Multi-Locational Evaluation of Forage-Suited Selected Sudan Pearl Millet [Pennisetum glaucum (L.) R. Br.] Accessions Identified High-Yielding and Stable Genotypes in Irrigated, Arid Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites and Plant Materials
2.2. Experimentation and Data Collection
2.3. Statistical Analysis
3. Results
3.1. Genotypic and Environmental Effects
3.2. Fresh Matter Yield (FY)
3.3. Growth Attributes
3.3.1. Days to Flowering
3.3.2. Number of Culms
3.3.3. Plant Height
3.3.4. Leaf-to-Stem Ratio
3.3.5. Stem Girth
3.4. Heatmap Clustering Analysis
3.5. Genotype × Environment Interaction and Stability of Fresh Matter Yield
3.5.1. AMMI Stability Value and Genotype Selection Index
3.5.2. AMMI Estimate
3.5.3. GGE Scattered Biplot
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jukanti, A.K.; Gowda, C.L.L.; Rai, K.N.; Manga, V.K.; Bhatt, R.K. Crops that feed the world 11. Pearl Millet (Pennisetum glaucum L.): An important source of food security, nutrition and health in the arid and semi-arid tropics. Food Secur. 2016, 8, 307–329. [Google Scholar] [CrossRef]
- Satyavathi, C.T.; Ambawat, S.; Khandelwal, V.; Srivastava, R.K. Pearl Millet: A Climate-Resilient Nutricereal for Mitigating Hidden Hunger and Provide Nutritional Security. Front. Plant Sci. 2021, 12, 659938. [Google Scholar] [CrossRef]
- Lauriault, L.M.; Darapuneni, M.K.; Martinez, G.K. Pearl Millet-Cowpea Forage Mixture Planting Arrangement Influences Mixture Yield and Nutritive Value in Semiarid Regions. Crops 2023, 3, 266–275. [Google Scholar] [CrossRef]
- Andrews, D.J.; Kumar, K.A. Pearl millet for food, feed, and forage. Adv. Agron. 1992, 48, 89–139. [Google Scholar]
- Pattanashetti, S.K.; Upadhyaya, H.D.; Dwivedi, S.L.; Vetriventhan, M.; Reddy, K.N. Pearl millet. In Genetic and Genomic Resources for Grain Cereals Improvement; Elsevier: Amsterdam, The Netherlands, 2016; pp. 253–289. [Google Scholar]
- Tonapi, V.A.; Thirunavukkarasu, N.; Gupta, S.K.; Gangashetty, P.I.; Yadav, O.P. Pearl Millet in the 21st Century; Springer Nature: Singapore, 2024. [Google Scholar]
- Brunken, J.; De, J.M.J.; Harlan, J.R. The Morphology and Domestication of Pearl Millet. Econ. Bot. 1977, 31, 163–174. [Google Scholar] [CrossRef]
- Yadav, O.P.; Gupta, S.K.; Govindaraj, M.; Sharma, R.; Varshney, R.K.; Srivastava, R.K.; Rathore, A.; Mahala, R.S. Genetic Gains in Pearl Millet in India: Insights Into Historic Breeding Strategies and Future Perspective. Front. Plant Sci. 2021, 12, 645038. [Google Scholar] [CrossRef]
- Nambiar, V.S.; Sareen, N.; Shahu, T.; Desai, R.; Dhaduk, J.J.; Nambiar, S. Potential Functional Implications of Pearl millet (Pennisetum glaucum) in Health and Disease. J. Appl. Pharm. Sci. 2011, 1, 62–67. [Google Scholar]
- Garin, V.; Choudhary, S.; Murugesan, T.; Kaliamoorthy, S.; Diancumba, M.; Hajjarpoor, A.; Chellapilla, T.S.; Gupta, S.K.; Kholovà, J. Characterization of the Pearl Millet Cultivation Environments in India: Status and Perspectives Enabled by Expanded Data Analytics and Digital Tools. Agronomy 2023, 13, 1607. [Google Scholar] [CrossRef]
- Yadav, O.P.; Rai, K.N. Genetic Improvement of Pearl Millet in India. Agric. Res. 2013, 2, 275–292. [Google Scholar] [CrossRef]
- FAO. Millets Recipe Book—International Year of Millets 2023; FAO: Rome, Italy, 2023. [Google Scholar]
- Vadez, V.; Hash, T.; Bidinger, F.R.; Kholova, J., II. 1.5 Phenotyping pearl millet for adaptation to drought. Front. Physiol. 2012, 3, 386. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, G.T.; Maas, E.V.; Meyer, J.L.; Prichard, T.L.; Lancaster, D.R. Salt Tolerance of Corn in the Delta. 1979. Available online: https://ucanr.edu/repository/fileAccessPublic.cfm?fn=ca3311p11-172546.pdf (accessed on 22 May 2024).
- Sedivec Kevin, K.; Schatz Blaine, G. Pearl Millet Forage Production in North Dakota; North Dakota State University: Fargo, ND, USA, 1991. [Google Scholar]
- Miller, D.A. Forage Crops; McGraw-Hill College: New York, NY, USA, 1984. [Google Scholar]
- Yan, W.; Kang, M.S.; Ma, B.; Woods, S.; Cornelius, P.L. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci. 2007, 47, 643–655. [Google Scholar] [CrossRef]
- Lagat, N.; Kimurto, P.; Kiplagat, O.; Towett, B.; Jeptanui, L.; Gatongi, I.; Njogu, N.; Ojulong, H.; Manyasa, E.; Siambi, M. Evaluation of Genotype x Environment Interaction and Stability of Grain Yield and Related Yield Components in Pearl Millet (Pennisetum glaucum (L.) R.Br.). J. Exp. Agric. Int. 2018, 21, 1–18. [Google Scholar] [CrossRef]
- Gangashetty, P.I.; Yadav, C.B.; Riyazaddin, M.; Vermula, A.; Asungre, P.A.; Angarawai, I.; Mur, L.A.J.; Yadav, R.S. Genotype-by-environment interactions for starch, mineral, and agronomic traits in pearl millet hybrids evaluated across five locations in West Africa. Front. Plant Sci. 2023, 14, 1171773. [Google Scholar] [CrossRef] [PubMed]
- Crossa, J. Statistical Analyses of Multilocation Trials. Adv. Agron. 1990, 44, 55–85. [Google Scholar]
- Gauch, H.G.; Piepho, H.P.; Annicchiarico, P. Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Sci. 2008, 48, 866–889. [Google Scholar] [CrossRef]
- Yan, W.; Tinker, N.A. Biplot analysis of multi-environment trial data: Principles and applications. Can. J. Plant Sci. 2006, 86, 623–645. [Google Scholar] [CrossRef]
- FAO. Special Report—2020 FAO Crop and Food Supply Assessment Mission (CFSAM) to the Republic of the Sudan; FAO: Rome, Italy, 2021. [Google Scholar]
- Iqbal, M.A.; Hamid, A.; Hussain, I.; Siddiqui, M.H.; Ahmad, T.; Khaliq, A.; Ahmad, Z. Competitive Indices in Cereal and Legume Mixtures in a South Asian Environment. Agron. J. 2019, 111, 242–249. [Google Scholar] [CrossRef]
- Babiker, S.A.; Khair, M.A.M.; Tahir, I.S.A. Exploitation of forage attribute-based variations in Sudan pearl millet [Pennisetum glaucum (L.) R. Br.] collections. Plant Genet. Resour. Characterisation Util. 2014, 12, 83–90. [Google Scholar] [CrossRef]
- Babiker, S.; Khair, M.; Tahir, I.; Elhag, F. Forage Quality Variations among Some Sudan Pearl Millet [Pennisetum glaucum (L.) R. Br.] Collection. Annu. Res. Rev. Biol. 2015, 5, 293–298. [Google Scholar] [CrossRef]
- Bashir, E.M.A.; Ali, A.M.; Ali, A.M.; Mohamed, E.T.I.; Melchinger, A.E.; Parzies, H.K.; Haussmann, B.I.G. Genetic diversity of Sudanese pearl millet (Pennisetum glaucum (L.) R. Br.) landraces as revealed by SSR markers, and relationship between genetic and agro-morphological diversity. Genet. Resour. Crop Evol. 2015, 62, 579–591. [Google Scholar] [CrossRef]
- Babiker, S.A.; Khair, M.A.M.; Tahir, I.S.A.; Ali, A.M.; Mohamed, E.I.; Mustafa, N.S. Exploitation of Simple Sequence Repeat Markers to Assess the Genetic Diversity in Sudan Pearl Millet [Pennisetum glaucum (L.) R. Br.] Collections. Int. J. Agric. Innov. Res. 2016, 4, 1071–1075. [Google Scholar]
- Elraheem, B.S.A. Enhancement of Forage Suited Accessions in Sudan Pearl Millet Collection via Exploitation of Inter-and Intra-Seasonal, Phenotypic, Genotypic and Quality Variations. Ph.D. Thesis, Sudan Academy of Sciences (SAS), Sudan, Africa, 2012. [Google Scholar]
- VSN International. Genstat for Windows, 22nd ed.; VSN International: Hemel Hempstead, UK, 2022. [Google Scholar]
- Farshadfar, E. Incorporation of AMMI Stability Value and Grain Yield in a Single Non-Parametric Index (GSI) in Bread Wheat. Pak. J. Biol. Sci. 2008, 11, 1791–1796. [Google Scholar] [CrossRef]
- Kolde, R. Pheatmap: Pretty Heatmaps. 2022. Available online: https://cran.r-project.org/web/packages/pheatmap/pheatmap.pdf (accessed on 6 November 2023).
- Khair, M.A.M.; SA Salih, S.A.; Elhag, F.M.A.; Eltayeb, E.I. Dry matter yield and quality of some winter sown forage crop in the Sudan. Univ. Khartoum J. Agric. Sci. 2007, 15, 204–219. [Google Scholar]
- Kambal, A.E. Comparative performance of some varieties of sorghum, maize and pearl millet for forage production in different seasons. Sudan Agric. J. 1983, 10, 46–60. [Google Scholar]
- Serba, D.D.; Perumal, R.; Tesso, T.T.; Min, D. Status of Global Pearl Millet Breeding Programs and the Way Forward. Crop Sci. 2017, 57, 2891–2905. [Google Scholar] [CrossRef]
- Vigouroux, Y.; Mariac, C.; De Mita, S.; Pham, J.-L.; Gérard, B.; Kapran, I.; Sagnard, F.; Deu, M.; Chantereau, J.; Ali, A.; et al. Selection for Earlier Flowering Crop Associated with Climatic Variations in the Sahel. PLoS ONE 2011, 6, e19563. [Google Scholar] [CrossRef]
- Bidinger, F.; Mahalakshmi, V.; Rao, G. Assessment of drought resistance in pearl millet [Pennisetum americanum (L.) Leeke]. I. Factors affecting yields under stress. Aust. J. Agric. Res. 1987, 38, 37. [Google Scholar] [CrossRef]
- Van Oosterom, E.J.; Mahalakshmi, V.; Bidinger, F.R.; Rao, K.P. Effect of water availability and temperature on the genotype-by-environment interaction of pearl millet in semi-arid tropical environments. Euphytica 1996, 89, 175–183. [Google Scholar] [CrossRef]
- Burton, G.W.; Forston, J.C. Inheritance and Utilization of Five Dwarfs in Pearl Millet (Pennisetum typhoides) Breeding. Crop Sci. 1966, 6, 69–70. [Google Scholar] [CrossRef]
Characteristics | Experimental Sites | ||
---|---|---|---|
Gezira (Gezira State) | Rahad (Gedarif State) | Sennar (Sennar State) | |
Latitude | 14°24′ N | 14°08′ N | 13°33′ N |
Longitude | 33°29′ E | 34°06′ E | 33°34′ E |
Altitude (masl) | 406.9 | 426 | 421 |
Soil type | Typic Haplocambids | Typic Haplocambids | Typic Haplocambids |
Clay content (%) | 58 | 67 | 60 |
pH | 8.3 | 7.8 | 7.8–8.5 |
Organic carbon (%) | 0.20 | 0.74 | 0.40–0.50 |
Total nitrogen (%) | 0.05 | 0.04 | 0.05 |
Rainfall (average 2016–2018, mm) | 308 | 451 | 456 |
Mean maximum temperature (July–October, °C) | 36.3 | - | 36.9 |
Mean minimum temperature (July–October, °C) | 22.9 | - | 20.5 |
Fresh Matter Yield (t ha−1) | Days to Flowering | Number of Culms (m−1) | Plant Height (cm) | Leaf to Stem Ratio | Stem Girth (cm) | |
---|---|---|---|---|---|---|
No. of environment | 7 | 7 | 5 | 7 | 5 | 3 |
Min | 6.5 (R1) | 46 (R1) | 14.8 (S2) | 133 (S2) | 0.131 (R2) | 2.90 (G1) |
Max | 26.5 (R3) | 70 (R1) | 49.6 (G1) | 179 (G1) | 0.411 (G1) | 4.40 (G2) |
Mean | 15.6 | 56 | 31.7 | 156 | 0.241 | 3.57 |
Chi probability | ||||||
Environment (E) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Genotype (G) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.728 |
G × E | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.082 |
SE ± | ||||||
E | 0.66 | 0.7 | 1.53 | 1.7 | 0.0094 | 0.065 |
G | 0.62 | 0.6 | 1.05 | 1.4 | 0.0104 | 0.113 |
G × E | 1.63 | 1.5 | 2.57 | 3.8 | 0.0255 | 0.196 |
Genotype (G) | Environment (E) | Mean (G) | Relative Performance (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Gezira 2016/17 (G1) | Gezira 2018/19 (G2) | Rahad 2016/17 (R1) | Rahad 2017/18 (R2) | Rahad 2018/19 (R3) | Sennar 2016/17 (S1) | Sennar 2018/19 (S2) | |||
G01 | 20.29 | 22.60 | 10.21 | 18.68 | 26.54 | 12.81 | 12.73 | 17.70 | 116.5 |
G02 | 22.80 | 19.70 | 9.90 | 14.39 | 19.23 | 8.89 | 9.94 | 14.98 | 98.6 |
G03 | 21.72 | 17.74 | 10.96 | 13.73 | 19.47 | 12.37 | 13.37 | 15.62 | 102.8 |
G04 | 15.64 | 22.26 | 7.07 | 13.83 | 26.33 | 8.87 | 15.18 | 15.60 | 102.7 |
G05 | 24.86 | 20.97 | 15.59 | 11.74 | 21.72 | 7.79 | 11.59 | 16.32 | 107.4 |
G06 | 17.99 | 25.69 | 6.94 | 12.14 | 18.82 | 16.28 | 14.20 | 16.01 | 105.4 |
G07 | 16.22 | 22.98 | 12.67 | 7.11 | 19.72 | 11.91 | 12.08 | 14.67 | 96.6 |
G08 | 19.14 | 19.60 | 9.84 | 15.21 | 18.22 | 10.25 | 11.53 | 14.83 | 97.6 |
G09 | 19.36 | 26.52 | 7.62 | 12.57 | 18.82 | 10.42 | 10.93 | 15.18 | 99.9 |
G10 | 22.31 | 11.03 | 9.70 | 13.92 | 18.95 | 8.77 | 12.94 | 13.95 | 91.8 |
G11 | 16.11 | 17.02 | 9.27 | 11.88 | 25.05 | 10.32 | 12.72 | 14.62 | 96.3 |
G12 | 27.18 | 21.42 | 6.90 | 16.23 | 21.98 | 8.60 | 15.69 | 16.86 | 111.0 |
G13 | 20.15 | 19.16 | 8.06 | 14.35 | 20.73 | 12.60 | 12.70 | 15.39 | 101.3 |
G14 | 23.80 | 27.36 | 10.67 | 19.23 | 24.08 | 11.51 | 11.70 | 18.34 | 120.7 |
G15 | 17.70 | 16.70 | 8.01 | 17.27 | 19.20 | 10.63 | 14.62 | 14.88 | 97.9 |
G16 | 13.98 | 15.46 | 7.01 | 12.29 | 23.74 | 7.27 | 14.04 | 13.40 | 88.2 |
G17 | 13.22 | 20.38 | 10.04 | 25.70 | 19.79 | 13.73 | 11.25 | 16.30 | 107.3 |
G18 | 17.09 | 17.44 | 10.04 | 21.36 | 20.29 | 10.30 | 12.02 | 15.51 | 102.1 |
G19 | 23.15 | 21.76 | 8.41 | 16.65 | 21.64 | 7.53 | 11.37 | 15.79 | 103.9 |
G20 | 19.27 | 12.40 | 8.63 | 12.73 | 19.34 | 11.17 | 17.25 | 14.40 | 94.8 |
G21 | 19.27 | 23.11 | 10.48 | 12.90 | 23.91 | 13.83 | 8.34 | 15.98 | 105.2 |
G22 | 16.54 | 22.91 | 6.03 | 23.40 | 25.43 | 9.50 | 12.92 | 16.68 | 109.8 |
G23 | 21.02 | 15.91 | 8.51 | 17.26 | 22.57 | 7.15 | 13.44 | 15.12 | 99.6 |
G24 | 19.65 | 22.80 | 7.02 | 12.15 | 25.42 | 10.55 | 12.32 | 15.70 | 103.4 |
G25 | 17.23 | 23.56 | 10.40 | 15.43 | 18.67 | 9.86 | 11.19 | 15.19 | 100.0 |
Mean (E) | 19.43 | 20.26 | 9.20 | 15.29 | 21.59 | 10.52 | 12.64 | 15.56 | |
SE± | for environment = 0.663, for genotype = 0.616, for G × E = 1.629 |
Source | DF | SS | MS | VR | F pr | % Explained |
---|---|---|---|---|---|---|
Total | 524 | 20,054 | 38.3 | |||
Treatments | 174 | 15,786 | 90.7 | 8.01 | <0.001 | |
Genotypes | 24 | 681 | 28.4 | 2.51 | <0.001 | 4.3 |
Environments | 6 | 11,087 | 1847.8 | 56 | <0.001 | 70.2 |
Block | 14 | 462 | 33 | 2.91 | <0.001 | |
Interactions | 144 | 4018 | 27.9 | 2.46 | <0.001 | 25.5 |
IPCA 1 | 29 | 1279 | 44.1 | 3.89 | <0.001 | 31.8 |
IPCA 2 | 27 | 1173 | 43.4 | 3.84 | <0.001 | 29.2 |
IPCA 3 | 25 | 539 | 21.6 | 1.9 | 0.0064 | 13.4 |
Residuals | 63 | 1027 | 16.3 | 1.44 | 0.0231 | |
Error | 336 | 3805 | 11.3 |
Genotype Code | Mean FY | Rank (FY) | Stability (ASV) | Rank (ASV) | GSI Value | Rank (GSI) |
---|---|---|---|---|---|---|
G01 | 17.21 | 3 | 1.079 | 13 | 16 | 5 |
G02 | 15.06 | 16 | 0.971 | 11 | 27 | 11 |
G03 | 16.07 | 8 | 1.237 | 15 | 23 | 9 |
G04 | 15.67 | 11 | 1.793 | 22 | 33 | 19 |
G05 | 15.83 | 10 | 2.058 | 23 | 33 | 18 |
G06 | 16.29 | 6 | 0.487 | 6 | 12 | 4 |
G07 | 14.91 | 18 | 1.675 | 21 | 39 | 24 |
G08 | 14.25 | 23 | 0.885 | 9 | 32 | 16 |
G09 | 14.67 | 19 | 0.957 | 10 | 29 | 13 |
G10 | 14.5 | 20 | 1.629 | 19 | 39 | 25 |
G11 | 15.27 | 15 | 0.129 | 1 | 16 | 7 |
G12 | 16.72 | 4 | 0.757 | 8 | 12 | 3 |
G13 | 15.32 | 14 | 0.184 | 2 | 16 | 6 |
G14 | 18.39 | 1 | 0.45 | 5 | 6 | 1 |
G15 | 14.33 | 22 | 1.278 | 16 | 38 | 23 |
G16 | 13.49 | 25 | 0.55 | 7 | 32 | 17 |
G17 | 15.94 | 9 | 2.782 | 25 | 34 | 20 |
G18 | 16.35 | 5 | 1.049 | 12 | 17 | 8 |
G19 | 16.17 | 7 | 0.198 | 3 | 10 | 2 |
G20 | 14.49 | 21 | 1.157 | 14 | 35 | 21 |
G21 | 15.63 | 12 | 1.352 | 18 | 30 | 14 |
G22 | 17.75 | 2 | 2.506 | 24 | 26 | 10 |
G23 | 15.03 | 17 | 1.665 | 20 | 37 | 22 |
G24 | 15.47 | 13 | 1.347 | 17 | 30 | 15 |
G25 | 14.18 | 24 | 0.397 | 4 | 28 | 12 |
Environment | Mean | Score | 1st | 2nd | 3rd | 4th |
---|---|---|---|---|---|---|
Gezira 2016/17 (G1) | 19.43 | 3.144 | G05 | G12 | G14 | G10 |
Gezira 2018/19 (G2) | 20.26 | −1.662 | G22 | G24 | G01 | G04 |
Rahad 2016/17 (R1) | 9.20 | 1.362 | G03 | G05 | G14 | G06 |
Rahad 2017/18 (R2) | 15.29 | −2.228 | G17 | G22 | G18 | G23 |
Rahad 2018/19 (R3) | 21.59 | −1.031 | G22 | G14 | G01 | G04 |
Sennar 2016/17 (S1) | 10.52 | 0.088 | G06 | G07 | G17 | G03 |
Sennar 2018/19 (S2) | 12.64 | 0.327 | G17 | G03 | G14 | G18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babiker, S.A.E.; Khair, M.A.M.; Ali, A.A.; Abdallah, M.A.M.; Hagelhassan, A.M.E.; Mohamed, E.I.; Kamal, N.M.; Tsujimoto, H.; Tahir, I.S.A. Multi-Locational Evaluation of Forage-Suited Selected Sudan Pearl Millet [Pennisetum glaucum (L.) R. Br.] Accessions Identified High-Yielding and Stable Genotypes in Irrigated, Arid Environments. Crops 2024, 4, 195-210. https://doi.org/10.3390/crops4020015
Babiker SAE, Khair MAM, Ali AA, Abdallah MAM, Hagelhassan AME, Mohamed EI, Kamal NM, Tsujimoto H, Tahir ISA. Multi-Locational Evaluation of Forage-Suited Selected Sudan Pearl Millet [Pennisetum glaucum (L.) R. Br.] Accessions Identified High-Yielding and Stable Genotypes in Irrigated, Arid Environments. Crops. 2024; 4(2):195-210. https://doi.org/10.3390/crops4020015
Chicago/Turabian StyleBabiker, Sara A. E., Mohammed A. M. Khair, Abdelraheem A. Ali, Mohamoud A. M. Abdallah, Asim M. E. Hagelhassan, Eltahir I. Mohamed, Nasrein M. Kamal, Hisashi Tsujimoto, and Izzat S. A. Tahir. 2024. "Multi-Locational Evaluation of Forage-Suited Selected Sudan Pearl Millet [Pennisetum glaucum (L.) R. Br.] Accessions Identified High-Yielding and Stable Genotypes in Irrigated, Arid Environments" Crops 4, no. 2: 195-210. https://doi.org/10.3390/crops4020015
APA StyleBabiker, S. A. E., Khair, M. A. M., Ali, A. A., Abdallah, M. A. M., Hagelhassan, A. M. E., Mohamed, E. I., Kamal, N. M., Tsujimoto, H., & Tahir, I. S. A. (2024). Multi-Locational Evaluation of Forage-Suited Selected Sudan Pearl Millet [Pennisetum glaucum (L.) R. Br.] Accessions Identified High-Yielding and Stable Genotypes in Irrigated, Arid Environments. Crops, 4(2), 195-210. https://doi.org/10.3390/crops4020015