Probiotic-Based Sanitation in the Built Environment—An Alternative to Chemical Disinfectants
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Sayah, M.H. Chemical disinfectants of COVID-19: An overview. J. Water Health 2020, 18, 843–848. [Google Scholar] [CrossRef] [PubMed]
- CDC. Disinfection Methods. Disinfection & Sterilization Guidelines. Guidelines Library. Infection Control. Available online: https://www.cdc.gov/infectioncontrol/guidelines/disinfection/disinfection-methods/index.html (accessed on 26 April 2023).
- List N: Disinfectants for Use against SARS-CoV-2 (COVID-19). Available online: https://www.epa.gov/pesticide-registration/list-n-disinfectants-use-against-sars-cov-2-covid-19 (accessed on 23 June 2020).
- Hora, P.I.; Pati, S.G.; McNamara, P.J.; Arnold, W.A. Increased Use of Quaternary Ammonium Compounds during the SARS-CoV-2 Pandemic and Beyond: Consideration of Environmental Implications. Environ. Sci. Technol. Lett. 2020, 7, 89–94. [Google Scholar] [CrossRef]
- Curran, E.T.; Wilkinson, M.; Bradley, T. Chemical disinfectants: Controversies regarding their use in low risk healthcare environments (part 1). J. Infect. Prev. 2019, 20, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Caselli, E. Hygiene: Microbial strategies to reduce pathogens and drug resistance in clinical settings. Microb. Biotechnol. 2017, 10, 1079–1083. [Google Scholar] [CrossRef]
- Mattison, C.P.; Calderwood, L.E.; Marsh, Z.A.; Wikswo, M.E.; Balachandran, N.; Kambhampati, A.K.; Gleason, M.E.; Lawinger, H.; Mirza, S.A. Childcare and School Acute Gastroenteritis Outbreaks: 2009–2020. Pediatrics 2022, 150, e2021056002. [Google Scholar] [CrossRef]
- D’Accolti, M.; Soffritti, I.; Mazzacane, S.; Caselli, E. Fighting AMR in the Healthcare Environment: Microbiome-Based Sanitation Approaches and Monitoring Tools. Int. J. Mol. Sci. 2019, 20, 1535. [Google Scholar] [CrossRef]
- Plaza-Rodríguez, C.; Kaesbohrer, A.; Tenhagen, B. Probabilistic model for the estimation of the consumer exposure to methicillin-resistant Staphylococcus aureus due to cross-contamination and recontamination. Microbiologyopen 2019, 8, e900. [Google Scholar] [CrossRef]
- Lai, C.; Chen, S.; Ko, W.; Hsueh, P. Increased antimicrobial resistance during the COVID-19 pandemic. Int. J. Antimicrob. Agents 2021, 57, 106324. [Google Scholar] [CrossRef]
- Clancy, C.J.; Buehrle, D.J.; Nguyen, M.H. PRO: The COVID-19 pandemic will result in increased antimicrobial resistance rates. JAC Antimicrob. Resist. 2020, 2, dlaa049. [Google Scholar] [CrossRef]
- Chen, B.; Han, J.; Dai, H.; Jia, P. Biocide-tolerance and antibiotic-resistance in community environments and risk of direct transfers to humans: Unintended consequences of community-wide surface disinfecting during COVID-19? Environ. Pollut. 2021, 283, 117074. [Google Scholar] [CrossRef]
- Ambrosino, A.; Pironti, C.; Dell’Annunziata, F.; Giugliano, R.; Chianese, A.; Moccia, G.; DeCaro, F.; Galdiero, M.; Franci, G.; Motta, O. Investigation of biocidal efficacy of commercial disinfectants used in public, private and workplaces during the pandemic event of SARS-CoV-2. Sci. Rep. 2022, 12, 5468. [Google Scholar] [CrossRef] [PubMed]
- Schrank, C.L.; Minbiole, K.P.C.; Wuest, W.M. Are Quaternary Ammonium Compounds, the Workhorse Disinfectants, Effective against Severe Acute Respiratory Syndrome-Coronavirus-2? ACS Infect. Dis. 2020, 6, 1553–1557. [Google Scholar] [CrossRef]
- Hegstad, K.; Langsrud, S.; Lunestad, B.T.; Scheie, A.A.; Sunde, M.; Yazdankhah, S.P. Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health? Microb. Drug. Resist. 2010, 16, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Chemaly, R.F.; Simmons, S.; Dale, C.; Ghantoji, S.S.; Rodriguez, M.; Gubb, J.; Stachowiak, J.; Stibich, M. The role of the healthcare environment in the spread of multidrug-resistant organisms: Update on current best practices for containment. Ther. Adv. Infect. Dis. 2014, 2, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Cave, R.; Cole, J.; Mkrtchyan, H.V. Surveillance and prevalence of antimicrobial resistant bacteria from public settings within urban built environments: Challenges and opportunities for hygiene and infection control. Environ. Int. 2021, 157, 106836. [Google Scholar] [CrossRef]
- He, G.; Landry, M.; Chen, H.; Thorpe, C.; Walsh, D.; Varela, M.F.; Pan, H. Detection of benzalkonium chloride resistance in community environmental isolates of staphylococci. J. Med. Microbiol. 2014, 63, 735–741. [Google Scholar] [CrossRef]
- Zhang, M.; O’dononghue, M.; Boost, M.V. Characterization of staphylococci contaminating automated teller machines in Hong Kong. Epidemiol. Infect. 2012, 140, 1366–1371. [Google Scholar] [CrossRef]
- Buffet-Bataillon, S.; Tattevin, P.; Bonnaure-Mallet, M.; Jolivet-Gougeon, A. Emergence of resistance to antibacterial agents: The role of quaternary ammonium compounds--a critical review. Int. J. Antimicrob. Agents 2012, 39, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Doherty, T. The role of the healthcare environment in the acquisition of infection. Br. J. Nurs. 2020, 29, 8. [Google Scholar] [CrossRef]
- Mahoney, A.R.; Safaee, M.M.; Wuest, W.M.; Furst, A.L. The silent pandemic: Emergent antibiotic resistances following the global response to SARS-CoV-2. iScience 2021, 24, 102304. [Google Scholar] [CrossRef]
- Weber, D.J.; Rutala, W.A.; Sickbert-Bennett, E.E. Outbreaks associated with contaminated antiseptics and disinfectants. Antimicrob. Agents Chemother. 2007, 51, 4217–4224. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. Available online: http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/ (accessed on 17 October 2020).
- Cleaning and Disinfectant Chemical Exposures and Temporal Associations with COVID-19—National Poison Data System, United States, January 1, 2020–March 31, 2020. Available online: https://www.cdc.gov/mmwr/volumes/69/wr/mm6916e1.htm (accessed on 24 June 2020).
- Rosenman, K.D.; Reilly, M.J.; Wang, L. Calls to a State Poison Center Concerning Cleaners and Disinfectants From the Onset of the COVID-19 Pandemic Through April 2020. Public. Health Rep. 2021, 136, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Soave, P.M.; Grassi, S.; Oliva, A.; Romanò, B.; Di Stasio, E.; Dominici, L.; Pascali, V.; Antonelli, M. Household disinfectant exposure during the COVID-19 pandemic: A retrospective study of the data from an Italian poison control center. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 1738–1742. [Google Scholar] [CrossRef] [PubMed]
- Yasseen Iii, A.; Weiss, D.; Remer, S.; Dobbin, N.; MacNeill, M.; Bogeljic, B.; Leong, D.; Wan, V.; Mosher, L.; Bélair, G.; et al. Increases in exposure calls related to selected cleaners and disinfectants at the onset of the COVID-19 pandemic: Data from Canadian poison centres. Health Promot. Chronic Dis. Prev. Can. 2021, 41, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Filippelli, G.M.; Salamova, A. Increased Indoor Exposure to Commonly Used Disinfectants during the COVID-19 Pandemic. Environ. Sci. Technol. Lett. 2020, 7, 760–765. [Google Scholar] [CrossRef]
- Kuehn, B.M. More Than 1 in 3 US Adults Use Disinfectants Unsafely. JAMA 2020, 324, 328. [Google Scholar] [CrossRef]
- Gharpure, R.; Hunter, C.M.; Schnall, A.H.; Barrett, C.E.; Kirby, A.E.; Kunz, J.; Berling, K.; Mercante, J.W.; Murphy, J.L.; Garcia-Williams, A.G. Knowledge and Practices Regarding Safe Household Cleaning and Disinfection for COVID-19 Prevention—United States, May 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 705–709. [Google Scholar] [CrossRef]
- Zheng, G.; Webster, T.F.; Salamova, A. Quaternary Ammonium Compounds: Bioaccumulation Potentials in Humans and Levels in Blood before and during the COVID-19 Pandemic. Environ. Sci. Technol. 2021, 55, 14689–14698. [Google Scholar] [CrossRef]
- Zheng, G.; Schreder, E.; Sathyanarayana, S.; Salamova, A. The first detection of quaternary ammonium compounds in breast milk: Implications for early-life exposure. J. Expo. Sci. Environ. Epidemiol. 2022, 32, 682–688. [Google Scholar] [CrossRef]
- Hrubec, T.C.; Seguin, R.P.; Xu, L.; Cortopassi, G.A.; Datta, S.; Hanlon, A.L.; Lozano, A.J.; McDonald, V.A.; Healy, C.A.; Anderson, T.C.; et al. Altered toxicological endpoints in humans from common quaternary ammonium compound disinfectant exposure. Toxicol. Rep. 2021, 8, 646–656. [Google Scholar] [CrossRef]
- Vandenplas, O.; D’Alpaos, V.; Evrard, G.; Jamart, J.; Thimpont, J.; Huaux, F.; Renauld, J. Asthma related to cleaning agents: A clinical insight. BMJ Open 2013, 3, e003568. [Google Scholar] [CrossRef] [PubMed]
- Purohit, A.; Kopferschmitt-Kubler, M.C.; Moreau, C.; Popin, E.; Blaumeiser, M.; Pauli, G. Quaternary ammonium compounds and occupational asthma. Int. Arch. Occup. Environ. Health 2000, 73, 423–427. [Google Scholar] [CrossRef]
- Gonzalez, M.; Jégu, J.; Kopferschmitt, M.; Donnay, C.; Hedelin, G.; Matzinger, F.; Velten, M.; Guilloux, L.; Cantineau, A.; de Blay, F. Asthma among workers in healthcare settings: Role of disinfection with quaternary ammonium compounds. Clin. Exp. Allergy 2014, 44, 393–406. [Google Scholar] [CrossRef] [PubMed]
- LaKind, J.S.; Lehmann, G.M.; Davis, M.H.; Hines, E.P.; Marchitti, S.A.; Alcala, C.; Lorber, M. Infant Dietary Exposures to Environmental Chemicals and Infant/Child Health: A Critical Assessment of the Literature. Environ. Health Perspect. 2018, 126, 96002. [Google Scholar] [CrossRef] [PubMed]
- Dumas, O.; Varraso, R.; Boggs, K.M.; Quinot, C.; Zock, J.; Henneberger, P.K.; Speizer, F.E.; Le Moual, N.; Camargo, C.A. Association of Occupational Exposure to Disinfectants With Incidence of Chronic Obstructive Pulmonary Disease Among US Female Nurses. JAMA Netw. Open 2019, 2, e1913563. [Google Scholar] [CrossRef] [PubMed]
- Parveen, N.; Chowdhury, S.; Goel, S. Environmental impacts of the widespread use of chlorine-based disinfectants during the COVID-19 pandemic. Environ. Sci. Pollut. Res. Int. 2022, 29, 85742–85760. [Google Scholar] [CrossRef]
- Li, D.; Sangion, A.; Li, L. Evaluating consumer exposure to disinfecting chemicals against coronavirus disease 2019 (COVID-19) and associated health risks. Environ. Int. 2020, 145, 106108. [Google Scholar] [CrossRef]
- Nabi, G.; Wang, Y.; Hao, Y.; Khan, S.; Wu, Y.; Li, D. Massive use of disinfectants against COVID-19 poses potential risks to urban wildlife. Environ. Res. 2020, 188, 109916. [Google Scholar] [CrossRef]
- Dewey, H.M.; Jones, J.M.; Keating, M.R.; Budhathoki-Uprety, J. Increased Use of Disinfectants During the COVID-19 Pandemic and Its Potential Impacts on Health and Safety. ACS Chem. Heal. Saf. 2021, 29, 27–38. [Google Scholar] [CrossRef]
- Al-Ghalith, G.A.; Knights, D. Bygiene: The New Paradigm of Bidirectional Hygiene. Yale J. Biol. Med. 2015, 88, 359–365. [Google Scholar]
- Velazquez, S.; Griffiths, W.; Dietz, L.; Horve, P.; Nunez, S.; Hu, J.; Shen, J.; Fretz, M.; Bi, C.; Xu, Y.; et al. From one species to another: A review on the interaction between chemistry and microbiology in relation to cleaning in the built environment. Indoor Air 2019, 29, 880–894. [Google Scholar] [CrossRef] [PubMed]
- Scott, E.A.; Bruning, E.; Nims, R.W.; Rubino, J.R.; Ijaz, M.K. A 21st century view of infection control in everyday settings: Moving from the Germ Theory of Disease to the Microbial Theory of Health. Am. J. Infect. Control. 2020, 48, 1387–1392. [Google Scholar] [CrossRef] [PubMed]
- Stone, W.; Tolmay, J.; Tucker, K.; Wolfaardt, G.M. Disinfectant, Soap or Probiotic Cleaning? Surface Microbiome Diversity and Biofilm Competitive Exclusion. Microorganisms 2020, 8, 1726. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Reid, G.; Jass, J.; Sebulsky, M.T.; McCormick, J.K. Potential uses of probiotics in clinical practice. Clin. Microbiol. Rev. 2003, 16, 658–672. [Google Scholar] [CrossRef] [PubMed]
- Goldin, B.R. Health benefits of probiotics. Br. J. Nutr. 1998, 80, S203–S207. [Google Scholar] [CrossRef]
- Shu, M.; Wang, Y.; Yu, J.; Kuo, S.; Coda, A.; Jiang, Y.; Gallo, R.L.; Huang, C. Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PLoS ONE 2013, 8, e55380. [Google Scholar] [CrossRef]
- Alkaya, B.; Laleman, I.; Keceli, S.; Ozcelik, O.; Cenk Haytac, M.; Teughels, W. Clinical effects of probiotics containing Bacillus species on gingivitis: A pilot randomized controlled trial. J. Periodontal Res. 2017, 52, 497–504. [Google Scholar] [CrossRef]
- Kim, S.; Guevarra, R.B.; Kim, Y.; Kwon, J.; Kim, H.; Cho, J.H.; Kim, H.B.; Lee, J. Role of Probiotics in Human Gut Microbiome-Associated Diseases. J. Microbiol. Biotechnol. 2019, 29, 1335–1340. [Google Scholar] [CrossRef]
- Roudsari, M.R.; Karimi, R.; Sohrabvandi, S.; Mortazavian, A.M. Health effects of probiotics on the skin. Crit. Rev. Food Sci. Nutr. 2015, 55, 1219–1240. [Google Scholar] [CrossRef]
- Wilkins, T.; Sequoia, J. Probiotics for Gastrointestinal Conditions: A Summary of the Evidence. Am. Fam. Physician 2017, 96, 170–178. [Google Scholar] [PubMed]
- Kerry, R.G.; Patra, J.K.; Gouda, S.; Park, Y.; Shin, H.; Das, G. Benefaction of probiotics for human health: A review. J. Food Drug. Anal. 2018, 26, 927–939. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.P.; Sharma, J.; Babu, S.; Rizwanulla, N.; Singla, A. Role of probiotics in health and disease: A review. J. Pak. Med. Assoc. 2013, 63, 253–257. [Google Scholar] [PubMed]
- Oelschlaeger, T.A. Mechanisms of probiotic actions—A review. Int. J. Med. Microbiol. 2010, 300, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Danko, D.; Afshinnekoo, E.; Bezdan, D.; Bhattacharyya, M.; Castro-Nallar, E.; Chmielarczyk, A.; Hazrin-Chong, N.H.; Deng, Y.; Dias-Neto, E.; et al. Annotating unknown species of urban microorganisms on a global scale unveils novel functional diversity and local environment association. Environ. Res. 2022, 207, 112183. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Stephens, B. Microbiology of the built environment. Nat. Rev. Microbiol. 2018, 16, 661–670. [Google Scholar] [CrossRef]
- Rai, S.; Singh, D.K.; Kumar, A. Microbial, environmental and anthropogenic factors influencing the indoor microbiome of the built environment. J. Basic Microbiol. 2021, 61, 267–292. [Google Scholar] [CrossRef]
- Prussin, A.J.; Marr, L.C. Sources of airborne microorganisms in the built environment. Microbiome 2015, 3, 78. [Google Scholar] [CrossRef]
- Mahnert, A.; Moissl-Eichinger, C.; Zojer, M.; Bogumil, D.; Mizrahi, I.; Rattei, T.; Martinez, J.L.; Berg, G. Man-made microbial resistances in built environments. Nat. Commun. 2019, 10, 968. [Google Scholar] [CrossRef]
- Danko, D.; Bezdan, D.; Afshin, E.E.; Ahsanuddin, S.; Bhattacharya, C.; Butler, D.J.; Chng, K.R.; Donnellan, D.; Hecht, J.; Jackson, K.; et al. A global metagenomic map of urban microbiomes and antimicrobial resistance. Cell 2021, 184, 3376–3393.e17. [Google Scholar] [CrossRef]
- Falagas, M.E.; Makris, G.C. Probiotic bacteria and biosurfactants for nosocomial infection control: A hypothesis. J. Hosp. Infect. 2009, 71, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Jeżewska-Frąckowiak, J.; Seroczyńska, K.; Banaszczyk, J.; Jedrzejczak, G.; Żylicz-Stachula, A.; Skowron, P.M. The promises and risks of probiotic Bacillus species. Acta Biochim. Pol. 2018, 65, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Vehapi, M.; Özçimen, D. Antimicrobial and bacteriostatic activity of surfactants against B. subtilis for microbial cleaner formulation. Arch. Microbiol. 2021, 203, 3389–3397. [Google Scholar] [CrossRef] [PubMed]
- Caselli, E.; Antonioli, P.; Mazzacane, S. Safety of probiotics used for hospital environmental sanitation. J. Hosp. Infect. 2016, 94, 193–194. [Google Scholar] [CrossRef]
- Vandini, A. Reduction of the microbiological load on hospital surfaces through probiotic-based cleaning procedures: A new strategy to control nosocomial infections. J. Microbiol. Exp. 2014, 1, 27. [Google Scholar] [CrossRef]
- Fauci, V.L. An Innovative Approach to Hospital Sanitization Using Probiotics: In Vitro and Field Trials. J. Microb. Biochem. Technol. 2015, 7, 160–164. [Google Scholar] [CrossRef]
- Vandini, A.; Temmerman, R.; Frabetti, A.; Caselli, E.; Antonioli, P.; Balboni, P.G.; Platano, D.; Branchini, A.; Mazzacane, S. Hard surface biocontrol in hospitals using microbial-based cleaning products. PLoS ONE 2014, 9, e108598. [Google Scholar] [CrossRef]
- Caselli, E.; D’Accolti, M.; Vandini, A.; Lanzoni, L.; Camerada, M.T.; Coccagna, M.; Branchini, A.; Antonioli, P.; Balboni, P.G.; Di Luca, D.; et al. Impact of a Probiotic-Based Cleaning Intervention on the Microbiota Ecosystem of the Hospital Surfaces: Focus on the Resistome Remodulation. PLoS ONE 2016, 11, e0148857. [Google Scholar] [CrossRef]
- Caselli, E.; Brusaferro, S.; Coccagna, M.; Arnoldo, L.; Berloco, F.; Antonioli, P.; Tarricone, R.; Pelissero, G.; Nola, S.; La Fauci, V.; et al. Reducing healthcare-associated infections incidence by a probiotic-based sanitation system: A multicentre, prospective, intervention study. PLoS ONE 2018, 13, e0199616. [Google Scholar] [CrossRef]
- Caselli, E.; Arnoldo, L.; Rognoni, C.; D’Accolti, M.; Soffritti, I.; Lanzoni, L.; Bisi, M.; Volta, A.; Tarricone, R.; Brusaferro, S.; et al. Impact of a probiotic-based hospital sanitation on antimicrobial resistance and HAI-associated antimicrobial consumption and costs: A multicenter study. Infect. Drug Resist. 2019, 12, 501–510. [Google Scholar] [CrossRef]
- D’Accolti, M.; Soffritti, I.; Bini, F.; Mazziga, E.; Cason, C.; Comar, M.; Volta, A.; Bisi, M.; Fumagalli, D.; Mazzacane, S.; et al. Shaping the subway microbiome through probiotic-based sanitation during the COVID-19 emergency: A pre-post case-control study. Microbiome 2023, 11, 64. [Google Scholar] [CrossRef] [PubMed]
- D’Accolti, M.; Soffritti, I.; Bini, F.; Mazziga, E.; Arnoldo, L.; Volta, A.; Bisi, M.; Antonioli, P.; Laurenti, P.; Ricciardi, W.; et al. Potential Use of a Combined Bacteriophage-Probiotic Sanitation System to Control Microbial Contamination and AMR in Healthcare Settings: A Pre-Post Intervention Study. Int. J. Mol. Sci. 2023, 24, 6535. [Google Scholar] [CrossRef]
- Soffritti, I.; D’Accolti, M.; Cason, C.; Lanzoni, L.; Bisi, M.; Volta, A.; Campisciano, G.; Mazzacane, S.; Bini, F.; Mazziga, E.; et al. Introduction of Probiotic-Based Sanitation in the Emergency Ward of a Children’s Hospital During the COVID-19 Pandemic. Infect. Drug Resist. 2022, 15, 1399–1410. [Google Scholar] [CrossRef] [PubMed]
- Afinogenova, A.; Kraeva, L.; Afinogenov, G.; Veretennikov, V. Probiotic-based sanitation as alternatives to chemical disinfectants. Russ. J. Infect. Immun. 2017, 7, 419–424. [Google Scholar] [CrossRef]
- Al-Marzooq, F.; Bayat, S.A.; Sayyar, F.; Ishaq, H.; Nasralla, H.; Koutaich, R.; Kawas, S.A. Can probiotic cleaning solutions replace chemical disinfectants in dental clinics? Eur. J. Dent. 2018, 12, 532–539. [Google Scholar] [CrossRef]
- D’Accolti, M.; Soffritti, I.; Lanzoni, L.; Bisi, M.; Volta, A.; Mazzacane, S.; Caselli, E. Effective elimination of Staphylococcal contamination from hospital surfaces by a bacteriophage-probiotic sanitation strategy: A monocentric study. Microb. Biotechnol. 2019, 12, 742–751. [Google Scholar] [CrossRef]
- Kleintjes, W.G.; Prag, R.; Kotzee, E.P. The effect of probiotics for environmental cleaning on hospital-acquired infection in a burn centre: The results of a non-randomised controlled prospective study. S. Afr. J. Plast. Reconstr. Aesthetic Surg. Burn. 2020, 3, 33–36. [Google Scholar] [CrossRef]
- Klassert, T.E.; Zubiria-Barrera, C.; Neubert, R.; Stock, M.; Schneegans, A.; López, M.; Driesch, D.; Zakonsky, G.; Gastmeier, P.; Slevogt, H.; et al. Comparative analysis of surface sanitization protocols on the bacterial community structures in the hospital environment. Clin. Microbiol. Infect. 2022, 28, 1105–1112. [Google Scholar] [CrossRef]
- Leistner, R.; Kohlmorgen, B.; Brodzinski, A.; Schwab, F.; Lemke, E.; Zakonsky, G.; Gastmeier, P. Environmental cleaning to prevent hospital-acquired infections on non-intensive care units: A pragmatic, single-centre, cluster randomized controlled, crossover trial comparing soap-based, disinfection and probiotic cleaning. EClinicalMedicine 2023, 59, 101958. [Google Scholar] [CrossRef]
- La Fauci, V.; Costa, G.B.; Arena, A.; Ventura Spagnolo, E.; Genovese, C.; Palamara, M.A.; Squeri, R. Trend of MDR-microorganisms isolated from the biological samples of patients with HAI and from the surfaces around that patient. New Microbiol. 2018, 41, 42–46. [Google Scholar]
- Boyce, J.M. Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals. Antimicrob. Resist. Infect. Control 2016, 5, 10. [Google Scholar] [CrossRef] [PubMed]
- D’Accolti, M.; Soffritti, I.; Bini, F.; Mazziga, E.; Mazzacane, S.; Caselli, E. Pathogen Control in the Built Environment: A Probiotic-Based System as a Remedy for the Spread of Antibiotic Resistance. Microorganisms 2022, 10, 225. [Google Scholar] [CrossRef] [PubMed]
- D’Accolti, M.; Soffritti, I.; Bonfante, F.; Ricciardi, W.; Mazzacane, S.; Caselli, E. Potential of an Eco-Sustainable Probiotic-Cleaning Formulation in Reducing Infectivity of Enveloped Viruses. Viruses 2021, 13, 2227. [Google Scholar] [CrossRef] [PubMed]
- Mingmongkolchai, S.; Panbangred, W. Bacillus probiotics: An alternative to antibiotics for livestock production. J. Appl. Microbiol. 2018, 124, 1334–1346. [Google Scholar] [CrossRef] [PubMed]
- Schallmey, M.; Singh, A.; Ward, O.P. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 2004, 50, 1–17. [Google Scholar] [CrossRef]
- Łubkowska, B.; Jeżewska-Frąckowiak, J.; Sroczyński, M.; Dzitkowska-Zabielska, M.; Bojarczuk, A.; Skowron, P.M.; Cięszczyk, P. Analysis of Industrial Bacillus Species as Potential Probiotics for Dietary Supplements. Microorganisms 2023, 11, 488. [Google Scholar] [CrossRef]
- Teasdale, S.M.; Kademi, A. Quality challenges associated with microbial-based cleaning products from the Industry Perspective. Food Chem. Toxicol. 2018, 116, 20–24. [Google Scholar] [CrossRef]
- Lopetuso, L.R.; Scaldaferri, F.; Franceschi, F.; Gasbarrini, A. Bacillus clausii and gut homeostasis: State of the art and future perspectives. Expert. Rev. Gastroenterol. Hepatol. 2016, 10, 943–948. [Google Scholar] [CrossRef]
- Hesnawi, R.; Dahmani, K.; Al-Swayah, A.; Mohamed, S.; Mohammed, S.A. Biodegradation of Municipal Wastewater with Local and Commercial Bacteria. Procedia Eng. 2014, 70, 810–814. [Google Scholar] [CrossRef]
- Berg, N.W.; Evans, M.R.; Sedivy, J.; Testman, R.; Acedo, K.; Paone, D.; Long, D.; Osimitz, T.G. Safety assessment of the use of Bacillus-based cleaning products. Food Chem. Toxicol. 2018, 116, 42–52. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, S.; Ding, S.; Shen, J.; Zhu, K. Toxins and mobile antimicrobial resistance genes in Bacillus probiotics constitute a potential risk for One Health. J. Hazard. Mater. 2020, 382, 121266. [Google Scholar] [CrossRef]
- Baumgardner, R.M.; Berreta, A.; Kopper, J.J. Evaluation of commercial probiotics for antimicrobial resistance genes. Can. Vet. J. 2021, 62, 379–383. [Google Scholar] [PubMed]
- Lee, N.; Kim, W.; Paik, H. Bacillus strains as human probiotics: Characterization, safety, microbiome, and probiotic carrier. Food Sci. Biotechnol. 2019, 28, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, G.; Steinberg, N.; Oppenheimer-Shaanan, Y.; Olender, T.; Doron, S.; Ben-Ari, J.; Sirota-Madi, A.; Bloom-Ackermann, Z.; Kolodkin-Gal, I. Not so simple, not so subtle: The interspecies competition between Bacillus simplex and Bacillus subtilis and its impact on the evolution of biofilms. NPJ Biofilms Microbiomes 2016, 2, 15027. [Google Scholar] [CrossRef] [PubMed]
- van Gestel, J.; Weissing, F.J.; Kuipers, O.P.; Kovács, A.T. Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms. ISME J. 2014, 8, 2069–2079. [Google Scholar] [CrossRef]
- Seminara, A.; Angelini, T.E.; Wilking, J.N.; Vlamakis, H.; Ebrahim, S.; Kolter, R.; Weitz, D.A.; Brenner, M.P. Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix. Proc. Natl. Acad. Sci. USA 2012, 109, 1116–1121. [Google Scholar] [CrossRef]
- Rodrigues, L.; van der Mei, H.; Teixeira, J.A. Biosurfactant from Lactococcus lactis 53 inhibits microbial adhesion on silicone rubber. Appl. Microbiol. Biotechnol. 2004, 66, 306–311. [Google Scholar] [CrossRef]
- van der Mei, H.C.; Free, R.H.; Elving, G.J.; van Weissenbruch, R.; Albers, F.W.; Bussher, H.J. Effect of probiotic bacteria on prevalence of yeasts in oropharyngeal biofilms on silicone rubber voice prostheses in vitro. J. Med. Microbiol. 2000, 49, 713–718. [Google Scholar] [CrossRef]
- Walencka, E.; Różalska, S.; Sadowska, B. The influence of Lactobacillus acidophilus-derived surfactants on staphylococcal adhesion and biofilm formation. Folia Microbiol. 2008, 53, 61–66. [Google Scholar] [CrossRef]
- van Hoogmoed, C.G.; van der Kuijl-Booij, M.; van der Mei, H.C.; Busscher, H.J. Inhibition of Streptococcus mutans NS Adhesion to Glass with and without a Salivary Conditioning Film by Biosurfactant- Releasing Streptococcus mitisStrains | Applied and Environmental Microbiology. Appl. Environ. Microbiol. 2000, 66, 659–663. [Google Scholar] [CrossRef]
- Idi, A.; Md Nor, M.H.; Abdul Wahab, M. F Photosynthetic bacteria: An eco-friendly and cheap tool for bioremediation | SpringerLink. Rev. Environ. Sci. Biotechnol. 2015, 14, 271–285. [Google Scholar] [CrossRef]
- Jeżewska-Frąckowiak, J.; Żebrowska, J.; Czajkowska, E.; Jasińska, J.; Pęksa, M.; Jędrzejczak, G.; Skowron, P.M. Identification of bacterial species in probiotic consortiums in selected commercial cleaning preparations. Acta Biochim. Pol. 2019, 66, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Spök, A.; Arvanitakis, G.; McClung, G. Status of microbial based cleaning products in statutory regulations and ecolabelling in Europe, the USA, and Canada. Food Chem. Toxicol. 2018, 116, 10–19. [Google Scholar] [CrossRef]
- Iraldo, F.; Kahlenborn, W.; Grießhammer, R. The Future of Ecolabels. Int. J. Life Cycle Assess. 2020, 25, 833–839. [Google Scholar] [CrossRef]
- Arvanitakis, G.; Temmerman, R.; Spök, A. Development and use of microbial-based cleaning products (MBCPs): Current issues and knowledge gaps. Food Chem. Toxicol. 2018, 116, 3–9. [Google Scholar] [CrossRef]
- Subasinghe, R.M.; Samarajeewa, A.D.; Meier, M.; Coleman, G.; Clouthier, H.; Crosthwait, J.; Tayabali, A.F.; Scroggins, R.; Shwed, P.S.; Beaudette, L.A. Bacterial and fungal composition profiling of microbial based cleaning products. Food Chem. Toxicol. 2018, 116, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Tarricone, R.; Rognoni, C.; Arnoldo, L.; Mazzacane, S.; Caselli, E. A Probiotic-Based Sanitation System for the Reduction of Healthcare Associated Infections and Antimicrobial Resistances: A Budget Impact Analysis. Pathogens 2020, 9, 502. [Google Scholar] [CrossRef]
| Reference | Built Environment | Location | Duration | Outcome (PBS vs. Chemical Disinfectants) |
|---|---|---|---|---|
| Vandini et al. (2014) [69] | One in-patient and one out-patient general medicine ward (samples collected from the corridor floor, room floor, toilet and sink) | Ferrara, Italy | 4 months | 80% reduction in pathogen burden (S. aureus, coliforms, Pseudomonas spp. and Candida spp.) |
| Vandini et al. (2014) [71] | Three independent hospitals—severe brain-damaged and rehabilitation ward, in-patient general medicine ward and geriatric unit (samples collected from corridor floor, room floor, toilet and rehabilitation gymnasiums) | Italy & Belgium | 24 weeks | 50–89% reduction in HAI-related pathogens (S. aureus, coliforms, C. difficile and C. albicans) |
| La Fauci et al. (2015) [70] | University hospital—thoracic and vascular surgical ward (samples collected from corridor floor, inpatient room and dispensary washbasin) | Messina, Italy | 3 months | 92.2–99.9% reduction in pathogen burden (E. faecalis, Pseudomonas spp., Acinetobacter spp., K. pneumoniae and C. albicans) |
| Caselli et al. (2016) [72] | Private hospital—four randomized rooms located on two floors (samples collected from the floor, bed footboard and bathroom sink) | Ferrara, Italy | 6 months | 98% reduction in bacterial and fungal pathogen burden (Staphylococcus spp., S. aureus, Enterobacter spp., Pseudomonas spp., Clostridium difficile; Candida spp. and Aspergillus spp.) Decrease in AMR genes (84 antibiotic resistance genes analyzed) |
| Afinogenova et al. (2017) [78] | Pasteur Institute Medical Centre (samples collected from treatment rooms in the gynecologist office) | Saint Petersburg, Russia | 30 days | Reduction in Staphylococcus spp. and Enterobacteriaceae |
| Caselli et al. (2018) [73] | Six public hospitals—general medicine wards (samples collected from the floor, bed footboard and sink) | Italy | 18 months | 83% reduction in pathogen burden (Staphylococcus spp., Enterobacter spp., Acinetobacter spp., Pseudomonas spp., Clostridium difficile) 59% reduction in HAI-related pathogens 52% decrease in the incidence of HAIs 2 Log decrease in AMR genes (84 antibiotic resistance genes analyzed) |
| Al-Marzooq et al. (2018) [79] | University dental clinic (samples collected from floor, keyboards, spittoon, patient headrest, patient chair, dentist chair, drain, wires of handpieces and sink) | United Arab Emirates | 3 weeks | Reduction in Staphylococcus spp. and Streptococcus spp. |
| Caselli et al. (2019) [74] | Five public hospitals (samples collected from the floor, bed footboard and bathroom sink) | Ferrara, Italy | 6 months | 99% decrease in AMR genes (84 antibiotic resistance genes analyzed) Decrease in S. aureus-resistant strains 60.3% decrease in antimicrobial drug consumption associated with HAIs 75.4% decrease in patientcare associated costs |
| D’Accolti et al. (2019) [80] | Private hospital internal medicine ward—four patient rooms (samples taken from bathroom floor, sink, shower plate, room floor and bed footboard) | Ferrara, Italy | 23 days | Reduction in Staphylococcus spp. |
| Kleintjes et al. (2020) [81] | Western Cape Provincial—tertiary adult burn unit | Cape Town, South Africa | 3 months | 56% reduction in the incidence of HAIs |
| Soffritti et al. (2022) [77] | Maternal and child health institute—emergency rooms (samples collected from floor, bed footboard and sink) | Trieste, Italy | 9 weeks | 80% reduction in pathogen burden (Staphylococcus spp., Enterobacter spp., Acinetobacter spp., Pseudomonas spp., Clostridium difficile, Enterococcus spp.) 2 Log decrease in AMR genes (84 antibiotic resistance genes analyzed) No detection of SARS-CoV-2 |
| Klassert et al. (2022) [82] | Neurological ward—nine independent patient rooms (samples collected from the floor, door handle and sink) | Berlin, Germany | 3 months | Overall reduction in bioburden (Staphylococcus spp., Streptococcus spp., Moraxella spp. Enterobacter spp. and Veillonella spp.) Increase in microbial diversity Decrease in AMR genes (12 antibiotic genes analyzed) |
| D’Accolti et al. (2023) [76] | Two Italian hospitals—general medicine wards (samples collected from bathroom floor, sink and shower, room floor and bed footboard) | Rome & Ferrara, Italy | 14 weeks | Reduction in Staphylococcus spp. Decrease in Staphylococcus-resistant strains |
| Leistner et al. (2023) [83] | University hospital—18 non-ICU wards | Berlin, Germany | 4 months | No change in the incidence of HAIs |
| D’Accolti et al. (2023) [75] | Subway system—two underground driverless trains (samples collected from train floors, seats, handrails, doors and air filters) | Milan, Italy | 12 weeks | Reduction in bacterial and fungal pathogen burden (Staphylococcus spp., Enterobacter spp., Pseudomonas spp., Clostridium difficile; Candida spp. and Aspergillus spp.) Decreased detection of SARS-CoV-2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, A.M.; Frantz, A.L. Probiotic-Based Sanitation in the Built Environment—An Alternative to Chemical Disinfectants. Appl. Microbiol. 2023, 3, 536-548. https://doi.org/10.3390/applmicrobiol3020038
Ramos AM, Frantz AL. Probiotic-Based Sanitation in the Built Environment—An Alternative to Chemical Disinfectants. Applied Microbiology. 2023; 3(2):536-548. https://doi.org/10.3390/applmicrobiol3020038
Chicago/Turabian StyleRamos, Ashley M., and Aubrey L. Frantz. 2023. "Probiotic-Based Sanitation in the Built Environment—An Alternative to Chemical Disinfectants" Applied Microbiology 3, no. 2: 536-548. https://doi.org/10.3390/applmicrobiol3020038
APA StyleRamos, A. M., & Frantz, A. L. (2023). Probiotic-Based Sanitation in the Built Environment—An Alternative to Chemical Disinfectants. Applied Microbiology, 3(2), 536-548. https://doi.org/10.3390/applmicrobiol3020038
