Effects of Row Spacing and Tropical Grass Intercropping on Biomass Sorghum Yield and Silage Quality
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Characterization
2.2. Soil Sampling, Fertilization, and Cultural Practices
2.3. Experimental Design and Treatments
2.4. Biomass Yield and Chemical-Bromatological Analyses of Sorghum Silages
2.5. Chemical-Bromatological Analyses
2.6. Statistical Analysis
3. Results
3.1. Biomass Productivity of Sorghum-Grass Intercropping Systems
3.2. Fermentative and Nutritional Quality of Sorghum Silages from Different Cropping Systems
4. Discussion
4.1. Biomass Productivity of Sorghum-Grass Intercropping Systems
4.2. Fermentative and Nutritional Quality of Sorghum Silages from Different Cropping Systems
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AA | Acetic Acid |
| ADF | Acid Detergent Fiber |
| BA | Butyric Acid |
| C | Cropping System |
| CLI | Crop-Livestock Integration |
| CP | Crude Protein |
| DAP | Days after planting |
| DM | Dry Matter |
| DMR | Dry Matter Recovery |
| EE | Ether Extract |
| FM | Fresh Matter |
| GDMY | Grass Dry Matter Yield |
| LA | Lactic Acid |
| MS | Sorghum + Marandu grass |
| NDF | Neutral Detergent Fiber |
| NDFD48h | 48-h NDF Digestibility |
| NFC | Non-Fibrous Carbohydrates |
| NH3-N | Ammonia Nitrogen |
| NIRS | Near-Infrared Spectroscopy |
| R | Row Spacing |
| S | Sorghum Monoculture |
| SDMY | Sorghum Dry Matter Yield |
| SEM | Standard Error of the Mean |
| TDMY | Total Dry Matter Yield |
| TDN | Total Digestible Nutrients |
| TN | Total Nitrogen |
| ZS | Sorghum + Zuri grass |
References
- Map Biomas Atlas Das Pastagens. Available online: https://atlasdaspastagens.ufg.br/map (accessed on 29 June 2025).
- ABIEC Beef Report 2024|Perfil Da Pecuária No Brasil—ABIEC. Available online: https://abiec.com.br/publicacoes/beef-report-2024-perfil-da-pecuaria-no-brasil/ (accessed on 29 June 2025).
- Toker, P.; Canci, H.; Turhan, I.; Isci, A.; Scherzinger, M.; Kordrostami, M.; Yol, E. The Advantages of Intercropping to Improve Productivity in Food and Forage Production—A Review. Plant Prod. Sci. 2024, 27, 155–169. [Google Scholar] [CrossRef]
- Mu, Y.; Chai, Q.; Yu, A.; Yang, C.; Qi, W.; Feng, F.; Kong, X. Performance of Wheat/Maize Intercropping is a Function of Belowground Interspecies Interactions. Crop Sci. 2013, 53, 2186–2194. [Google Scholar] [CrossRef]
- Ligoski, B.; Gonçalves, L.F.; Claudio, F.L.; Alves, E.M.; Krüger, A.M.; Bizzuti, B.E.; De Mello Tavares Lima, P.; Abdalla, A.L.; Do Prado Paim, T. Silage of Intercropping Corn, Palisade Grass, and Pigeon Pea Increases Protein Content and Reduces In Vitro Methane Production. Agronomy 2020, 10, 1784. [Google Scholar] [CrossRef]
- da Ponte Filho, F.A.M.; Guedes, F.L.; Pompeu, R.C.F.F.; Sagrilo, E.; de Andrade, H.A.F.; de Meneses Costa, C.P.; de Souza, H.A. Productivity and Nutrient Export in a Maize and Forage Grasses Intercropping under Semiarid Conditions. Rev. Bras. Saúde Prod. Anim. 2023, 24, 20220029. [Google Scholar] [CrossRef]
- Retore, M.; Ceccon, G.; Garcia, R.A.; Sawa, W. Sistema Diamantino Para Produção de Silagem e Renovação de Pastagem; Embrapa Agropecuária Oeste: Dourados, Brazil, 2024.
- Orrico Junior, M.A.P.; Vendramini, J.M.B.; Erickson, J.; Moriel, P.; Silveira, M.L.A.; Aguiar, A.D.; Sanchez, J.M.D.; da Silva, W.L.; da Silva, H.M. Nutritive Value and Fermentation Characteristics of Silages Produced from Different Sweet Sorghum Plant Components with or without Microbial Inoculation. Appl. Anim. Sci. 2020, 36, 777–783. [Google Scholar] [CrossRef]
- Santos, C.B.; de Pinho Costa, K.A.; de Souza, W.F.; Silva, V.C.E.; Brandstetter, E.V.; Oliveira, S.S.; Leão, K.M.; Severiano, E.D.C. Production, Quality of Paiaguas Palisadegrass and Cattle Performance after Sorghum Intercropping in Pasture Recovery in an Integrated Crop-Livestock System. Aust. J. Crop Sci. 2023, 17, 361–368. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Hamid, A.; Ahmad, T.; Siddiqui, M.H.; Hussain, I.; Ali, S.; Ali, A.; Ahmad, Z. Forage Sorghum-Legumes Intercropping: Effect on Growth, Yields, Nutritional Quality and Economic Returns. Bragantia 2018, 78, 82–95. [Google Scholar] [CrossRef]
- Li, L.; Zhang, L.; Zhang, F. Crop Mixtures and the Mechanisms of Overyielding. In Encyclopedia of Biodiversity, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 382–395. [Google Scholar] [CrossRef]
- Herrera, D.M.; Peixoto, W.M.; de Abreu, J.G.; dos Reis, R.H.P.; Sousa, F.G.d.; Balbinot, E.; Klein, V.A.C.; Costa, R.P. Is the Integration between Corn and Grass under Different Sowing Modalities a Viable Alternative for Silage? Animals 2023, 13, 425. [Google Scholar] [CrossRef]
- Costa, N.R.; Andreotti, M.; Crusciol, C.A.C.; Pariz, C.M.; Bossolani, J.W.; de Castilhos, A.M.; do Nascimento, C.A.C.; Lima, C.G.d.R.; Bonini, C.d.S.B.; Kuramae, E.E. Can Palisade and Guinea Grass Sowing Time in Intercropping Systems Affect Soybean Yield and Soil Chemical Properties? Front. Sustain. Food Syst. 2020, 4, 81. [Google Scholar] [CrossRef]
- dos Santos, C.A.; Monteiro, R.C.; Homem, B.G.C.; Salgado, L.S.; Casagrande, D.R.; Pereira, J.M.; de Paula Rezende, C.; Alves, B.J.R.; Boddey, R.M. Productivity of Beef Cattle Grazing Brachiaria brizantha cv. Marandu with and without Nitrogen Fertilizer Application or Mixed Pastures with the Legume Desmodium ovalifolium. Grass Forage Sci. 2023, 78, 147–160. [Google Scholar] [CrossRef]
- Jank, L.; Santos, M.F.; Braga, G.J. O Capim-BRS Zuri (Panicum maximum Jacq.) na Diversificação e Intensificação das Pastagens; Embrapa: Brasília, Brazil, 2022. [Google Scholar]
- Sodré-Filho, J.; Marchão, R.L.; Carmona, R.; de Carvalho, A.M. Intercropping Sorghum and Grasses during Off-Season in Brazilian Cerrado. Sci. Agric. 2021, 79, e20200284. [Google Scholar] [CrossRef]
- Nakao, A.H.; Andreotti, M.; Soares, D.d.A.; Modesto, V.C.; Dickmann, L. Intercropping Urochloa Brizantha and Sorghum Inoculated with Azospirillum Brasilense for Silage; Revista Ciência Agronômica: Fortaleza, Brazil, 2018; Volume 49. [Google Scholar]
- Akchaya, K.; Parasuraman, P.; Pandian, K.; Vijayakumar, S.; Thirukumaran, K.; Mustaffa, M.R.A.F.; Rajpoot, S.K.; Choudhary, A.K. Boosting Resource Use Efficiency, Soil Fertility, Food Security, Ecosystem Services, and Climate Resilience with Legume Intercropping: A Review. Front. Sustain. Food Syst. 2025, 9, 1527256. [Google Scholar] [CrossRef]
- Fietz, C.R.; Fisch, G.F. O Clima Da Região de Dourados, MS; Embrapa Agropecuária Oeste: Dourados, Brazil, 2008.
- dos Santos, H.G.; Jacomine, P.K.T.; dos Anjos, L.H.C.; de Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; de Almeida, J.A.; Araújo de Filho, J.C.; de Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; Mattos, J.S.R., Ed.; Centro Nacional de Pesquisa de Solos: Brasília, Brazil, 2018; ISBN 978-85-7035-817-2. [Google Scholar]
- da Silva, F.C. Manual de Análises Químicas de Solos, Plantas e Fertilizantes, 2nd ed.; Embrapa: Brasília, Brazil, 2009; Volume 1, ISBN 978-85-7383-430-7. [Google Scholar]
- Cantarella, H.; Mattos, D., Jr.; Boaretto, R.M.; Quaggio, J.A.; van Rai, B. Boletim 100: Recomendações de Adubação e Calagem Para O Estado de São Paulo, 1st ed.; Cantarella, H., Quaggio, J.A., Mattos, D., Jr., Boaretto, R.M., van Raij, B., Eds.; Instituto Agronômico de Campinas (IAC): Campinas, Brazil, 2022; Volume 1, ISBN 9786588414095.
- Jobim, C.C.; Nussio, L.G.; Reis, R.A.; Schmidt, P. Avanços Metodológicos na Avaliação da Qualidade da Forragem Conservada. Rev. Bras. Zootec. 2007, 36, 101–119. [Google Scholar] [CrossRef]
- Juliano, C.; Albuquerque, B.; Mendes De Oliveira, R.; De, K.M.; Silva, J.; Alves, D.D.; Alvarenga, R.C.; Ferreira, G.L.; Borges, N. Consórcio de Forrageiras Tropicais Com O Sorgo Granífero em Duas Localidades do Estado de Minas Gerais. Rev. Bras. Milho Sorgo 2013, 12, 1–9. [Google Scholar]
- Oliveira, A.R.F.; de Araujo, L.C.; Ludkiewicz, M.G.Z.; Zagato, L.Q.S.D.; Galindo, F.S.; Maruno, T.C. Produtividade, Composição Morfologica e Químico-Bromatológica do Capim-Marandu Consorciado Com Sorgo Forrageiro Para Renovação de Pastagem Degradada no Cerrado. Cult. Agron. Rev. Ciênc. Agron. 2017, 26, 69–81. [Google Scholar] [CrossRef]
- Ferraz-Almeida, R.; Albuquerque, C.J.B.; Camargo, R.; Lemes, E.M.; Soares de Faria, R.; Quintão Lana, R.M. Sorghum–Grass Intercropping Systems under Varying Planting Densities in a Semi-Arid Region: Focusing on Soil Carbon and Grain Yield in the Conservation Systems. Agriculture 2022, 12, 1762. [Google Scholar] [CrossRef]
- Jara Galeano, E.S.; Costa, C.M.; Orrico Junior, M.A.P.; Fernandes, T.; Retore, M.; Silva, M.S.J.; Orrico, A.C.A.; Lopes, L.S.; Garcia, R.A.; MacHado, L.A.Z. Agronomic Aspects, Chemical Composition and Digestibility of Forage from Corn-Crotalaria Intercropping. J. Agric. Sci. 2021, 159, 580–588. [Google Scholar] [CrossRef]
- Peerzada, A.M.; Ali, H.H.; Chauhan, B.S. Weed Management in Sorghum [Sorghum bicolor (L.) Moench] Using Crop Competition: A Review. Crop Prot. 2017, 95, 74–80. [Google Scholar] [CrossRef]
- Marafon, A.C.; Santos, M.F.; Pereira, K.P.; da Silva, S.E.; Dantas, C.J.d.S.; da Silva, M.C.F.; Pereira, C.F.; Silva, E.V.S. Produção e Qualidade Bromatológica da Biomassa de Cultivares Forrageiras na Zona Da Mata de Alagoas; Embrapa Tabuleiros Costeiros: Aracaju, Brazil, 2024. [Google Scholar]
- Euclides, V.P.B.; Montagner, D.B.; Barbosa, R.A.; Difante, G.d.S.; de Medeiros, S.R. Valor Nutritivo, Estrutura do Dossel e Desempenho Animal de Algumas Cultivares de Panicum Maximum e Brachiaria spp. Submetidas à Diferentes Estratégias de Manejo; Embrapa Gado de Corte: Campo Grande, MS, Brazil, 2021. [Google Scholar]
- da Silva, L.M.; Costa, K.A.d.P.; Prado, L.G.; Rezende, A.G.; Severiano, E.d.C.; Costa, J.V.C.P.; e Silva, J.A.G.; Costa, A.C.; Fernandes, P.B.; Rodrigues, R.C.; et al. Maize Intercropped with Panicum Maximum Cultivars and Pigeon Pea Improves Silage Yield and Quality. Front. Sustain. Food Syst. 2024, 8, 1416717. [Google Scholar] [CrossRef]
- Yin, W.; Chai, Q.; Zhao, C.; Yu, A.; Fan, Z.; Hu, F.; Fan, H.; Guo, Y.; Coulter, J.A. Water Utilization in Intercropping: A Review. Agric. Water Manag. 2020, 241, 106335. [Google Scholar] [CrossRef]
- Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Silage Review: Factors Affecting Dry Matter and Quality Losses in Silages. J. Dairy Sci. 2018, 101, 3952–3979. [Google Scholar] [CrossRef]
- Muck, R.E. Silage Microbiology and Its Control through Additives. Rev. Bras. Zootec. 2010, 39, 183–191. [Google Scholar] [CrossRef]
- Kung, L.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage Review: Interpretation of Chemical, Microbial, and Organoleptic Components of Silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- Da Silva, Y.A.; Orrico Junior, M.A.P.; Retore, M.; Ceccon, G.; Amaral, I.P.D.O.; Orrico, A.C.A.; Muglia, G.R.P.; Fernandes, T. Productivity, Fermentation Parameters, and Chemical Composition of Silages from Biomass Sorghum Hybrids in Ratoon Crop. Fermentation 2025, 11, 540. [Google Scholar] [CrossRef]
- de Souza, J.M.S.; Neto, A.B.; da Rosa, M.A.B.; Tardin, F.D.; Galati, R.L.; Chaves, C.S.; Pereira, D.H. Nutritional Value and Fermentability of Sorghum Silages Grown in the Amazon Biome. Grassl. Sci. 2025, 71, 86–94. [Google Scholar] [CrossRef]
- da Rosa, M.A.B.; Tardin, F.D.; Souza, J.M.S.; Santos, J.A.P.; Macedo, T.F.; Santos, J.; de Freitas, M.; Todescatto, F.; Parrella, R.A.C.; Figueiredo, J.E.F.; et al. Characterization of Forage, Sweet and Biomass Sorghum for Agronomic Performance and Ensilability. Rev. Bras. Milho Sorgo 2022, 21, e1239. [Google Scholar] [CrossRef]
- Ribeiro, A.F.; Messana, J.D.; Dian, P.H.M.; Reis, R.A.; Ruggieri, A.C.; Malheiros, E.B.; Berchielli, T.T. Chemical Composition, in Vitro Digestibility and Gas Production of Brachiaria Managed Under Different Forage Allowances. Ital. J. Anim. Sci. 2014, 13, 36–43. [Google Scholar] [CrossRef]
- Ribeiro, M.G.; Costa, K.A.D.P.; de Souza, W.F.; Cruvinel, W.S.; da Silva, J.T.; Dos Santos Júnior, D.R. Silage Quality of Sorghum and Urochloa Brizantha Cultivars Monocropped or Intercropped in Different Planting Systems. Acta Sci. 2017, 39, 243–250. [Google Scholar] [CrossRef]
- Lemaire, G.; van Oosterom, E.; Jeuffroy, M.H.; Gastal, F.; Massignam, A. Crop Species Present Different Qualitative Types of Response to N Deficiency during Their Vegetative Growth. Field Crops Res. 2008, 105, 253–265. [Google Scholar] [CrossRef]
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L. Silage Review: Recent Advances and Future Uses of Silage Additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef]
- Abroulaye, S.; Nouhoun, Z.; Jethro, D.B.; Abalo, K.E.; Abdoulaye, O.; Esteban, F.R.; José, D.; Ken, B.J.; Adegbola, A. Sorghum [Sorghum bicolor (L.) Moench] and Cowpea [Vigna unguiculata (L.) Walpers] Intercropping Improves Grain Yield, Fodder Biomass, and Nutritive Value. Front. Anim. Sci. 2023, 4, 1233570. [Google Scholar] [CrossRef]
- Adesogan, A.T.; Arriola, K.G.; Jiang, Y.; Oyebade, A.; Paula, E.M.; Pech-Cervantes, A.A.; Romero, J.J.; Ferraretto, L.F.; Vyas, D. Symposium Review: Technologies for Improving Fiber Utilization. J. Dairy Sci. 2019, 102, 5726–5755. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J. Nutrition Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, Greece, 1994; ISBN 9780801427725. [Google Scholar]
- Lemaire, G.; Hodgson, J.; de Moraes, A.; Nabinger, C.; Carvalho, P.C.d.F. Grassland Ecophysiology and Grazing Ecology; CABI Publishing: New York, NY, USA, 2000; ISBN 0851994520. [Google Scholar]
- Shanmugam, P.M.; Sangeetha, S.P.; Prabu, P.C.; Varshini, S.V.; Renukadevi, A.; Ravisankar, N.; Parasuraman, P.; Parthipan, T.; Satheeshkumar, N.; Natarajan, S.K.; et al. Crop–Livestock-Integrated Farming System: A Strategy to Achieve Synergy between Agricultural Production, Nutritional Security, and Environmental Sustainability. Front. Sustain. Food Syst. 2024, 8, 1338299. [Google Scholar] [CrossRef]
- Ribeiro, M.G.; Tres, T.T.; Bueno, A.V.I.; Daniel, J.L.P.; Jobim, C.C. Effect of Cutting Time and Storage Time on the Nutritional Value of Stargrass Hay. Acta Sci. 2024, 46, e63835. [Google Scholar] [CrossRef]


| Attributes | Value | Unit |
|---|---|---|
| Chemical Properties | ||
| pH | 5.0 | - |
| P | 3.8 | mg/L |
| Cations | ||
| Ca | 18.9 | mmolc/L |
| Mg | 9.0 | mmolc/L |
| K | 1.7 | mmolc/L |
| H + Al (Potential Acidity) | 16.0 | mmolc/L |
| Al | 0.0 | mmolc/L |
| Calculated Values | ||
| Sum of Bases | 29.6 | mmolc/L |
| Cation Exchange Capacity (CEC) at pH 7.0 | 45.6 | mmolc/L |
| Effective CEC | 29.6 | mmolc/L |
| Saturation | ||
| Aluminum Saturation | 0.00 | % |
| Base Saturation | 64.91 | % |
| Micronutrients | ||
| Cu | 0.038 | mmol/L |
| Fe | 0.399 | mmol/L |
| Mn | 1.285 | mmol/L |
| Zn | 0.028 | mmol/L |
| Physical Properties | ||
| Sand | 768 | g/kg |
| Clay | 182 | g/kg |
| Silt | 50 | g/kg |
| Organic Matter | 15.49 | g/kg |
| Parameters | Cropping System | SEM | Row Spacing | SEM | p-Value | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| S | MS | ZS | 45 | 90 | C | R | C × R | |||
| SDMY, t/ha | 22.95 a | 21.34 a | 16.96 b | 0.76 | 22.46 a | 18.38 b | 0.62 | <0.01 | <0.01 | 0.11 |
| TDMY, t/ha | 22.95 a | 22.91 a | 20.14 b | 0.74 | 23.17 a | 20.83 b | 0.61 | 0.02 | 0.01 | 0.67 |
| GDMY, t/ha | - | 1.57 b | 3.17 a | 0.20 | 0.71 b | 2.44 a | 0.16 | <0.01 | <0.01 | <0.01 |
| DMR, % ensiled DM | 96.46 | 96.88 | 96.44 | 0.27 | 96.98 a | 96.20 b | 0.21 | 0.42 | 0.02 | 0.05 |
| pH | 4.03 b | 4.13 a | 3.97 b | 0.03 | 4.05 | 4.03 | 0.03 | <0.01 | 0.54 | 0.59 |
| Lactic Acid, % DM | 4.49 | 3.87 | 3.94 | 0.27 | 4.16 | 4.04 | 0.22 | 0.24 | 0.70 | 0.28 |
| Acetic Acid, % DM | 2.14 | 1.88 | 2.14 | 0.21 | 2.22 | 1.89 | 0.17 | 0.60 | 0.19 | 0.36 |
| Butyric Acid, % DM | 0.07 b | 0.19 a | 0.01 b | 0.04 | 0.03 | 0.15 | 0.04 | 0.03 | 0.02 | 0.04 |
| NH3-N, % TN | 0.54 | 0.52 | 0.53 | 0.06 | 0.51 | 0.54 | 0.05 | 0.97 | 0.70 | 0.85 |
| Dry Matter, % FM | 29.27 b | 29.87 a | 28.92 b | 0.18 | 29.17 | 29.53 | 0.15 | <0.01 | 0.10 | <0.01 |
| Ash, % DM | 2.18 | 2.16 | 2.28 | 0.31 | 2.33 | 2.08 | 0.25 | 0.96 | 0.50 | 0.65 |
| Crude Protein, % DM | 7.23 a | 6.79 b | 6.80 b | 0.10 | 6.73 b | 7.15 a | 0.08 | 0.01 | <0.01 | <0.01 |
| NDF, % DM | 75.54 a | 75.04 a | 73.46 b | 0.51 | 75.52 a | 73.84 b | 0.42 | 0.03 | 0.01 | 0.19 |
| ADF, % DM | 50.38 b | 51.23 a | 49.61 b | 0.41 | 50.43 | 50.38 | 0.34 | 0.04 | 0.90 | 0.12 |
| Lignin, % DM | 8.85 | 8.85 | 9.19 | 0.22 | 8.97 | 8.96 | 0.18 | 0.47 | 0.97 | 0.15 |
| NFC, % DM | 14.26 b | 15.51 b | 17.08 a | 0.65 | 14.91 | 16.33 | 0.53 | 0.02 | 0.07 | 0.16 |
| Starch, % DM | 2.11 | 2.26 | 2.04 | 0.26 | 1.83 b | 2.45 a | 0.21 | 0.82 | 0.05 | 0.32 |
| Ether Extract, % DM | 2.98 | 2.81 | 2.68 | 0.10 | 2.67 b | 2.98 a | 0.08 | 0.15 | 0.02 | 0.26 |
| NDFD48h, % DM | 44.25 | 44.25 | 42.13 | 0.97 | 43.08 | 44.00 | 0.80 | 0.23 | 0.43 | 0.41 |
| TDN, % DM | 53.75 | 53.88 | 53.50 | 0.42 | 53.08 b | 54.33 a | 0.35 | 0.82 | 0.02 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muglia, G.R.P.; Orrico Junior, M.A.P.; Amaral, I.P.d.O.; Retore, M.; Ceccon, G.; Orrico, A.C.A.; da Silva, P.H.F.; da Silva, Y.A. Effects of Row Spacing and Tropical Grass Intercropping on Biomass Sorghum Yield and Silage Quality. Crops 2025, 5, 86. https://doi.org/10.3390/crops5060086
Muglia GRP, Orrico Junior MAP, Amaral IPdO, Retore M, Ceccon G, Orrico ACA, da Silva PHF, da Silva YA. Effects of Row Spacing and Tropical Grass Intercropping on Biomass Sorghum Yield and Silage Quality. Crops. 2025; 5(6):86. https://doi.org/10.3390/crops5060086
Chicago/Turabian StyleMuglia, Giuliano Reis Pereira, Marco Antonio Previdelli Orrico Junior, Isabele Paola de Oliveira Amaral, Marciana Retore, Gessí Ceccon, Ana Carolina Amorim Orrico, Pedro Henrique Felipe da Silva, and Yara América da Silva. 2025. "Effects of Row Spacing and Tropical Grass Intercropping on Biomass Sorghum Yield and Silage Quality" Crops 5, no. 6: 86. https://doi.org/10.3390/crops5060086
APA StyleMuglia, G. R. P., Orrico Junior, M. A. P., Amaral, I. P. d. O., Retore, M., Ceccon, G., Orrico, A. C. A., da Silva, P. H. F., & da Silva, Y. A. (2025). Effects of Row Spacing and Tropical Grass Intercropping on Biomass Sorghum Yield and Silage Quality. Crops, 5(6), 86. https://doi.org/10.3390/crops5060086

