The Composition of Essential Oils and the Content of Saponins in Different Parts of Gilia capitata Sims
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Hydrodistillation of Essential Oil
2.3. Gas Chromatography/Mass Spectrometry
2.4. Extraction of Saponins
2.5. Identification of Saponins
2.6. Quantification of Saponins
2.7. Foam Index of Saponins
2.8. Data Analysis
3. Results and Discussion
3.1. Analysis of Essential Oil
3.2. Analysis of Saponins
3.2.1. Identification of Saponins
3.2.2. Quantification of Saponins
3.2.3. The Limitations of the Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- The European Directorate for the Quality of Medicines & HealthCare. European Pharmacopoeia, 11th ed.; Council of Europe: Strasbourg, France, 2022. [Google Scholar]
- Smith, D.M.; Glennie, C.W.; Harborne, J.B.; Williams, C.A. Flavonoid Diversification in the Polemoniaceae. Biochem. Syst. Ecol. 1977, 5, 107–115. [Google Scholar] [CrossRef]
- Grant, V. Primary Classification and Phylogeny of the Polemoniaceae, with Comments on Molecular Cladistics. Am. J. Bot. 1998, 85, 741–752. [Google Scholar] [CrossRef] [PubMed]
- California Native Plant Society. Gilia Capitata. In Calscape; California Native Plant Society: Sacramento, CA, USA, 2024. [Google Scholar]
- Grant, V. Taxonomy of the Polemoniaceae: Gilia and Lathrocasis. SIDA Contrib. Bot. 2004, 21, 531–546. [Google Scholar]
- Grant, V. Genetic and Taxonomic Studies in Gilia: VI. Interspecific Relationships in the Leafy-Stemmed Gilias. Aliso 1954, 3, 35–49. [Google Scholar] [CrossRef]
- Grant, V.; Grant, A. Genetic and Taxonomic Studies in Gilia: X. Conspectus of the Subgenus Gilia. Aliso J. Syst. Evol. Bot. 1956, 3, 297–300. [Google Scholar] [CrossRef]
- Łaska, G.; Sieniawska, E.; Świątek, Ł.; Zjawiony, J.; Khan, S.; Boguszewska, A.; Stocki, M.; Angielczyk, M.; Polz-Dacewicz, M. Phytochemistry and Biological Activities of Polemonium caeruleum L. Phytochem. Lett. 2019, 30, 314–323. [Google Scholar] [CrossRef]
- Jaramillo, Z.; Leigh, J. Revision of the Genus Gilia of Utah. J. Undergrad. Res. 2019, 2019, 105. [Google Scholar]
- Baskin, J.M.; Baskin, C.C. Propagation Protocol for Production of Container (Plug) Gilia capitata Sims Plants. In Native Plant Network; University of Kentucky: Lexington, KY, USA, 2002. [Google Scholar]
- Grant, V. Genetic and Taxonomic Studies in Gilia: I. Gilia capitata. Aliso 1950, 2, 239–316. [Google Scholar] [CrossRef]
- Porter, J.M. Gilia capitata subsp. Capitata. In Jepson eFlora 2023; Jepson Flora Project, Ed.; University of California: Berkeley, CA, USA, 2023. [Google Scholar]
- Gilia capitata Sims. Kew Plants of the World. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:110013-2 (accessed on 10 May 2025).
- Hayes, J. Top 10 Oregon Native Plants for Pollinators: Week 8. Available online: https://blogs.oregonstate.edu/gardenecologylab/2022/01/10/top-10-oregon-native-plants-for-pollinators-week-8/ (accessed on 27 March 2024).
- Grant, V.; Grant, A. Flower Pollination in the Phlox Family; Columbia University Press: New York, NY, USA, 1965. [Google Scholar]
- Nagy, E.S. Selection for Native Characters in Hybrids Between Two Locally Adapted Plant Subspecies. Evolution 1997, 51, 1469. [Google Scholar] [CrossRef]
- Runge, T.; Latacz-Lohmann, U.; Schaller, L.; Todorova, K.; Daugbjerg, C.; Termansen, M.; Liira, J.; Le Gloux, F.; Dupraz, P.; Leppanen, J.; et al. Implementation of Eco-schemes in Fifteen European Union Member States. EuroChoices 2022, 21, 19–27. [Google Scholar] [CrossRef]
- Nagy, E.S.; Rice, K.J. Local Adaptation in Two Subspecies of an Annual Plant: Implications for Migration and Gene Flow. Evolution 1997, 51, 1079. [Google Scholar] [CrossRef] [PubMed]
- Kruckeberg, A.R. Intraspecific variability in the response of certain native plant species to serpentine soil. Am. J. Bot. 1951, 38, 408–419. [Google Scholar] [CrossRef]
- Brown, H.S. Differential Chiasma Frequencies in Self-Pollinating and Cross-Pollinating Species of the Genus Gilia. Aliso J. Syst. Florist. Bot. 1961, 5, 67–81. [Google Scholar] [CrossRef]
- Grant, V. Seed Germination in Gilia capitata and Its Relatives. Madroño 1949, 10, 87–93. [Google Scholar]
- Keeley, J.E.; Keeley, S.C. Role of Fire in the Germination of Chaparral Herbs and Suffrutescents. Madroño 1987, 34, 240–249. [Google Scholar]
- Cseke, L.J.; Kaufman, P.B.; Kirakosyan, A. The Biology of Essential Oils in the Pollination of Flowers. Nat. Prod. Commun. 2007, 2, 1934578X0700201225. [Google Scholar] [CrossRef]
- Knudsen, J.T.; Eriksson, R.; Gershenzon, J.; Ståhl, B. Diversity and Distribution of Floral Scent. Bot. Rev. 2006, 72, 1. [Google Scholar] [CrossRef]
- Dötterl, S.; Schäffler, I. Flower Scent of Floral Oil-Producing Lysimachia punctata as Attractant for the Oil-Bee Macropis fulvipes. J. Chem. Ecol. 2007, 33, 441–445. [Google Scholar] [CrossRef]
- Raal, A.; Ilina, T.; Kovalyova, A.; Koshovyi, O. Volatile Compounds in Distillates and Hexane Extracts from the Flowers of Philadelphus coronarius and Jasminum officinale. Sci. Pharm. Sci. 2024, 6, 37–46. [Google Scholar] [CrossRef]
- Hrytsyk, Y.; Koshovyi, O.; Lepiku, M.; Jakštas, V.; Žvikas, V.; Matus, T.; Melnyk, M.; Grytsyk, L.; Raal, A. Phytochemical and Pharmacological Research in Galenic Remedies of Solidago canadensis L. Herb. Phyton 2024, 93, 2303–2315. [Google Scholar] [CrossRef]
- Zhang, Y.; Xue, K.; Zhao, E.; Li, Y.; Yao, L.; Yang, X.; Xie, X. Determination of Oleanolic Acid and Ursolic Acid in Chinese Medicinal Plants Using HPLC with PAH Polymeric C18. Pharmacogn. Mag. 2013, 9, 19. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Xia, Z.H.; Tan, R.X. High-Performance Liquid Chromatographic Analysis of Bioactive Triterpenes in Perilla frutescens. J. Pharm. Biomed. Anal. 2003, 32, 1175–1179. [Google Scholar] [CrossRef] [PubMed]
- Jäger, S.; Trojan, H.; Kopp, T.; Laszczyk, M.N.; Scheffler, A. Pentacyclic Triterpene Distribution in Various Plants—Rich Sources for a New Group of Multi-Potent Plant Extracts. Molecules 2009, 14, 2016–2031. [Google Scholar] [CrossRef]
- McCune, B.; Mefford, M.J. PC-ORD: Multivariate Analysis of Ecological Data; MjM Software Design: Gleneden Beach, OR, USA, 2018. [Google Scholar]
- Raal, A. Pharmacognosy, 2025; Tartu Ülikooli Kirjastus: Tartu, Estonia, 2025. [Google Scholar]
- Raal, A.; Gontova, T.; Ivask, A.; Orav, A.; Koshovyi, O. Yield, Composition, and Chemotypes of Essential Oils from Origanum vulgare L. Aerial Parts Cultivated in Different European Countries. Agronomy 2024, 14, 3046. [Google Scholar] [CrossRef]
- Raal, A.; Gontova, T.; Palmeos, M.; Orav, A.; Sayakova, G.; Koshovyi, O. Comparative Analysis of Content and Composition of Essential Oils of Thymus vulgaris L. from Different Regions of Europe. Proc. Estonian Acad. Sci. 2024, 73, 332–344. [Google Scholar] [CrossRef]
- Raal, A.; Kokitko, V.; Odyntsova, V.; Orav, A.; Koshovyi, O. Comparative Analysis of the Essential Oil of the Underground Organs of Valeriana spp. from Different Countries. Phyton 2024, 93, 1365–1382. [Google Scholar] [CrossRef]
- Ain, R.; Ilina, T.; Kovaleva, A.; Orav, A.; Karileet, M.; Džaniašvili, M.; Koliadzhyn, T.; Grytsyk, A.; Koshovyi, O. Variation in the Composition of the Essential Oil of Commercial Artemisia absinthium L. Herb Samples from Different Countries. Sci. Pharm. Sci. 2024, 2, 19–28. [Google Scholar] [CrossRef]
- Raal, A.; Komarov, R.; Orav, A.; Kapp, K.; Grytsyk, A.; Koshovyi, O. Chemical Composition of Essential Oil of Common Juniper (Juniperus communis L.) Branches from Estonia. Sci. Pharm. Sci. 2022, 6, 66–73. [Google Scholar] [CrossRef]
- Andersson, S.; Nilsson, L.A.; Groth, I.; Bergström, G. Floral Scents in Butterfly-Pollinated Plants: Possible Convergence in Chemical Composition. Bot. J. Linn. Soc. 2002, 140, 129–153. [Google Scholar] [CrossRef]
- Filipowicz, N.; Kamiński, M.; Kurlenda, J.; Asztemborska, M.; Ochocka, J.R. Antibacterial and Antifungal Activity of Juniper Berry Oil and Its Selected Components. Phytother. Res. 2003, 17, 227–231. [Google Scholar] [CrossRef]
- Razavi, S.M.; Nejad-Ebrahimi, S. Phytochemical Analysis and Allelopathic Activity of Essential Oils of Ecballium elaterium A. Richard Growing in Iran. Nat. Prod. Res. 2010, 24, 1704–1709. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Wang, S.; Shi, J.; Sun, Z.; Lei, Z.; Yin, Z.; Qian, Z.; Tang, H.; Xie, H. Genotypic and Environmental Effects on the Volatile Chemotype of Valeriana jatamansi Jones. Front. Plant Sci. 2018, 9, 1003. [Google Scholar] [CrossRef] [PubMed]
- Avoseh, O.N.; Mtunzi, F.M.; Ogunwande, I.A.; Ascrizzi, R.; Guido, F. Albizia lebbeck and Albizia zygia Volatile Oils Exhibit Anti-Nociceptive and Anti-Inflammatory Properties in Pain Models. J. Ethnopharmacol. 2021, 268, 113676. [Google Scholar] [CrossRef]
- Ganesan, T.; Subban, M.; Christopher Leslee, D.B.; Kuppannan, S.B.; Seedevi, P. Structural Characterization of N-Hexadecanoic Acid from the Leaves of Ipomoea eriocarpa and Its Antioxidant and Antibacterial Activities. Biomass Convers. Biorefinery 2024, 14, 14547–14558. [Google Scholar] [CrossRef]
- Johannes, E.; Litaay, M.; Syahribulan, S. The Bioactivity of Hexadecanoic Acid Compound Isolated from Hydroid Aglaophenia cupressina Lamoureoux as Antibacterial Agent against Salmonella typhi. Int. J. Biol. Med. Res. 2016, 7, 5469–5472. [Google Scholar]
- Sánchez-Sevilla, J.F.; Cruz-Rus, E.; Valpuesta, V.; Botella, M.A.; Amaya, I. Deciphering Gamma-Decalactone Biosynthesis in Strawberry Fruit Using a Combination of Genetic Mapping, RNA-Seq and eQTL Analyses. BMC Genom. 2014, 15, 218. [Google Scholar] [CrossRef]
- Chambers, A.H.; Evans, S.A.; Folta, K.M. Methyl Anthranilate and γ-Decalactone Inhibit Strawberry Pathogen Growth and Achene Germination. J. Agric. Food Chem. 2013, 61, 12625–12633. [Google Scholar] [CrossRef]
- Gong, X.; Sun, C.; Abame, M.A.; Shi, W.; Xie, Y.; Xu, W.; Zhu, F.; Zhang, Y.; Shen, J.; Aisa, H.A. Synthesis of CBD and Its Derivatives Bearing Various C4′-Side Chains with a Late-Stage Diversification Method. J. Org. Chem. 2020, 85, 2704–2715. [Google Scholar] [CrossRef]
- Jou, Y.-J.; Hua, C.-H.; Lin, C.-S.; Wang, C.-Y.; Wan, L.; Lin, Y.-J.; Huang, S.-H.; Lin, C.-W. Anticancer Activity of γ-Bisabolene in Human Neuroblastoma Cells via Induction of P53-Mediated Mitochondrial Apoptosis. Molecules 2016, 21, 601. [Google Scholar] [CrossRef]
- Yeo, S.K.; Ali, A.Y.; Hayward, O.A.; Turnham, D.; Jackson, T.; Bowen, I.D.; Clarkson, R. β-Bisabolene, a Sesquiterpene from the Essential Oil Extract of Opoponax (Commiphora guidottii), Exhibits Cytotoxicity in Breast Cancer Cell Lines. Phytother. Res. 2016, 30, 418–425. [Google Scholar] [CrossRef]
- Dahham, S.; Tabana, Y.; Iqbal, M.; Ahamed, M.; Ezzat, M.; Majid, A.; Majid, A. The Anticancer, Antioxidant and Antimicrobial Properties of the Sesquiterpene β-Caryophyllene from the Essential Oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef] [PubMed]
- Loizzo, M.R.; Tundis, R.; Menichini, F.; Saab, A.M.; Statti, G.A.; Menichini, F. Cytotoxic Activity of Essential Oils from Labiatae and Lauraceae Families against in Vitro Human Tumor Models. Anticancer Res. 2007, 27, 3293–3299. [Google Scholar] [PubMed]
- Yoshihiro, I.; Toshiko, H.; Akiko, S.; Kazuma, H.; Hajime, H.; Shigeki, K. Biphasic Effects of Geranylgeraniol, Terpenone and Phytolon Thegrowth of Staphylococcus aureus. Antimicrob. Agents Chemother. 2005, 49, 1770–1774. [Google Scholar]
- Sabudak, T.; Ozturk, M.; Goren, A.C.; Kolak, U.; Topcu, G. Fatty Acids and Other Lipid Composition of Five Trifolium Species with Antioxidant Activity. Pharm. Biol. 2009, 47, 137–141. [Google Scholar] [CrossRef]
- McGinty, D.; Letizia, C.S.; Api, A.M. Fragrance Material Review on Phytol. Food Chem. Toxicol. 2010, 48, S59–S63. [Google Scholar] [CrossRef]
- Demetzos, C.; Dimas, K.S. Labdane-Type Diterpenes: Chemistry and Biological Activity. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2001; Volume 25, pp. 235–292. ISBN 978-0-08-044001-9. [Google Scholar]
- Tran, Q.T.N.; Wong, W.S.F.; Chai, C.L.L. Labdane Diterpenoids as Potential Anti-Inflammatory Agents. Pharmacol. Res. 2017, 124, 43–63. [Google Scholar] [CrossRef]
- Villamizar, J.E.; Juncosa, J.; Pittelaud, J.; Hernández, M.; Canudas, N.; Tropper, E.; Salazar, F.; Fuentes, J. Facile Access to Labdane-Type Diterpenes: Synthesis of Coronarin C, Zerumin B, Labda-8(17), 13(14)-Dien-15,16-Olide and Derivatives from (+)-Manool. J. Chem. Res. 2007, 6, 342–346. [Google Scholar] [CrossRef]
- Cyr, A.; Wilderman, P.R.; Determan, M.; Peters, R.J. A Modular Approach for Facile Biosynthesis of Labdane-Related Diterpenes. J. Am. Chem. Soc. 2007, 129, 6684–6685. [Google Scholar] [CrossRef]
- Zhou, J.; Xie, X.; Tang, H.; Peng, C.; Peng, F. The Bioactivities of Sclareol: A Mini Review. Front. Pharmacol. 2022, 13, 1014105. [Google Scholar] [CrossRef]
- Jameel, S.; Bhat, K.A. Sclareol: Isolation, Structural Modification, Biosynthesis, and Pharmacological Evaluation—A Review. Pharm. Chem. J. 2024, 57, 1568–1579. [Google Scholar] [CrossRef]
- Park, J.; Lee, K.; Jung, E.; Kang, S.; Kim, Y.J. Sclareol Isolated from Salvia officinalis Improves Facial Wrinkles via an Antiphotoaging Mechanism. J. Cosmet. Dermatol. 2016, 15, 475–483. [Google Scholar] [CrossRef]
- Yin, M.; Li, C.; Zhang, L.; Lin, J.; Jiang, N.; Wang, Q.; Xu, Q.; Zheng, H.; Gu, L.; Jia, Y.; et al. Mechanism of Antifungal Activity and Therapeutic Action of β-Ionone on Aspergillus fumigatus Keratitis via Suppressing LOX1 and JNK/P38 MAPK Activation. Int. Immunopharmacol. 2022, 110, 108992. [Google Scholar] [CrossRef]
- Kang, C.-H.; Jayasooriya, R.G.P.T.; Choi, Y.H.; Moon, S.-K.; Kim, W.-J.; Kim, G.-Y. β-Ionone Attenuates LPS-Induced pro-Inflammatory Mediators Such as NO, PGE2 and TNF-α in BV2 Microglial Cells via Suppression of the NF-κB and MAPK Pathway. Toxicol. In Vitro 2013, 27, 782–787. [Google Scholar] [CrossRef]
- Caboni, P.; Ntalli, N.G.; Aissani, N.; Cavoski, I.; Angioni, A. Nematicidal Activity of (E,E)-2,4-Decadienal and (E)-2-Decenal from Ailanthus altissima against Meloidogyne javanica. J. Agric. Food Chem. 2012, 60, 1146–1151. [Google Scholar] [CrossRef]
- Mirek, J.; Walkowiak-Nowicka, K.; Słocińska, M. The Effect of (E,E)-2,4-Decadienal, (E)-2-Decenal, 2-Undecanone and Furfural on Reproduction of Tenebrio molitor. In Proceedings of the 1st International Electronic Conference on Entomology, Online, 1–15 July 2021; p. 10540. [Google Scholar]
- Feng, Y.; An, Q.; Zhao, Z.; Wu, M.; Yang, C.; Liang, W.Y.; Xu, X.; Jiang, T.; Zhang, G. Beta-Elemene: A Phytochemical with Promise as a Drug Candidate for Tumor Therapy and Adjuvant Tumor Therapy. Biomed. Pharmacother. 2024, 172, 116266. [Google Scholar] [CrossRef]
- Chen, X.; Huang, C.; Li, K.; Liu, J.; Zheng, Y.; Feng, Y.; Kai, G. Recent Advances in Biosynthesis and Pharmacology of β-Elemene. Phytochem. Rev. 2023, 22, 169–186. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, R.; Xu, L.; Xie, S.; Dong, J.; Jing, Y. β-Elemene Piperazine Derivatives Induce Apoptosis in Human Leukemia Cells through Downregulation of c-FLIP and Generation of ROS. PLoS ONE 2011, 6, e15843. [Google Scholar] [CrossRef]
- Ricciardelli, A.; Casillo, A.; Papa, R.; Monti, D.M.; Imbimbo, P.; Vrenna, G.; Artini, M.; Selan, L.; Corsaro, M.M.; Tutino, M.L.; et al. Pentadecanal Inspired Molecules as New Anti-Biofilm Agents against Staphylococcus epidermidis. Biofouling 2018, 34, 1110–1120. [Google Scholar] [CrossRef]
- Casillo, A.; Papa, R.; Ricciardelli, A.; Sannino, F.; Ziaco, M.; Tilotta, M.; Selan, L.; Marino, G.; Corsaro, M.M.; Tutino, M.L.; et al. Anti-Biofilm Activity of a Long-Chain Fatty Aldehyde from Antarctic Pseudoalteromonas haloplanktis TAC125 against Staphylococcus epidermidis Biofilm. Front. Cell. Infect. Microbiol. 2017, 7, 46. [Google Scholar] [CrossRef]
- Labbozzetta, M.; Poma, P.; Tutone, M.; McCubrey, J.A.; Sajeva, M.; Notarbartolo, M. Phytol and Heptacosane Are Possible Tools to Overcome Multidrug Resistance in an In Vitro Model of Acute Myeloid Leukemia. Pharmaceuticals 2022, 15, 356. [Google Scholar] [CrossRef]
- Mrabti, H.N.; Jaouadi, I.; Zeouk, I.; Ghchime, R.; El Menyiy, N.; Omari, N.E.; Balahbib, A.; Al-Mijalli, S.H.; Abdallah, E.M.; El-Shazly, M.; et al. Biological and Pharmacological Properties of Myrtenol: A Review. Curr. Pharm. Des. 2023, 29, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Barbhuiya, P.A.; Pathak, M.P. Myrtenol: A Promising Terpene with Potent Pharmacological Properties. Pharmacol. Res. Nat. Prod. 2024, 4, 100067. [Google Scholar] [CrossRef]
- Yang, J.-Y.; Lee, H.-S. Verbenone Structural Analogues Isolated from Artemesia aucheri as Natural Acaricides against Dermatophagoides spp. and Tyrophagus putrescentiae. J. Agric. Food Chem. 2013, 61, 12292–12296. [Google Scholar] [CrossRef]
- Yang, J.-Y.; Lee, H.-W.; Lee, H.-S. Growth Inhibitory Activities of Myrtanol and Structural Analogues from Thymus tosevii against Intestinal Bacteria. Food Sci. Biotechnol. 2015, 24, 169–174. [Google Scholar] [CrossRef]
- Cha, D.H.; Roh, G.H.; Hesler, S.P.; Wallingford, A.; Stockton, D.G.; Park, S.K.; Loeb, G.M. 2-Pentylfuran: A Novel Repellent of Drosophila suzukii. Pest Manag. Sci. 2021, 77, 1757–1764. [Google Scholar] [CrossRef]
- Reznicek, G.; Schroder, H.; Schubertzsilavecz, M.; Schopke, T.; Lehrkinder, S.; Haslinger, E.; Hiller, K.; Jurenitsch, J.; Kubelka, W. Polemonium caeruleum L.—The Main Saponins of Lower Polarity. Pharmazie 1994, 49, 58–61. [Google Scholar]
- Frolova, L.N.; Kovaleva, E.L.; Shelestova, V.V.; Kuteynikov, V.Y.; Flisyuk, E.V.; Pozharitskaya, O.N.; Shikov, A.N. Comparison of Analytical Methods Used for Standardization of Triterpenoid Saponins in Herbal Monographs Included in the Russian and Other Pharmacopeias. Phytochem. Anal. 2025, pca.3516. Available online: https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/pca.3516 (accessed on 10 May 2025). [CrossRef]
- Cheok, C.Y.; Salman, H.A.K.; Sulaiman, R. Extraction and Quantification of Saponins: A Review. Food Res. Int. 2014, 59, 16–40. [Google Scholar] [CrossRef]
- Huhman, D.V.; Berhow, M.A.; Sumner, L.W. Quantification of Saponins in Aerial and Subterranean Tissues of Medicago truncatula. J. Agric. Food Chem. 2005, 53, 1914–1920. [Google Scholar] [CrossRef]
- Mustafa, A.; Turner, C. Pressurized Liquid Extraction as a Green Approach in Food and Herbal Plants Extraction: A Review. Anal. Chim. Acta 2011, 703, 8–18. [Google Scholar] [CrossRef]
- Theunis, M.H.B.L.; Foubert, K.; Pollier, J.; Gonzalez-Guzman, M.; Goossens, A.; Vlietinck, A.J.; Pieters, L.A.C.; Apers, S. Determination of Saponins in Maesa lanceolata by LC-UV: Development and Validation. Phytochemistry 2007, 68, 2825–2830. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.T.; Mitchell, R.B.; Wang, Z.; Heiss, C.; Gardner, D.R.; Azadi, P. Isolation, Characterization, and Quantification of Steroidal Saponins in Switchgrass (Panicum virgatum L.). J. Agric. Food Chem. 2009, 57, 2599–2604. [Google Scholar] [CrossRef] [PubMed]
- Barnes, J.; Anderson, L.A.; Phillipson, J.D. Herbal Medicines: A Guide for Healthcare Professionals; Pharmaceutical Press: London, UK, 2002. [Google Scholar]
Compound | RI | Library NIST23 | Content (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Flowers | Fruits | Shells | Seeds | Leaves | Stems | Roots | |||
Hexanal | 799 | 798 | 3.35 | nd | 4.49 | 0.20 | 1.42 | 3.20 | 2.31 |
(E)-2-Hexenal | 848 | 848 | 0.88 | nd | nd | nd | 2.09 | 0.43 | nd |
1-Hexanol | 864 | 864 | 2.69 | 0.19 | 0.93 | 0.04 | 0.28 | nd | 0.08 |
1,3-Dimethylbenzene | 866 | 866 | nd | 1.11 | 0.44 | 10.27 | nd | nd | nd |
(E,Z)-4-Ethylidenecyclohexene | 876 | 877 | 0.36 | nd | nd | nd | nd | 0.07 | nd |
2-Heptanone | 890 | 889 | 0.29 | nd | 0.74 | nd | 0.07 | 0.13 | 0.08 |
Nonane | 900 | 900 | 0.28 | nd | nd | nd | nd | 0.19 | nd |
Heptanal | 902 | 901 | 0.26 | nd | 0.50 | nd | 0.17 | nd | 0.28 |
(E)-2-Heptenal | 954 | 954 | 0.17 | nd | 0.46 | nd | 0.23 | 3.23 | 0.15 |
Benzaldehyde | 958 | 958 | 0.28 | nd | 0.41 | nd | 0.41 | 0.99 | 1.03 |
1-Heptanol | 968 | 968 | 0.05 | nd | 0.14 | nd | nd | nd | nd |
1-Octen-3-ol | 978 | 978 | 0.14 | 0.21 | 0.46 | 0.19 | nd | 1.65 | 0.22 |
2,3-Octanedione | 983 | 983 | 0.26 | nd | nd | nd | nd | 0.34 | 0.14 |
6-Methyl-5-hepten-2-one | 986 | 986 | 0.11 | nd | nd | nd | nd | 0.10 | 0.09 |
2-Pentylfuran | 991 | 991 | 2.90 | nd | 1.20 | nd | 0.76 | 1.37 | 2.89 |
(Z)-2-(2-Pentenyl)furan | 1001 | 1001 | 0.18 | nd | nd | nd | nd | 0.21 | 0.20 |
Octanal | 1003 | 1002 | 0.37 | nd | nd | nd | 0.53 | 0.30 | 0.26 |
(E,E)-2,4-Heptadienal | 1010 | 1010 | 0.17 | nd | nd | nd | 0.34 | 0.74 | nd |
α-Terpinene | 1016 | 1016 | 0.40 | nd | nd | nd | nd | nd | nd |
p-Cymene | 1023 | 1023 | 0.12 | nd | nd | nd | nd | nd | nd |
2-Ethyl-1-hexanol | 1028 | 1027 | nd | nd | nd | nd | nd | nd | 0.49 |
β-Phellandrene | 1028 | 1028 | 0.67 | nd | nd | nd | nd | nd | nd |
3-Octen-2-one | 1038 | 1038 | 0.13 | nd | nd | nd | nd | 1.22 | 0.09 |
Phenylacetaldehyde | 1042 | 1042 | 0.65 | 0.39 | 2.45 | 0.31 | 1.27 | 0.98 | 1.43 |
(E)-2-Octenal | 1056 | 1056 | 0.80 | nd | 0.62 | nd | nd | 2.11 | 1.04 |
γ-Terpinene | 1057 | 1057 | 0.47 | nd | nd | nd | nd | nd | nd |
Acetophenone | 1065 | 1064 | nd | nd | 0.12 | nd | nd | nd | 0.10 |
(Z)-2-Octen-1-ol | 1066 | 1067 | nd | nd | nd | nd | nd | 0.51 | nd |
1-Octanol | 1069 | 1069 | 2.89 | 2.53 | 0.88 | 2.26 | 2.02 | nd | 0.37 |
(E)-β-Terpinolene | 1087 | 1087 | 0.16 | nd | nd | nd | nd | nd | nd |
3,5-Octadien-2-one | 1092 | 1093 | 0.25 | nd | nd | nd | nd | 0.49 | 0.12 |
Linalool | 1098 | 1098 | 0.34 | nd | 0.58 | 0.29 | 0.50 | 0.28 | nd |
Nonanal | 1103 | 1102 | 2.17 | 1.96 | 1.18 | 1.78 | 1.25 | 1.49 | 1.38 |
(Z)-2-p-Menthen-1-ol | 1119 | 1120 | 3.62 | 3.28 | 1.98 | 2.70 | 1.43 | 3.82 | nd |
(E)-p-2-Menthen-1-ol | 1138 | 1138 | 2.07 | 2.36 | 1.32 | 1.91 | 0.81 | 2.14 | nd |
(E)-Verbenol | 1143 | 1143 | 0.20 | nd | nd | nd | nd | nd | nd |
(R,S)-5-Ethyl-6-methyl-3E-hepten-2-one | 1145 | 1145 | nd | nd | nd | nd | nd | 0.41 | 0.19 |
(E,Z)-2,6-Nonadienal | 1152 | 1152 | 0.27 | nd | nd | nd | 0.35 | 0.47 | 0.18 |
(E)-2-Nonenal | 1158 | 1158 | 0.94 | 0.46 | 0.57 | 0.42 | 0.44 | 0.92 | 0.95 |
α-Phellandren-8-ol | 1165 | 1165 | 0.08 | 0.03 | 0.09 | nd | 0.03 | nd | 0.05 |
1-Nonanol | 1170 | 1170 | nd | 0.32 | 0.70 | 0.29 | 0.15 | 0.56 | 0.22 |
L-α-Terpineol | 1189 | 1189 | 0.39 | nd | nd | nd | nd | nd | nd |
(-)-Myrtenol | 1195 | 1195 | 1.94 | 1.73 | 0.97 | 1.44 | 0.67 | 2.12 | 25.72 |
Decanal | 1204 | 1204 | 1.06 | 1.34 | nd | 1.03 | 1.16 | 2.21 | 1.89 |
(E)-Piperitol | 1206 | 1206 | 1.21 | 1.63 | 1.39 | 1.31 | nd | 1.05 | nd |
(E,E)-2,4-Nonadienal | 1212 | 1212 | nd | 0.25 | nd | 0.23 | nd | 0.74 | 0.39 |
7-methylene-6(or 8)-methyl-Bicyclo[3.3.0]octan-2-one | 1220 | 1220 | nd | nd | nd | nd | nd | nd | 2.20 |
Carvone | 1244 | 1243 | nd | nd | nd | nd | nd | nd | 1.47 |
p-Mentha-1(7),8(10)-dien-9-ol | 1245 | 1246 | nd | nd | nd | nd | nd | nd | 1.19 |
Geraniol | 1253 | 1254 | nd | nd | nd | nd | nd | nd | 1.01 |
(E)-Myrtanol | 1258 | 1258 | 0.70 | 0.54 | 0.34 | 0.43 | nd | 0.47 | 16.44 |
1-Decanol | 1270 | 1271 | 0.46 | 0.64 | 0.88 | 0.53 | 0.19 | nd | nd |
Nonanoic acid | 1271 | 1272 | 1.04 | nd | nd | nd | nd | nd | nd |
(E)-Bornyl acetate | 1285 | 1285 | nd | nd | 0.73 | nd | nd | nd | nd |
Thymol | 1289 | 1290 | nd | nd | nd | nd | nd | nd | 0.55 |
(E,Z)-2,4-Decadienal | 1292 | 1292 | 0.77 | 0.87 | nd | 0.71 | nd | 1.61 | 0.32 |
(E)-Undec-4-enal | 1298 | 1296 | nd | nd | nd | nd | nd | 0.33 | nd |
Undecanal | 1306 | 1305 | 0.19 | 0.43 | nd | 0.39 | 0.25 | 0.33 | 0.32 |
2-Methoxy-4-vinylphenol | 1312 | 1312 | 0.41 | nd | 0.53 | nd | 0.51 | nd | nd |
(E,E)-2,4-Decadienal | 1315 | 1315 | 2.71 | 3.36 | 1.43 | 2.85 | 1.10 | 5.29 | 1.18 |
Eugenol | 1357 | 1357 | nd | nd | nd | nd | 0.97 | nd | nd |
Dihydro-5-pentyl-2(3H)-furanone | 1362 | 1362 | nd | nd | nd | nd | nd | nd | 0.25 |
2-Undecenal | 1363 | 1363 | nd | 1.26 | 0.83 | 1.12 | nd | 3.89 | nd |
n-Decanoic acid | 1373 | 1372 | nd | nd | nd | nd | nd | nd | 1.32 |
2-Butyl-2-octenal | 1372 | 1373 | 0.34 | 0.32 | nd | 0.26 | nd | nd | nd |
(E)-β-Damascenone | 1385 | 1385 | 0.27 | 0.58 | 0.72 | 0.45 | nd | nd | nd |
β-Elemene | 1393 | 1393 | nd | nd | 8.46 | nd | nd | nd | nd |
6,10-Dimethyl-2-undecanone | 1404 | 1404 | nd | nd | nd | nd | nd | 0.25 | nd |
Dodecanal | 1408 | 1408 | 0.29 | 0.36 | nd | 0.30 | 0.26 | 0.28 | 0.50 |
7-epi-α-Cedrene | 1416 | 1417 | nd | nd | nd | nd | nd | nd | 0.56 |
Copaene | 1421 | 1420 | 1.28 | nd | 2.87 | nd | nd | nd | nd |
Caryophyllene | 1421 | 1421 | 1.34 | nd | 2.77 | nd | 0.54 | nd | nd |
(E)-Geranylacetone | 1453 | 1453 | 0.54 | 0.72 | nd | 0.63 | 0.85 | 0.52 | 0.86 |
Humulene | 1455 | 1456 | nd | nd | 1.52 | nd | nd | nd | nd |
γ-Decalactone | 1469 | 1469 | 7.09 | 4.62 | 1.66 | 4.23 | 1.50 | 1.04 | nd |
1-Dodecanol | 1474 | 1474 | nd | nd | 0.43 | nd | 0.20 | 0.13 | 0.94 |
(+)-epi-Bicyclosesquiphellandrene | 1484 | 1484 | 0.48 | nd | 15.41 | nd | nd | nd | nd |
(E)-β-Ionone | 1488 | 1488 | 1.14 | 1.30 | nd | 0.97 | 4.54 | 3.24 | nd |
β-Selinene | 1488 | 1489 | nd | nd | 0.41 | nd | nd | nd | nd |
α-(3-Methylbutylidene)- benzeneacetaldehyde | 1492 | 1492 | nd | nd | nd | nd | nd | 0.21 | nd |
α-Farnesene | 1510 | 1510 | 1.01 | nd | nd | nd | nd | nd | nd |
Tridecanal | 1511 | 1511 | nd | 0.53 | nd | 0.44 | 0.53 | 0.34 | 0.29 |
(Z)-γ-Bisabolene | 1517 | 1518 | 0.57 | nd | nd | nd | nd | nd | nd |
n-Tridecan-1-ol | 1575 | 1575 | nd | nd | nd | nd | nd | nd | 0.25 |
Caryophyllene oxide | 1587 | 1587 | 0.89 | nd | nd | nd | nd | nd | nd |
2,2,4-Trimethyl-1,3-pentanediol diisobutyrate | 1600 | 1599 | 0.38 | nd | nd | nd | nd | nd | 0.92 |
Tetradecanal | 1613 | 1613 | 0.24 | 1.03 | 1.55 | 0.88 | 0.76 | 0.54 | 0.50 |
Benzophenone | 1629 | 1629 | nd | nd | nd | nd | 0.20 | 0.14 | nd |
τ-Muurolol | 1644 | 1646 | 0.62 | nd | nd | nd | nd | nd | nd |
α-Cadinol | 1658 | 1658 | 0.41 | nd | nd | nd | nd | nd | nd |
1-Tetradecanol | 1677 | 1677 | nd | 1.01 | 1.81 | 0.97 | nd | 0.49 | 1.52 |
Pentadecanal | 1715 | 1715 | 0.37 | 4.38 | 6.25 | 3.65 | 4.01 | 2.99 | 2.06 |
1-Tetradecene | 1736 | 1736 | nd | 0.54 | nd | 0.50 | nd | 0.65 | nd |
Myristic acid | 1765 | 1764 | nd | nd | nd | nd | nd | nd | 0.85 |
n-Pentadecanol | 1779 | 1778 | nd | 0.43 | 1.63 | 0.44 | nd | nd | 0.38 |
Ambrial | 1804 | 1804 | nd | nd | nd | nd | nd | 0.48 | nd |
Farnesyl acetaldehyde | 1845 | 1845 | nd | nd | nd | nd | nd | 0.25 | nd |
Hexahydrofarnesyl acetone | 1851 | 1851 | 19.09 | 18.16 | 3.24 | 15.21 | 3.10 | 4.94 | 1.27 |
1-Hexadecanol | 1889 | 1889 | nd | 1.47 | 0.83 | 1.55 | 1.05 | 0.78 | 0.74 |
Manoyl oxide | 1896 | 1897 | nd | 0.62 | nd | 0.51 | 2.28 | 2.96 | nd |
Roughanic acid | 1904 | 1904 | nd | nd | nd | nd | nd | 0.70 | nd |
Farnesyl acetone | 1928 | 1928 | 0.50 | nd | nd | nd | nd | nd | nd |
Cembrene A | 1969 | 1969 | 0.82 | nd | nd | nd | nd | nd | nd |
Palmitic acid | 1976 | 1974 | 12.24 | 7.95 | nd | 11.13 | nd | nd | 8.05 |
13-epi-Manoyl oxide | 2018 | 2018 | nd | nd | nd | nd | 1.15 | 0.51 | nd |
Epi-13-Manool | 2061 | 2061 | nd | nd | nd | nd | 1.01 | 0.77 | nd |
Kolavelool | 2070 | 2070 | nd | nd | nd | nd | 1.67 | 0.97 | nd |
Isomanool | 2093 | 2094 | 0.39 | 3.23 | nd | 2.48 | 12.07 | 8.29 | nd |
γ-Palmitolactone | 2103 | 2104 | nd | nd | nd | nd | nd | 0.41 | nd |
Phytol | 2116 | 2114 | 1.72 | 3.51 | nd | 2.97 | 23.26 | 2.63 | nd |
Sclareol | 2225 | 2227 | nd | nd | nd | nd | 4.45 | 6.70 | nd |
Nonadecane | 2300 | 2300 | 0.29 | 1.95 | nd | 1.71 | 0.53 | 0.17 | nd |
Pentacosane | 2500 | 2500 | nd | 3.34 | nd | 3.10 | 0.99 | 0.64 | nd |
Bis(2-ethylhexyl) phthalate | 2551 | 2550 | nd | nd | nd | nd | nd | 0.38 | nd |
Heptacosane | 2700 | 2701 | nd | 5.34 | 2.07 | 4.95 | 1.74 | 2.84 | nd |
Octacosane | 2800 | 2800 | nd | 1.47 | 1.51 | 1.47 | nd | 0.52 | nd |
TOTAL | 92.16 | 87.75 | 80.50 | 89.50 | 86.09 | 92.15 | 88.57 |
Saponin No. | Retention Time (min) | Content (%) | ||||
---|---|---|---|---|---|---|
Flowers | Seeds | Leaves | Roots | Stems | ||
1 | 2.600 | - | - | 0.019 | 0.115 | 0.063 |
2 | 2.824 | - | 0.296 | - | - | - |
3 | 3.034 | - | 0.476 | 0.104 | 0.054 | 0.032 |
4 | 3.662 | 0.170 | 0.143 | 0.366 | 0.035 | 0.064 |
5 | 3.921 | 0.168 | 0.083 | - | - | - |
6 | 4.187 | - | 0.021 | - | - | - |
7 | 5.037 | 0.015 | - | 0.036 | - | - |
8 | 5.116 | - | 0.071 | - | - | - |
9 | 5.586 | 0.032 | - | - | - | - |
10 | 5.760 | 0.019 | 0.009 | 0.034 | - | - |
11 | 6.971 | 0.064 | - | - | - | - |
12 | 7.457 | - | - | 0.013 | - | - |
13 | 8.295 | 0.014 | - | 0.019 | - | - |
14 | 8.380 | - | 0.016 | - | - | - |
15 | 10.007 | 0.353 | 0.098 | 0.244 | 0.016 | 0.027 |
16 | 14.295 | - | 0.067 | - | 0.046 | 0.021 |
17 | 14.358 | 0.176 | - | 0.051 | - | - |
18 | 15.687 | - | - | 0.013 | - | - |
19 | 18.189 | 0.031 | - | - | - | - |
20 | 27.159 | - | - | 0.0150 | - | - |
21 | 27.159 | 0.068 | - | - | - | - |
The sum of saponins in terms of ursolic acid | 1.919 | 1.230 | 0.914 | 0.266 | 0.208 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raal, A.; Liira, J.; Lepiku, M.; Ilina, T.; Kovalyova, A.; Strukov, P.; Gudzenko, A.; Koshovyi, O. The Composition of Essential Oils and the Content of Saponins in Different Parts of Gilia capitata Sims. Crops 2025, 5, 33. https://doi.org/10.3390/crops5030033
Raal A, Liira J, Lepiku M, Ilina T, Kovalyova A, Strukov P, Gudzenko A, Koshovyi O. The Composition of Essential Oils and the Content of Saponins in Different Parts of Gilia capitata Sims. Crops. 2025; 5(3):33. https://doi.org/10.3390/crops5030033
Chicago/Turabian StyleRaal, Ain, Jaan Liira, Martin Lepiku, Tetiana Ilina, Alla Kovalyova, Pavel Strukov, Andriy Gudzenko, and Oleh Koshovyi. 2025. "The Composition of Essential Oils and the Content of Saponins in Different Parts of Gilia capitata Sims" Crops 5, no. 3: 33. https://doi.org/10.3390/crops5030033
APA StyleRaal, A., Liira, J., Lepiku, M., Ilina, T., Kovalyova, A., Strukov, P., Gudzenko, A., & Koshovyi, O. (2025). The Composition of Essential Oils and the Content of Saponins in Different Parts of Gilia capitata Sims. Crops, 5(3), 33. https://doi.org/10.3390/crops5030033