raad, I. (2023). Comparative Effectiveness and Persistence of Antimicrobial Durability in Dry and Wet States of a Novel Antimicrobial Surface Disinfectant. Applied Microbiology, 3(2), 549-561. https://doi.org/10.3390/applmicrobiol3020039