Influence of Partial Vermicompost Tea Substitution for Mineral Nitrogen Fertilizers on Yield and Nutrient Content of Wheat Cultivars
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Treatments
2.3. Cultural Practices
2.4. Data Collection
2.4.1. Agronomic Traits
2.4.2. Chemical Composition of Shoots
2.5. Grain Quality Characteristics
2.5.1. Preparation of Samples
2.5.2. Chemical Composition of Grain
2.6. Statistical Analysis
3. Results and Discussion
3.1. Agronomic Traits
3.2. Shoot Chemical Content
3.3. Correlation Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aechra, S.; Meena, R.H.; Meena, S.C.; Jat, H.; Doodhwal, K.; Shekhawat, A.S.; Verma, A.K.; Jat, L. Effect of biofertilizers and vermicompost on physico-chemical properties of soil under wheat (Triticum aestivum) crop. Indian J. Agric. Sci. 2022, 92, 991–995. [Google Scholar] [CrossRef]
- Acevedo, E.H.; Silva, P.C.; Silva, H.R.; Solar, B.R. Wheat production in Mediterranean environment. In Wheat: Ecology and Physiology of Yield Determination; Satorre, E.H., Slafer, G.A., Eds.; Food Products Press: Binghamton, NY, USA; The Haworth Press: Binghamton, NY, USA, 1999; p. 503. [Google Scholar]
- Shiferaw, B.; Smale, M.; Braun, H.J.; Duveiller, E.; Reynolds, M.; Muricho, G. Crops that feed the world. 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur. 2013, 5, 291–317. [Google Scholar] [CrossRef]
- Faltermaier, A.; Waters, D.; Becker, T.; Arendt, E.; Gastl, M. Common wheat (Triticum aestivum L.) and its use as a brewing cereal—A review. J. Inst. Brew. 2014, 120, 1–15. [Google Scholar] [CrossRef]
- Pathak, V.; Shrivastav, S. Biochemical studies on wheat (Triticum aestivum L.). J. Pharmacogn. Phytochem. 2015, 4, 171–175. [Google Scholar]
- Mohite, D.D.; Chavan, S.S.; Jadhav, V.S.; Kanase, T.; Kadam, M.A.; Singh, A.S. Vermicomposting: A holistic approach for sustainable crop production, nutrient-rich bio fertilizer, and environmental restoration. Discov. Sustain. 2024, 5, 60. [Google Scholar] [CrossRef]
- Ahmadian, A.; Ghanbari, A.; Siahsar, B.; Haydari, M.; Ramroodi, M.; Mousavinik, S.M. Study of chamomiles yield and its components under drought stress and organic and inorganic fertilizers usage and their residue. J. Microbiol. Antimicrob. 2011, 3, 23–28. [Google Scholar]
- Bistgani, Z.E.; Siadat, S.A.; Bakhshandeh, A.; Pirbalouti, A.G.; Hashemi, M.; Maggi, F.; Morshedloo, M.R. Application of combined fertilizers improves biomass, essential oil yield, aroma profile, and antioxidant properties of Thymus daenensis Celak. Ind. Crops Prod. 2018, 121, 434–440. [Google Scholar] [CrossRef]
- Sangkumchaliang, P.; Huang, W.C. Consumers’ perceptions and attitudes of organic food products in Northern Thailand. Int. Food Agribus. Manag. Rev. 2012, 15, 87–102. [Google Scholar] [CrossRef]
- Zhu, B.; Yao, Z.; Hu, D.; Bah, H. Effects of substitution of mineral nitrogen with organic amendments on nitrogen loss from sloping cropland of purple soil. Front. Agric. Sci. Eng. 2022, 9, 396–406. [Google Scholar] [CrossRef]
- Aslam, Z.; Bashir, S.; Hassan, W.; Bellitürk, K.; Ahmad, N.; Niazi, N.K.; Khan, A.; Khan, M.I.; Chen, Z.; Maitah, M. Unveiling the Efficiency of Vermicompost Derived from Different Biowastes on Wheat (Triticum aestivum L.) Plant Growth and Soil Health. Agronomy 2019, 9, 791. [Google Scholar] [CrossRef]
- Azarmi, A.; Khvndly, A.; Behnia, A. Effect of previous subsidence of soil and sediment run-off from the rain Shbysazy. Iran. J. Range Desert Res. 2008, 16, 445–455. [Google Scholar]
- Gomez-Brandon, M.; Dominguez, J. Recycling of solid organic wastes through Vermicomposting: Microbial community changes throughout the process and use of vermicompost as a soil amendment. Crit. Rev. Environ. Sci. Technol. 2013, 44, 1289–1312. [Google Scholar] [CrossRef]
- Mathivanan, S.; Kalaikandhan, R.; Chidambaram, A.L.; Sundramoorthy, P. Effect of vermicompost on the growth and nutrient status in groundnut (Arachis hypogaea L.). Asian J. Plant Sci. Res. 2013, 3, 15–22. [Google Scholar]
- Bajsa, O.; Nair, J.; Mathew, K.; Ho, G.E. Vermiculture as a tool for domestic waste water management. Water Sci. Technol. 2004, 48, 125–132. [Google Scholar] [CrossRef]
- Pezeshkpour, P.; Ardakani, M.R.; Paknejad, F.; Vazan, S. Effects of Vermicompost, mycorrhizal symbiosis and biophosphate solubilizing bacteria on seed yield and quality of chickpea as autumn plantation in rain fed conditions. Bull. Environ. Pharmacol. Life Sci. 2014, 3, 53–58. [Google Scholar]
- Wu, D.; Feng, Y.; Xue, L.; Liu, M.; Yang, B.; Hu, F.; Yang, L. Biochar combined with vermicompost increases crop production while reducing ammonia and nitrous oxide emissions from a paddy soil. Pedosphere 2019, 29, 82–94. [Google Scholar] [CrossRef]
- Song, X.; Liu, M.; Wu, D.; Qi, L.; Ye, C.; Jiao, J.; Hu, F. Heavy metal and nutrient changes during Vermicomposting animal manure spiked with mushroom residues. Waste Manag. 2014, 34, 1977–1983. [Google Scholar] [CrossRef]
- Joshi, R.; Vig, A.P.; Singh, J. Vermicompost as soil supplement to enhance growth, yield and quality of Triticum aestivum L.: A field study. Int. J. Recycl. Org. Waste Agric. 2013, 2, 16. [Google Scholar] [CrossRef]
- Song, X.; Liu, M.; Wu, D.; Griffiths, S.; Jiaguo, J.; Li, H.; Hu, F. Interaction matters: Synergy between vermicompost and PGPR agents improves soil quality, crop quality and crop yield in the field. Appl. Soil Ecol. 2015, 89, 25–34. [Google Scholar] [CrossRef]
- Edwards, C.A.; Arancon, N.Q. Vermicomposts suppress plant pest and disease attacks. Biocycle 2004, 45, 51–55. [Google Scholar]
- Simsek-Ersahin, Y. The Use of Vermicompost Products to Control Plant Diseases and Pests. In Biology of Earthworms; Soil Biology; Karaca, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Ahmad, A.; Aslam, Z.; Belliturk, K.; Hussain, S.; Bibi, I. Soil application of cellulolytic microbe–enriched vermicompost modulated the morpho-physiological and biochemical responses of wheat cultivars under different moisture regimes. J. Soil Sci. Plant Nutr. 2022, 22, 4153–4167. [Google Scholar] [CrossRef]
- Jat, R.S.; Ahlawat, I.P.S. Effect of vermicompost, biofertilizer and phosphorus on growth, yield and nutrient uptake by gram (Cicer arietinum) and their residual effect on fodder maize (Zea mays). Indian J. Agric. Sci. 2004, 74, 359–361. [Google Scholar]
- Jat, R.S.; Ahlawat, I.P.S. Direct and residual effect of vermicompost, biofertilizers and phosphorus on soil nutrient dynamics and productivity of chickpea-fodder maize sequence. J. Sustain. Agric. 2006, 28, 41–54. [Google Scholar] [CrossRef]
- Hosseinzadeh, S.R.; Amiri, H.; Ismaili, A. Effect of vermicompost fertilizer on photosynthetic characteristics of chickpea (Cicer arietinum L.) under drought stress. Photosynthetica 2016, 54, 87–92. [Google Scholar] [CrossRef]
- Çirka, M.; Altuner, F.; Eryiğit, T.; Oral, E.; Bildirici, N. Effects of vermicompost applications on some yield and yield properties of wheat. MAS J. Appl. Sci. 2022, 7, 146–156. [Google Scholar] [CrossRef]
- Barik, T.; Gulati, J.M.L.; Garnayak, L.M.; Bastia, D.K. Production of vermicompost from agricultural wastes. Agric. Rev. 2011, 31, 172–183. [Google Scholar]
- Pathma, J.; Sakthivel, N. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. SpringerPlus 2012, 1, 26. [Google Scholar] [CrossRef]
- Ganesh, P.; Tharmaraj, K.; Kolanjinathan, K.; Selvi, S.; Sabhanayagam, R.; Kumar, S.; Durai, S.C. Effect of organic manures and biofertilizers on physical, biological properties and growth of rice (ADT 43) by field application studies. Int. J. Curr. Life Sci. 2011, 1, 11–15. [Google Scholar]
- Ali, N.; Khan, M.N.; Ashraf, M.S.; Ijaz, S.; Rehman, H.S.; Abdullah, M.; Ahmad, N.; Akram, H.M.; Farooq, M. Influence of different organic manures and their combinations on productivity and quality of Bread Wheat. J. Soil Sci. Plant Nutr. 2020, 20, 1949–1960. [Google Scholar] [CrossRef]
- Palaniappan, S.P.; Annadurai, K. Organic Farming: Theory and Practice; Scientific Publishers: Jodhpur, India, 2018. [Google Scholar]
- Suthar, S. Bioremediation of aerobically treated distillery sludge mixed with cow dung by using an epigeic earthworm Eisenia fetida. Environmentalist 2008, 28, 76–84. [Google Scholar] [CrossRef]
- Klute, A. Methods of Soil Analysis. Part-I: Physical and Mineralogical Methods, 2nd ed.; American Society of Agronomy: Madison, WI, USA, 1986. [Google Scholar]
- Page, A.I.; Miller, R.H.; Keeny, D.R. Methods of Soil Analysis Part II. Chemical and Microbiological Methods, 2nd ed.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 225–246. [Google Scholar] [CrossRef]
- Cottenie, A.; Verloo, M.; Kiekens, L.; Velghe, M.; Camerlgnck, R. Chemical Analysis of Plant and Soil; Laboratory Analytical Agrochemistry, State University of Ghent: Ghent, Belgium, 1982; pp. 100–129. [Google Scholar]
- Piper, C.S. Soil and Plant Analysis, 1st ed.; Interscience Publishers: New York, NY, USA, 1947; p. 48. [Google Scholar]
- Mornai, R. Formula for determination of chlorophellous pigments extracted with N.N dim ethyl formamide. Plant Physiol. 1982, 69, 1371–1381. [Google Scholar] [CrossRef]
- A.O.A.C. Official Methods of Analysis of Association of Official Agricultural Chemists, 17th ed.; Suitem, H.W., Ed.; A.O.A.C.: Rockville, MD, USA, 2000; Volume 2, pp. 66–68. [Google Scholar]
- Moore, S.; Stein, M.N. A modified ninhydrin reagent for the photometric determination of amino and related compounds. J. Biol. Chem. 1954, 211, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.R.; Benton, J.; Wolf, B.; Mills, H.A. Plant Analysis Hand Book; Methods of Plant Analysis and Interpretation Micro-Macro Publishing Inc.: Athens, GA, USA, 1991; pp. 30–34. [Google Scholar]
- Smith, F.; Dabois, M.; Gilles, K.A.; Hamilton, J.K.; Kobers, L.N. Colorimetrical method for determination of sugars and relating compounds. Anal. Chem. 1956, 28, 350. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. Analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- SPSS Statistics 17.0. SPSS for Windows; SPSS Inc.: Chicago, IL, USA, 2008. [Google Scholar]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 9th ed.; Iowa State University Press: Ames, IA, USA, 1994. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Devi, K.N.; Singh, M.S.; Singh, N.G.; Athokpam, H.S. Effect of integrated nutrient management on growth and yield of wheat (Triticum aestivum L.). J. Crop Weed 2011, 7, 23–27. [Google Scholar]
- Sadaf, J.; Shah, G.A.; Shahzad, K.; Ali, N.; Shahid, M.; Ali, S.; Hussain, R.A.; Ahmed, Z.I.; Traore, B.; Ismail, I.M.; et al. Improvements in wheat productivity and soil quality can accomplish by co-application of biochars and chemical fertilizers. Sci. Total Environ. 2017, 607, 715–724. [Google Scholar] [CrossRef]
- Borse, D.K.; Usadadia, V.P.; Thorave, D.S. Nutrient management in wheat (Triticum aestivum L.) under partially reclaimed coastal salt affected soil of south Gujarat. Int. J. Curr. Microbiol. Appl. Sci. 2018, 8, 1590–1599. [Google Scholar] [CrossRef]
- Karmakar, S.; Kashyap, D. Influence of Vermicompost as the Source of Nitrogen in Various Combinations with Chemical Fertiliser on Winter Wheat Productivity. ASM Sci. J. 2021, 16, 1–9. [Google Scholar] [CrossRef]
- Ahmad, M.; Tripathi, S.K. Effect of Integrated use of Vermicompost, FYM and Chemical Fertilizers on Soil Properties and Productivity of Wheat (Triticum aestivum L.) in Alluvial Soil. J. Phytopharmacol. 2022, 11, 101–106. [Google Scholar] [CrossRef]
- Domínguez, J.; Lazcano, C.; Gómez-Brandón, M. Influencia del vermicompost en el crecimiento de las plantas. Aportes para la elaboración de un concepto objetivo. Acta Zool. Mex. 2010, 26, 359–371. [Google Scholar] [CrossRef]
- Kist-Steffen, G.P.; Maldaner, J.; Matos de Morais, R.; Witt Saldanha, C.; Missio, E.L.; Bemfica Steffen, R.; Dias Osorio Filho, B. The vermicompost anticipates flowering and increases tomato productivity. Agrociencia 2019, 23, 4–10. [Google Scholar] [CrossRef]
- Cai, L.; Gong, X.; Sun, X.; Li, S.; Yu, X. Comparison of chemical and microbiological changes during the aerobic composting and vermicomposting of green waste. PLoS ONE 2018, 13, e0207494. [Google Scholar] [CrossRef]
- Ahmad, A.; Aslam, Z.; Ahmad, M.; Zulfiqar, U.; Yaqoob, S.; Hussain, S.; Niazi, N.K.; ul din, K.; Gastelbondo, M.; Al-Ashkar, I.S.; et al. Vermicompost application upregulates morpho-physiological and antioxidant defense to conferring drought tolerance in wheat. Plant Stress 2024, 11, 100360. [Google Scholar] [CrossRef]
- Barlas, N.T.; Cönkeroğlu, B.; Unal, G.; Bellitürk, K. The Effect of Different Vermicompost Doses on Wheat (Triticum vulgaris L.) Nutrition. Tekirdağ Ziraat Fak. Derg. 2018, 15, 1–4. [Google Scholar]
- Hrčka, M.; Kraus, K.; Hřebečková, T.; Tunklová, B.; Kubeš, J.; Hanč, A. Effects of Sewage Sludge Compost and Vermicompost on Wheat Yield and Vitality. Agriculture 2025, 15, 551. [Google Scholar] [CrossRef]
- Fernández-Luqueño, F.; Reyes-Varela, V.; Martínez-Suárez, C.; Salomón-Hernández, G.; Yáñez-Meneses, J.; Ceballos-Ramírez, J.M.; Dendooven, L. Effect of different nitrogen sources on plant characteristics and yield of common bean (Phaseolus vulgaris L.). Bioresour. Technol. 2010, 101, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Pourranjbari-Saghaiesh, S.; Souri, M.K.; Moghaddam, M. Characterization of nutrients uptake and enzymes activity in Khatouni Melon (Cucumis melo Var. Inodorus) seedlings under different concentrations of nitrogen, potassium and phosphorus of nutrient solution. J. Plant Nutr. 2019, 42, 178–185. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.A.; Li, D.; Tang, B.C.; Man, S.L.; Jia, Y.F.; Xu, H. Vermicompost and biochar as bio-conditioners to immobilize heavy metal and improve soil fertility on cadmium contaminated soil under acid rain stress. Sci. Total Environ. 2018, 621, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Sharma, R.; Kumar, S.; Gupta, R.; Patil, R. Vermicompost substitution influences growth, physiological disorders, fruit yield and quality of strawberry (Fragaria × ananassa Duch.). Bioresour. Technol. 2008, 99, 8507–8511. [Google Scholar] [CrossRef] [PubMed]
- Ziriğ, B.; Eren, A. Effect of Vermicompost Applications on Quality, Yield and Some Macro and Micro Elements Content of Bread Wheat. ISPEC J. Agric. Sci. 2025, 9, 470–483. [Google Scholar] [CrossRef]
- Essa, R.E.; Afifi, A.A.; El-Ashry, S.M.; Mohamed, M.F. Productivity of Some Winter Wheat (Triticum aestivum L.) Varieties through Integrated Application of Vermicompost and Biochar in Sandy Soil. Egypt. J. Agron. 2023, 45, 201–212. [Google Scholar] [CrossRef]
- Dawar, K.; Khan, A.; Mian, I.A.; Khan, B.; Ali, S.; Ahmad, S.; Piotr Szulc, P.; Fahad, S.; Datta, R.; Hatamleh, A.A.; et al. Maize productivity and soil nutrients variations by the application of vermicompost and biochar. PLoS ONE 2022, 17, e0267483. [Google Scholar] [CrossRef]
- Gadisa, N.; Mekonnen, A. Effect of Integrated Application of Vermicompost and N Fertilizers on Quality Parameters of Wheat (Triticum aestivum L.) Varieties in Welmera District, Central Ethiopia. World J. Agric. Sci. 2021, 17, 378–385. [Google Scholar]
- Abbas, M.; Abdel-Lattif, H.; Badawy, R.; Abd El-Wahab, M.; Shahba, M. Compost and Biostimulants versus Mineral Nitrogen on Productivity and Grain Quality of Two Wheat Cultivars. Agriculture 2022, 12, 699. [Google Scholar] [CrossRef]
- Wang, Z.H.; Li, S.X.; Malhi, S. Effects of fertilization and other agronomic measures on nutritional quality of crops. J. Sci. Food Agric. 2008, 88, 7–23. [Google Scholar] [CrossRef]
- Nikolić, O.; Živanović, T.; Jelić, M.; Đalović, I. Interrelationships between grain nitrogen content and other indicators of nitrogen accumulation and utilization efficiency in wheat plants. Chil. J. Agric. Res. 2012, 72, 111–116. [Google Scholar] [CrossRef]
- Ierna, A.; Lombardo, G.M.; Mauromicale, G. Yield, nitrogen use efficiency and grain quality in durum wheat as affected by nitrogen fertilization under a Mediterranean environment. Exp. Agric. 2015, 52, 314–329. [Google Scholar] [CrossRef]
- El Sebai, T.N.; Al-Ashkar, N.M.; Ramadan, A.A.; Abdallah, M.M.S.; El-Bassiouny, H.M.S. Ameliorating the adverse effects of salinity on wheat plants using the bio-wastes (pomegranate peel extract and/or compost). Braz. J. Biol. 2023, 83, e275700. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.; Tian, C.; Nagy, M.K.I.; Al-Metwally, M.S.; Chen, X.; Abdel-Lattif, H.M. Synergistic Effect of Iron and Zinc Nanoparticles with Recommended Nitrogen Dose on Production and Grain Quality of Maize (Zea mays L.) Cultivars Under Drought Stress. Nitrogen 2024, 5, 1156–1180. [Google Scholar] [CrossRef]
Month | 2021–2022 | 2022–2023 | ||||
---|---|---|---|---|---|---|
Average Temperature (°C) | Relative Humidity (%) | Rainfall (mm) | Average Temperature (°C) | Relative Humidity (%) | Rainfall (mm) | |
November | 13.01 | 55.67 | 0.19 | 11.32 | 61.61 | 0.35 |
December | 11.18 | 64.55 | 0.26 | 12.58 | 58.17 | 0.03 |
January | 12.41 | 66.46 | 0.16 | 13.13 | 61.49 | 0.23 |
February | 13.27 | 64.52 | 1.97 | 13.65 | 62.10 | 0.10 |
March | 15.23 | 58.79 | 0.41 | 15.64 | 43.79 | 0.07 |
April | 15.47 | 48.80 | 0.05 | 16.64 | 37.41 | 0.03 |
May | 17.37 | 40.20 | 0.00 | 16.18 | 35.91 | 0.01 |
Soil Analysis | 2021–2022 | 2022–2023 |
---|---|---|
Physical Properties | ||
Sand (%) | 32.8 | 31.7 |
Silt (%) | 33.1 | 32.3 |
Clay (%) | 34.1 | 36.0 |
Texture class | Clay loam | Clay loam |
Chemical Properties | ||
pH(1:1) | 7.03 | 7.19 |
Ec(1:1) (dS m−1) | 2.54 | 2.22 |
Organic matter (%) | 4.51 | 6.62 |
Total CaCO3 (%) | 1.74 | 1.91 |
Available N (mg kg−1) | 7.14 | 6.19 |
Available P (mg kg−1) | 1.65 | 2.04 |
Available K (mg kg−1) | 168 | 187 |
Irrigation system | Drip irrigation | Drip irrigation |
Ions Concentration (meq L−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Season | pH | EC (ds m−1) | HCO3− | CL− | SO4− | Ca++ | Mg++ | Na+ | K+ |
2021–2022 | 7.2 | 0.98 | 1.8 | 12.5 | 3.2 | 1.1 | 2.3 | 7.1 | 0.54 |
2022–2023 | 7.0 | 1.12 | 2.2 | 14.1 | 4.1 | 1.3 | 2.6 | 8.5 | 0.75 |
Components | 2021–2022 | 2022–2023 |
---|---|---|
Bulk Density (kg/m3) | 195 | 212 |
Moisture Content (%) | 45.71 | 49.35 |
pH(1:10) | 7.55 | 8.11 |
EC(1:10) (ds/m) | 2.37 | 2.54 |
Total Nitrogen (%) | 0.81 | 0.69 |
Ammoniacal Nitrogen—NH4+ (%) | 7.12 | 6.18 |
Nitrate Nitrogen—NO3− (%) | 18.29 | 21.43 |
Organic Matter (%) | 14.89 | 11.22 |
Organic Carbon (%) | 6.47 | 4.58 |
Ash (%) | 0.05 | 0.11 |
C:N Ratio | 34.2 | 26. 7 |
Total Phosphorus (P2O5) (%) | 1.67 | 1.25 |
Total Potassium (%) | 2.98 | 3.45 |
Nitrogen Fertilizer (% RDN) | Vermicompost Tea (kg ha−1) | Cultivars | Grain Weight/Ha | Spike Weight/Plant (g) | Spike Length/Plant (cm) | No. of Grains/Spikes | Grain Weight/ Spike (g) | Plant Height (cm) | Grain Index (g) |
---|---|---|---|---|---|---|---|---|---|
Control (100) | 0.0 | Sakha-95 | 6.14 f ± 0.32 | 3.56 efg ± 0.31 | 16.97 bc ± 0.77 | 56.16 cd ± 3.97 | 2.26 de ± 0.19 | 85.50 g ± 4.04 | 40.23 bc ± 2.89 |
Giza-171 | 6.83 e ± 0.47 | 3.41 g ± 0.31 | 17.61 abc ± 0.37 | 56.50 cd ± 4.15 | 2.14 e ± 0.21 | 85.33 g ± 3.82 | 37.77 c ± 2.07 | ||
Sads-14 | 6.77 e ± 0.40 | 3.47 fg ± 0.18 | 19.23 a ± 0.68 | 59.00 b ± 2.27 | 2.27 de ± 0.18 | 91.17 fg ± 6.83 | 38.40 c ± 1.95 | ||
90 | 25 | Sakha-95 | 7.11 de ± 0.35 | 3.75 de ± 0.25 | 17.46 abc ± 1.44 | 57.67 bcd ± 1.24 | 2.45 cd ± 0.18 | 93.17 f ± 5.85 | 42.50 ab ± 2.92 |
Giza-171 | 7.52 cd ± 0.36 | 3.58 defg ± 0.25 | 18.77 ab ± 1.16 | 57.33 bcd ± 1.75 | 2.31 de ± 0.26 | 96.17 ef ± 5.01 | 40.17 bc ± 3.85 | ||
Sads-14 | 7.71 c ± 0.45 | 3.59 defg ± 0.26 | 18.39 ab ± 1.68 | 57.34 bcd ± 2.21 | 2.39 cd ± 0.25 | 95.00 f ± 3.66 | 41.68 ab ± 3.34 | ||
80 | 37.5 | Sakha-95 | 7.84 c ± 0.38 | 3.65 def ± 0.10 | 18.31 ab ± 2.00 | 55.78 d ± 2.27 | 2.35 d ± 0.07 | 105.67 cd ± 6.48 | 42.10 ab ± 2.01 |
Giza-171 | 8.46 b ± 0.62 | 3.68 def ± 0.27 | 18.73 ± 1.76 | 55.94 d ± 2.52 | 2.40 cd ± 0.10 | 102.00 de ± 5.39 | 42.96 ab ± 1.58 | ||
Sads-14 | 8.54 b ± 0.55 | 3.80 cd ± 0.37 | 17.46 abc ± 2.52 | 58.39 bc ± 3.69 | 2.59 bc ± 0.16 | 106.33 bcd ± 7.08 | 44.35 a ± 1.36 | ||
70 | 50 | Sakha-95 | 8.51 b ± 0.42 | 4.02 bc ± 0.17 | 18.61 ab ± 2.84 | 63.13 a ± 1.84 | 2.74 ab ± 0.20 | 110.67 abc ± 6.07 | 43.41 a ± 2.58 |
Giza-171 | 9.12 a ± 0.36 | 4.07 b ± 0.43 | 18.22 ab ± 2.98 | 64.81 a ± 3.52 | 2.87 a ± 0.21 | 113.67 a ± 6.22 | 44.33 a ± 1.49 | ||
Sads-14 | 9.43 a ± 0.50 | 4.35 a ± 0.23 | 16.17 c ± 1.23 | 65.34 a ± 2.83 | 2.89 a ± 0.25 | 112.17 ab ± 4.36 | 44.27 a ± 3.16 | ||
LSD0.05 | 0.47 | 0.23 | 1.87 | 2.39 | 0.20 | 5.99 | 3.09 |
Nitrogen Fertilizer (% RDN) | Vermicompost Tea (kg ha−1) | Cultivars | Ch-a (mg/g) | Ch-b (mg/g) | Carotenes (mg/g) | Total Sugars (mg/100 g) | Total FAA (mg/100 g) | N (%) | P (%) | K (%) |
---|---|---|---|---|---|---|---|---|---|---|
Control (100) | 0.0 | Sakha-95 | 0.93 g ± 0.13 | 0.66 g ± 0.10 | 0.58 h ± 0.15 | 12.17 e ± 1.11 | 2.82 ± 0.24 | 3.19 ef ± 0.85 | 1.17 g ± 0.11 | 2.05 g ± 0.27 |
Giza-171 | 1.02 efg ± 0.13 | 0.66 g ± 0.09 | 0.62 gh ± 0.08 | 18.27 bc ± 1.94 | 3.80 c ± 0.16 | 4.87 abc ± 0.41 | 1.23 fg ± 0.10 | 2.10 g ± 0.46 | ||
Sads-14 | 0.93 g ± 0.09 | 0.91 bc ± 0.07 | 0.76 de ± 0.04 | 18.13 bc ± 0.90 | 3.32 de ± 0.23 | 4.15 cd ± 0.93 | 1.27 efg ± 0.20 | 2.18 ef ± 0.37 | ||
90 | 25 | Sakha-95 | 0.99 fg ± 0.13 | 0.71 g ± 0.06 | 0.68 fg ± 0.09 | 20.44 a ± 1.30 | 4.98 ab ± 0.31 | 4.94 ab ± 1.09 | 1.39 cd ± 0.18 | 2.28 bcd ± 0.23 |
Giza-171 | 1.07 def ± 0.18 | 0.72 fg ± 0.15 | 0.82 c ± 0.08 | 13.21 e ± 1.98 | 2.87 ef ± 0.35 | 3.31 ef ± 0.68 | 1.26 efg ± 0.12 | 2.05 g ± 0.12 | ||
Sads-14 | 1.01 efg ± 0.11 | 0.89 bcd ± 0.11 | 0.75 de ± 0.07 | 16.45 d ± 0.61 | 3.59 cd ± 0.40 | 3.81 de ± 0.97 | 1.31 def ± 0.19 | 2.11 fg ± 0.26 | ||
80 | 37.5 | Sakha-95 | 1.03 efg ± 0.14 | 0.79 ef ± 0.08 | 0.72 ef ± 0.06 | 17.35 cd ± 1.14 | 3.99 c ± 0.04 | 4.25 bcd ± 1.03 | 1.34 de ± 0.29 | 2.21 de ± 0.31 |
Giza-171 | 1.10 de ± 0.14 | 0.82 de ± 0.05 | 0.80 cd ± 0.08 | 21.11 a ± 1.99 | 5.33 a ± 0.09 | 4.82 abc ± 1.09 | 1.50 bc ± 0.43 | 2.25 cd ± 0.24 | ||
Sads-14 | 1.28 ab ± 0.24 | 0.96 b ± 0.11 | 0.83 c ± 0.05 | 12.52 e ± 1.93 | 2.51 ± 0.24 | 2.85 f ± 1.11 | 1.17 g ± 0.08 | 2.30 bc ± 0.23 | ||
70 | 50 | Sakha-95 | 1.15 cd ± 0.23 | 0.89 bcd ± 0.10 | 0.90 b ± 0.05 | 16.61 d ± 1.05 | 3.82 c ± 0.31 | 3.02 f ± 0.87 | 1.25 efg ± 0.26 | 2.28 bcd ± 0.13 |
Giza-171 | 1.26 bc ± 0.11 | 0.86 cd ± 0.05 | 0.98 a ± 0.02 | 18.86 b ± 1.04 | 3.59 cd ± 0.28 | 3.54 def ± 0.84 | 1.52 ab ± 0.10 | 2.35 b ± 0.24 | ||
Sads-14 | 1.39 a ± 0.19 | 1.04 a ± 0.12 | 0.93 ab ± 0.03 | 20.87 a ± 0.98 | 4.63 b ± 0.27 | 5.08 a ± 1.07 | 1.63 a ± 0.26 | 2.43 a ± 0.24 | ||
LSD0.05 | 0.11 | 0.07 | 0.06 | 1.35 | 0.45 | 0.76 | 0.18 | ns |
Nitrogen Fertilizer (% RDN) | Vermicompost Tea (kg ha−1) | Cultivars | Ash (%) | Crude Protein (%) | Crude Fiber (%) | Carbohydrate (%) | Moisture (%) |
---|---|---|---|---|---|---|---|
Control (100) | 0.0 | Sakha-95 | 2.69 b ± 0.20 | 5.34 k ± 0.34 | 2.74 b ± 0.11 | 79.26 e ± 0.96 | 9.82 a ± 0.11 |
Giza-171 | 2.18 j ± 0.14 | 5.62 j ± 0.53 | 2.11 f ± 0.19 | 80.70 a ± 1.22 | 9.01 e ± 0.21 | ||
Sads-14 | 2.27 h ± 0.16 | 6.02 g ± 0.27 | 2.30 e ± 0.09 | 80.23 b ± 1.41 | 8.91 f ± 0.27 | ||
90 | 25 | Sakha-95 | 2.16 k ± 0.15 | 6.94 d ± 0.41 | 2.11 f ± 0.17 | 79.15 f ± 0.77 | 8.49 h ± 0.21 |
Giza-171 | 2.40 e ± 0.13 | 5.10 l ± 0.32 | 2.37 d ± 0.15 | 80.69 a ± 1.13 | 8.88 f ± 0.18 | ||
Sads-14 | 2.50 d ± 0.11 | 5.68 i ± 0.62 | 2.46 c ± 0.12 | 79.84 c ± 1.17 | 8.87 f ± 0.25 | ||
80 | 37.5 | Sakha-95 | 2.34 f ± 0.16 | 7.01 c ± 0.39 | 2.26 e ± 0.09 | 78.25 g ± 1.10 | 9.02 e ± 0.15 |
Giza-171 | 2.30 g ± 0.18 | 7.63 a ± 0.43 | 2.22 e ± 0.11 | 77.93 h ± 0.43 | 8.79 g ± 0.21 | ||
Sads-14 | 2.25 i ± 0.09 | 5.90 h ± 0.62 | 2.14 f ± 0.18 | 79.50 d ± 0.55 | 9.20 d ± 0.31 | ||
70 | 50 | Sakha-95 | 2.53 c ± 0.13 | 6.40 f ± 0.54 | 2.45 c ± 0.17 | 78.23 g ± 0.61 | 9.62 b ± 0.10 |
Giza-171 | 1.96 l ± 0.11 | 6.65 e ± 0.87 | 1.84 g ± 0.11 | 79.13 f ± 0.78 | 9.56 b ± 0.18 | ||
Sads-14 | 2.89 a ± 0.13 | 7.32 b ± 0.49 | 2.84 a ± 0.15 | 76.60 i ± 0.97 | 9.40 c ± 0.22 | ||
LSD0.05 | 0.21 | 0.52 | 0.74 | 2.13 | 0.64 |
Nitrogen Fertilizer (% RDN) | Vermicompost Tea (kg ha−1) | Cultivars | Total Sugars (mg/100 g) | Total FAA (mg/100 g) | N (%) | P (%) | K (%) |
---|---|---|---|---|---|---|---|
Control (100) | 0.0 | Sakha-95 | 23.67 f ± 0.35 | 2.25 de ± 0.11 | 15.17 e ± 0.27 | 2.25 f ± 0.05 | 4.16 ef ± 0.11 |
Giza-171 | 26.52 e ± 1.23 | 2.66 ab ± 0.23 | 16.21 e ± 0.19 | 2.30 ef ± 0.09 | 4.28 ef ± 0.14 | ||
Sads-14 | 26.44 e ± 1.37 | 2.85 a ± 0.19 | 15.52 e ± 0.25 | 1.94 f ± 0.04 | 3.82 f ± 0.17 | ||
90 | 25 | Sakha-95 | 32.87 bc ± 1.39 | 1.92 fg ± 0.10 | 21.27 bc ± 0.66 | 3.23 c ± 0.09 | 5.84 abc ± 0.09 |
Giza-171 | 26.48 e ± 1.23 | 2.33 cd ± 0.18 | 19.45 d ± 0.71 | 3.02 cd ± 0.05 | 4.78 de ± 0.08 | ||
Sads-14 | 32.55 c ± 0.91 | 2.55 bc ± 0.23 | 19.61 d ± 0.58 | 3.25 c ± 0.08 | 3.99 f ± 0.05 | ||
80 | 37.5 | Sakha-95 | 29.74 d ± 0.83 | 1.99 efg ± 0.21 | 21.13 bc ± 0.37 | 2.75 de ± 0.06 | 5.12 cd ± 0.12 |
Giza-171 | 31.73 cd ± 0.52 | 1.95 fg ± 0.30 | 20.35 cd ± 0.43 | 3.42 c ± 0.05 | 5.22 bcd ± 0.09 | ||
Sads-14 | 32.87 bc ± 0.31 | 2.07 def ± 0.28 | 21.86 b ± 0.24 | 3.02 cd ± 0.05 | 4.51 def ± 0.13 | ||
70 | 50 | Sakha-95 | 38.72 a ± 0.66 | 1.78 g ± 0.18 | 23.44 a ± 0.23 | 4.41 ab ± 0.04 | 5.91 ab ± 0.07 |
Giza-171 | 35.22 b ± 1.38 | 1.76 g ± 0.51 | 24.11 a ± 0.37 | 4.76 a ± 0.08 | 5.79 abc ± 0.14 | ||
Sads-14 | 33.80 bc ± 1.15 | 1.83 fg ± 0.43 | 23.87 a ± 0.43 | 4.06 b ± 0.11 | 6.05 a ± 0.06 | ||
LSD0.05 | 2.51 | 0.28 | 1.35 | 0.45 | 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Lattif, H.; Abbas, M. Influence of Partial Vermicompost Tea Substitution for Mineral Nitrogen Fertilizers on Yield and Nutrient Content of Wheat Cultivars. Crops 2025, 5, 51. https://doi.org/10.3390/crops5040051
Abdel-Lattif H, Abbas M. Influence of Partial Vermicompost Tea Substitution for Mineral Nitrogen Fertilizers on Yield and Nutrient Content of Wheat Cultivars. Crops. 2025; 5(4):51. https://doi.org/10.3390/crops5040051
Chicago/Turabian StyleAbdel-Lattif, Hashim, and Mohamed Abbas. 2025. "Influence of Partial Vermicompost Tea Substitution for Mineral Nitrogen Fertilizers on Yield and Nutrient Content of Wheat Cultivars" Crops 5, no. 4: 51. https://doi.org/10.3390/crops5040051
APA StyleAbdel-Lattif, H., & Abbas, M. (2025). Influence of Partial Vermicompost Tea Substitution for Mineral Nitrogen Fertilizers on Yield and Nutrient Content of Wheat Cultivars. Crops, 5(4), 51. https://doi.org/10.3390/crops5040051