Rice Resistance Buffers against the Induced Enhancement of Brown Planthopper Fitness by Some Insecticides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Herbivore Species
2.2. Plant Materials
2.3. Insecticides
2.4. Effects of HPR and Insecticides on BPH Preferences
2.5. Effects of HPR and Insecticides on BPH Fitness
2.6. Effects of HPR and Insecticides in a Screenhouse Environment
2.7. Data Analyses
3. Results
3.1. Effects of HPR and Insecticides on BPH Preferences
3.2. Effects of HPR and Insecticides on BPH Fitness
3.3. Effects of HPR and Insecticides on Planthoppers and Leafhoppers
3.4. Direct and Indirect Effects of Insecticides on Rice Development
4. Discussion
4.1. Synergies
4.2. Antagonisms
4.3. Phytotoxicity
4.4. Management implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bottrell, D.G.; Schoenly, K.G. Resurrecting the ghost of green revolutions past: The brown planthopper as a recurring threat to high-yielding rice production in tropical Asia. J. Asia-Pac. Entomol. 2012, 15, 122–140. [Google Scholar] [CrossRef]
- Horgan, F.G. Integrated pest management for sustainable rice cultivation: A holistic approach. In Achieving Sustainable Cultivation of Rice: Cultivation, Pest and Disease Management; Sasaki, T., Ed.; Burleigh Dodds Scientific: Cambridge, UK, 2017; pp. 309–342. [Google Scholar]
- Horgan, F.G.; de Freitas, T.F.S.; Crisol-Martínez, E.; Mundaca, E.A.; Bernal, C.C. Nitrogenous fertilizer reduces resistance but enhances tolerance to the brown planthopper in fast-growing, moderately resistant rice. Insects 2021, 12, 989. [Google Scholar] [CrossRef] [PubMed]
- Horgan, F.G.; Peñalver Cruz, A.; Bernal, C.C.; Ramal, A.F.; Almazan, M.L.P.; Wilby, A. Resistance and tolerance to the brown planthopper, Nilaparvata lugens (Stål), in rice infested at different growth stages across a gradient of nitrogen applications. Field Crops Res. 2018, 217, 53–65. [Google Scholar] [CrossRef]
- Hereward, J.P.; Cai, X.; Matias, A.M.A.; Walter, G.H.; Xu, C.; Wang, Y. Migration dynamics of an important rice pest: The brown planthopper (Nilaparvata lugens) across Asia—Insights from population genomics. Evol. Appl. 2020, 13, 2449–2459. [Google Scholar] [CrossRef]
- Hu, C.; Guo, J.; Fu, X.; Huang, Y.; Gao, X.; Wu, K. Seasonal migration pattern of Nilaparvata lugens (Hemiptera: Delphacidae) over the Bohai Sea in northern China. J. Econ. Entomol. 2018, 111, 2129–2135. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Y.-C.; Hu, Y.-Y.; Lu, M.-H.; Wan, G.-J.; Chen, F.-J.; Liu, W.-C.; Zhai, B.-P.; Hu, G. Brown planthopper Nilaparvata lugens was concentrated at the rear of the typhoon Soudelor in eastern China in August 2015. Insect Sci. 2018, 25, 916–926. [Google Scholar] [CrossRef]
- Fujita, D.; Kohli, A.; Horgan, F.G. Rice resistance to planthoppers and leafhoppers. Crit. Rev. Plant Sci. 2013, 32, 162–191. [Google Scholar] [CrossRef]
- Fujii, T.; Yoshida, K.; Kobayashi, T.; Myint, K.K.M.; Yasui, H.; Sanada-Morimura, S.; Matsumura, M. Long-term virulence monitoring of differential cultivars in Japan’s immigrant populations of Nilaparvata lugens (Hemiptera: Delphacidae) in 2001–2009. Appl. Entomol. Zool. 2021, 56, 407–418. [Google Scholar] [CrossRef]
- Myint, K.K.M.; Yasui, H.; Takagi, M.; Matsumura, M. Virulence of long-term laboratory populations of the brown planthopper, Nilaparvata lugens (Stal), and whitebacked planthopper, Sogatella furcifera (Horváth) (Homoptera: Delphacidae), on rice differential varieties. Appl. Entomol. Zool. 2009, 44, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Horgan, F.G.; Ramal, A.F.; Bentur, J.S.; Kumar, R.; Bhanu, K.V.; Sarao, P.S.; Iswanto, E.H.; Van Chien, H.; Phyu, M.H.; Bernal, C.C.; et al. Virulence of brown planthopper (Nilaparvata lugens) populations from South and South East Asia against resistant rice varieties. Crop Prot. 2015, 78, 222–231. [Google Scholar] [CrossRef] [Green Version]
- Horgan, F.G. Integrating gene deployment and crop management for improved rice resistance to Asian planthoppers. Crop Prot. 2018, 110, 21–33. [Google Scholar] [CrossRef]
- Uddin, A.B.M.A.; Islam, K.S.; Jahan, M.; Ara, A.; Afrin, S. Farmer’s perception about resurgence of brown planthopper, Nilaparvata Lugens (Stål) in Bangladesh. Bangladesh Rice J. 2020, 23, 21–33. [Google Scholar] [CrossRef]
- Triwidodo, H. Brown planthoppers infestations and insecticides use pattern in Java, Indonesia. AGRIVITA J. Agric. Sci. 2020, 42, 320–330. [Google Scholar] [CrossRef]
- Veres, A.; Wyckhuys, K.A.; Kiss, J.; Tóth, F.; Burgio, G.; Pons, X.; Avilla, C.; Vidal, S.; Razinger, J.; Bazok, R.; et al. An update of the Worldwide Integrated Assessment (WIA) on systemic pesticides. Part 4: Alternatives in major cropping systems. Environ. Sci. Pollut. Res. 2020, 27, 29867–29899. [Google Scholar] [CrossRef]
- Bakker, L.; van der Werf, W.; Tittonell, P.; Wyckhuys, K.A.; Bianchi, F.J. Neonicotinoids in global agriculture: Evidence for a new pesticide treadmill? Ecol. Soc. 2020, 25, 26. [Google Scholar] [CrossRef]
- Wu, J.-C.; Xu, J.-X.; Yuan, S.-Z.; Liu, J.-L.; Jiang, Y.-H.; Xu, J.-F. Pesticide-induced susceptibility of rice to brown planthopper Nilaparvata lugens. Entomol. Exp. Appl. 2001, 100, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.-C.; Qiu, H.-M.; Yang, G.-Q.; Liu, J.-L.; Liu, G.-J.; Wilkens, R.M. Effective duration of pesticide-induced susceptibility of rice to brown planthopper (Nilaparvata lugens Stål, Homoptera: Delphacidae), and physiological and biochemical changes in rice plants following pesticide application. Int. J. Pest Manag. 2004, 50, 55–62. [Google Scholar] [CrossRef]
- Wang, A.-H.; Wu, J.-C.; Yu, Y.-S.; Liu, J.-L.; Yue, J.-F.; Wang, M.Y. Selective insecticide-induced stimulation on fecundity and biochemical changes in Tryporyza incertulas (Lepidoptera: Pyralidae). J. Econ. Entomol. 2005, 98, 1144–1149. [Google Scholar] [CrossRef] [PubMed]
- Azzam, S.; Wang, F.; Wu, J.-C.; Shen, J.; Wang, L.-P.; Yang, G.-Q.; Guo, Y.-R. Comparisons of stimulatory effects of a series of concentrations of four insecticides on reproduction in the rice brown planthopper Nilaparvata lugens Stål (Homoptera: Delphacidae). Int. J. Pest Manag. 2009, 55, 347–358. [Google Scholar] [CrossRef]
- Ge, L.-Q.; Hu, J.-H.; Wu, J.-C.; Yang, G.-Q.; Gu, H. Insecticide-induced changes in protein, RNA, and DNA contents in ovary and fat body of female Nilaparvata lugens (Hemiptera: Delphacidae). J. Econ. Entomol. 2009, 102, 1506–1514. [Google Scholar] [CrossRef]
- Ling, S.; Zhang, J.; Hu, L.; Zhang, R. Effect of fipronil on the reproduction, feeding, and relative fitness of brown planthopper, Nilaparvata lugens. Appl. Entomol. Zool. 2009, 44, 543–548. [Google Scholar] [CrossRef] [Green Version]
- Ge, L.-Q.; Wang, L.-P.; Zhao, K.-F.; Wu, J.-C.; Huang, L.-J. Mating pair combinations of insecticide-treated male and female Nilaparvata lugens Stål (Hemiptera: Delphacidae) planthoppers influence protein content in the male accessory glands (MAGs) and vitellin content in both fat bodies and ovaries of adult females. Pestic. Biochem. Physiol. 2010, 98, 279–288. [Google Scholar] [CrossRef]
- Ge, L.-Q.; Wu, J.-C.; Zhao, K.-F.; Chen, Y.; Yang, G.-Q. Induction of Nlvg and suppression of Nljhe gene expression in Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) adult females and males exposed to two insecticides. Pestic. Biochem. Physiol. 2010, 98, 269–278. [Google Scholar] [CrossRef]
- Hu, J.-H.; Wu, J.-C.; Yin, J.-L.; Gu, H.-N. Physiology of insecticide-induced stimulation of reproduction in the rice brown planthopper (Nilaparvata lugens (Stål)): Dynamics of protein in fat body and ovary. Int. J. Pest Manag. 2010, 56, 23–30. [Google Scholar] [CrossRef]
- Wang, L.-P.; Shen, J.; Ge, L.-Q.; Wu, J.-C.; Yang, G.-Q.; Jahn, G.C. Insecticide-induced increase in the protein content of male accessory glands and its effect on the fecundity of females in the brown planthopper Nilaparvata lugens Stål (Hemiptera: Delphacidae). Crop Prot. 2010, 29, 1280–1285. [Google Scholar] [CrossRef]
- Wu, J.; Ge, L.; Liu, F.; Song, Q.; Stanley, D. Pesticide-induced planthopper population resurgence in rice cropping systems. Annu. Rev. Entomol. 2020, 65, 409–429. [Google Scholar] [CrossRef] [Green Version]
- Suri, K.S.; Singh, G. Insecticide-induced resurgence of the whitebacked planthopper Sogatella furcifera (Horvath) (Hemiptera: Delphacidae) on rice varieties with different levels of resistance. Crop Prot. 2011, 30, 118–124. [Google Scholar] [CrossRef]
- Fabellar, L.T.; Heinrichs, E.A. Toxicity of insecticides to predators of rice brown planthoppers, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Environ. Entomol. 1984, 13, 832–837. [Google Scholar] [CrossRef]
- Fabellar, L.T.; Heinrichs, E.A. Relative toxicity of insecticides to rice planthoppers and leafhoppers and their predators. Crop Prot. 1986, 5, 254–258. [Google Scholar] [CrossRef]
- Cuong, N.L.; Ben, P.T.; Phuong, L.T.; Chau, L.M.; Cohen, M.B. Effect of host plant resistance and insecticide on brown planthopper Nilaparvata lugens (Stål) and predator population development in the Mekong Delta, Vietnam. Crop Prot. 1997, 16, 707–715. [Google Scholar] [CrossRef]
- Preetha, G.; Stanley, J.; Suresh, S.; Samiyappan, R. Risk assessment of insecticides used in rice on mirid bug, Cyrtorhinus lividipennis Reuter, the important predator of brown planthopper, Nilaparvata lugens (Stal.). Chemosphere 2010, 80, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Endo, S.; Kazano, H. Toxicity of insecticides to predators of rice planthoppers: Spiders, the mirid bug and the dryinid wasp. Appl. Entomol. Zool. 2000, 35, 177–187. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Q.; Lu, W.; Liu, F. Sublethal effects of four synthetic insecticides on the generalist predator Cyrtorhinus lividipennis. J. Pest Sci. 2015, 88, 383–392. [Google Scholar] [CrossRef]
- Settle, W.H.; Ariawan, H.; Astuti, E.T.; Cahyana, W.; Hakim, A.L.; Hindayana, D.; Lestari, A.S. Managing tropical rice pests through conservation of generalist natural enemies and alternative prey. Ecology 1996, 77, 1975–1988. [Google Scholar] [CrossRef]
- Salim, M.; Heinrichs, E.A. Insecticide-induced changes in the levels of resistance of rice cultivars to the whitebacked planthopper Sogatella furcifera (Horváth) (Homoptera: Delphacidae). Crop Prot. 1987, 6, 28–32. [Google Scholar] [CrossRef]
- Yin, J.-L.; Xu, H.-W.; Wu, J.-C.; Hu, J.-H.; Yang, G.-Q. Cultivar and insecticide applications affect the physiological development of the brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). Environ. Entomol. 2014, 37, 206–212. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Chang, W. Studies on varietal resistance to the brown planthopper in Taiwan. In Brown Planthopper: Threat to Rice Production in Asia; International Rice Research Institute, Ed.; International Rice Research Institute: Manila, Philippines, 1979; pp. 251–271. [Google Scholar]
- Reissig, W.H.; Heinrichs, E.A.; Valencia, S.L. Insecticide-induced resurgence of the brown planthopper, Nilaparvata lugens, on rice varieties with different levels of resistance. Environ. Entomol. 1982, 11, 165–168. [Google Scholar] [CrossRef] [Green Version]
- Heinrichs, E.A.; Fabellar, L.T.; Basilio, R.P.; Wen, T.-C.; Medrano, F. Susceptibility of rice planthoppers Nilaparvata lugens and Sogatella furcifera (Homoptera: Delphacidae) to insecticides as influenced by level of resistance in the host plant. Environ. Entomol. 1984, 13, 455–458. [Google Scholar] [CrossRef]
- Joshi, R.; Shepard, B.; Kenmore, P.; Lydia, R. Insecticide-induced resurgence of brown planthopper (BPH) on IR62. Int. Rice Res. Newsl. 1992, 17, 9–10. [Google Scholar]
- Zhu, Z.-R.; Cheng, J.; Jiang, M.-X.; Zhang, X.-X. Complex influence of rice variety, fertilization timing, and insecticide on population dynamics of Sogatella furcifera (Horvath), Nilaparvata lugens (Stål) (Homoptera: Delphacidae) and their natural enemies in rice in Hangzhou, China. J. Pest Sci. 2004, 77, 65–74. [Google Scholar] [CrossRef]
- Nanthakumar, M.; Jhansi Lakshmi, V.; Shashi Bhushan, V.; Balachandran, S.M.; Mohan, M. Decrease of rice plant resistance and induction of hormesis and carboxylesterase titre in brown planthopper, Nilaparvata lugens (Stål) by xenobiotics. Pestic. Biochem. Physiol. 2012, 102, 146–152. [Google Scholar] [CrossRef]
- Yao, H.-W.; Jiang, C.-Y.; Ye, G.-Y.; Cheng, J.-A. Studies on cultivar-induced changes in insecticide susceptibility and its related enzyme activities of the white-backed planthopper, Sogatella furcifera (Horvath)(Homopter: Delphacidae). Insect Sci. 2002, 9, 9–15. [Google Scholar]
- Horgan, F.G.; Srinivasan, T.S.; Bentur, J.S.; Kumar, R.; Bhanu, K.V.; Sarao, P.S.; Van Chien, H.; Almazan, M.L.P.; Bernal, C.C.; Ramal, A.F.; et al. Geographic and research center origins of rice resistance to Asian planthoppers and leafhoppers: Implications for rice breeding and gene deployment. Agronomy 2017, 7, 62. [Google Scholar] [CrossRef] [Green Version]
- Jairin, J.; Phengrat, K.; Teangdeerith, S.; Vanavichit, A.; Toojinda, T. Mapping of a broad-spectrum brown planthopper resistance gene, Bph3, on rice chromosome 6. Mol. Breed. 2007, 19, 35–44. [Google Scholar] [CrossRef]
- Ren, J.; Gao, F.; Wu, X.; Lu, X.; Zeng, L.; Lv, J.; Su, X.; Luo, H.; Ren, G. Bph32, a novel gene encoding an unknown SCR domain-containing protein, confers resistance against the brown planthopper in rice. Sci. Rep. 2016, 6, 37645. [Google Scholar] [CrossRef]
- Nguyen, C.D.; Zheng, S.-H.; Sanada-Morimura, S.; Matsumura, M.; Yasui, H.; Fujita, D. Substitution mapping and characterization of brown planthopper resistance genes from indica rice variety, ‘PTB33′ (Oryza sativa L.). Breed. Sci. 2021, in press. [Google Scholar] [CrossRef]
- Chelliah, S.; Heinrichs, E.A. Factors affecting insecticide-induced resurgence of the brown planthopper, Nilaparvata lugens on Rice. Environ. Entomol. 1980, 9, 773–777. [Google Scholar] [CrossRef]
- Moore, M.T.; Kröger, R. Effect of three insecticides and two herbicides on rice (Oryza sativa) seedling germination and growth. Arch. Environ. Contam. Toxicol. 2010, 59, 574–581. [Google Scholar] [CrossRef]
- Kim, J.; Hwang, I.; Han, M.; Jang, B. Effect of insecticide and fungicide on phytotoxicity of herbicide in rice. Korean J. Weed Sci. 1986, 6, 67–75. [Google Scholar]
- Horgan, F.G.; Garcia, C.P.F.; Haverkort, F.; de Jong, P.W.; Ferrater, J.B. Changes in insecticide resistance and host range performance of planthoppers artificially selected to feed on resistant rice. Crop Prot. 2020, 127, 104963. [Google Scholar] [CrossRef] [PubMed]
- Khush, G.S.; Virk, P.S. IR Varieties and Their Impact; International Rice Research Institute: Manila, Philippines, 2005. [Google Scholar]
- Srinivasan, T.S.; Almazan, M.L.P.; Bernal, C.C.; Ramal, A.F.; Subbarayalu, M.K.; Horgan, F.G. Interactions between nymphs of Nilaparvata lugens and Sogatella furcifera (Hemiptera: Delphacidae) on resistant and susceptible rice varieties. Appl. Entomol. Zool. 2016, 51, 81–90. [Google Scholar] [CrossRef]
- Peñalver Cruz, A.; Arida, A.; Heong, K.L.; Horgan, F.G. Aspects of brown planthopper adaptation to resistant rice varieties with the Bph3 gene. Entomol. Exp. Appl. 2011, 141, 245–257. [Google Scholar] [CrossRef]
- Alam, S.N.; Cohen, M.B. Detection and analysis of QTLs for resistance to the brown planthopper, Nilaparvata lugens, in a doubled-haploid rice population. Theor. Appl. Genet. 1998, 97, 1370–1379. [Google Scholar] [CrossRef]
- Mackill, D.J.; Khush, G.S. IR64: A high-quality and high-yielding mega variety. Rice 2018, 11, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinrichs, E.A.; Basilio, R.P.; Valencia, S.L. Buprofezin, a selective insecticide for the management of rice planthoppers (Homoptera: Delphacidae) and leafhoppers (Homoptera: Cicadellidae). Environ. Entomol. 1984, 13, 515–521. [Google Scholar] [CrossRef] [Green Version]
- Satapathy, M.K.; Anjaneyulu, A. Use of cypermethrin, a synthetic pyrethroid, in the control of rice tungro virus disease and its vector. Trop. Pest Manag. 1984, 30, 170–178. [Google Scholar] [CrossRef]
- Vorley, W. Spider mortality implicated in insecticide-induced resurgence of whitebacked planthopper (WBPH) and brown planthopper (BPH) in Kedah, Malaysia. Int. Rice Res. Newsl. 1987, 10, 19–20. [Google Scholar]
- Uddin, A.; Islam, K.S.; Jahan, M.; Ara, A.; Khan, M.A.I. Factor influencing the resurgence of brown planthopper in Bangladesh. SAARC J. Agric. 2020, 18, 117–128. [Google Scholar] [CrossRef]
- Escalada, M.M.; Luecha, M.; Heong, K.L. Social impacts of planthopper outbreaks: Case study from Thailand. In Rice Planthoppers: Ecology, Management, Socio Economics and Policy; Heong, K.L., Cheng, J., Escalada, M.M., Eds.; Zhejiang University Press: Hangzhou, China, 2015; pp. 209–226. [Google Scholar]
- Zhang, C.P.; He, H.M.; Yu, J.Z.; Hu, X.Q.; Zhu, Y.H.; Wang, Q. Residues of carbosulfan and its metabolites carbofuran and 3-hydroxy carbofuran in rice field ecosystem in China. J. Environ. Sci. Health 2016, 51, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Samanta, S.; Barman, M.; Samanta, N.R.A. Bio-efficacy trials of carbofuran 3% CG against insect pests of rice. J. Entomol. Zool. Stud. 2020, 8, 1529–1533. [Google Scholar]
- Donley, N. The USA lags behind other agricultural nations in banning harmful pesticides. Environ. Health 2019, 18, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, A.; Gore, J.; Musser, F.; Cook, D.; Catchot, A.; Walker, T.; Dobbins, C. Efficacy of selected insecticides applied to hybrid rice seed. J. Econ. Entomol. 2015, 109, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Singh, B. Persistence and metabolism of Fipronil in rice (Oryza sativa Linnaeus) Field. Bull. Environ. Contam. Toxicol. 2013, 90, 482–488. [Google Scholar] [CrossRef]
- Dhaka, S.; Prajapati, C.; Singh, D.; Singh, R. Field evaluation of insecticides and bio-pesticides against rice leaf folder, Cnaphalocrocis Medinalis (Guenee). Ann. Plant Prot. Sci. 2011, 19, 324–326. [Google Scholar]
- Matsumura, M.; Takeuchi, H.; Satoh, M.; Sanada-Morimura, S.; Otuka, A.; Watanabe, T.; Van Thanh, D. Species-specific insecticide resistance to imidacloprid and fipronil in the rice planthoppers Nilaparvata lugens and Sogatella furcifera in East and South-east Asia. Pest Manag. Sci. 2008, 64, 1115–1121. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Li, J.; Shao, Y.; Yang, B.; Liu, Z. Fipronil resistance in the whitebacked planthopper (Sogatella furcifera): Possible resistance mechanisms and cross-resistance. Pest Manag. Sci. 2010, 66, 121–125. [Google Scholar] [CrossRef]
- Horgan, F.G.; Arida, A.; Ardestani, G.; Almazan, M.L.P. Temperature-dependent oviposition and nymph performance reveal distinct thermal niches of coexisting planthoppers with similar thresholds for development. PLoS ONE 2020, 15, e0235506. [Google Scholar] [CrossRef] [PubMed]
- Horgan, F.G.; Arida, A.; Ardestani, G.; Almazan, M.L.P. Intraspecific competition counters the effects of elevated and optimal temperature on phloem-feeding insects in tropical and temperate rice. PLoS ONE 2020, 15, e0240130. [Google Scholar] [CrossRef]
- Sogawa, K.; Cheng, C. Economic thresholds, nature of damage, and losses caused by the brown planthopper. In Brown Planthopper: Threat to Rice Production in Asia; International Rice Research Institute, Ed.; International Rice Research Institute: Manila, Philippines, 1979; pp. 125–142. [Google Scholar]
- Zhang, Y.; Guo, L.; Atlihan, R.; Chi, H.; Chu, D. Demographic analysis of progeny fitness and timing of resurgence of Laodelphax striatellus after insecticides exposure. Entomol. Gen. 2019, 39, 221–230. [Google Scholar] [CrossRef]
- Zhao, K.-F.; Shi, Z.-P.; Wu, J.-C. Insecticide-induced enhancement of flight capacity of the brown planthopper Nilaparvata lugens Stål (Hemiptera: Delphacidae). Crop Prot. 2011, 30, 476–482. [Google Scholar] [CrossRef]
- Nguyen, C.D.; Verdeprado, H.; Zita, D.; Sanada-Morimura, S.; Matsumura, M.; Virk, P.S.; Brar, D.S.; Horgan, F.G.; Yasui, H.; Fujita, D. The development and characterization of near-isogenic and pyramided lines carrying resistance genes to brown planthopper with the genetic background of japonica rice (Oryza sativa L.). Plants 2019, 8, 498. [Google Scholar] [CrossRef] [Green Version]
- Horgan, F.G.; Arida, A.; Ardestani, G.; Almazan, M.L.P. Positive and negative interspecific interactions between coexisting rice planthoppers neutralise the effects of elevated temperatures. Funct. Ecol. 2021, 35, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Yang, H.; Yang, H.; Wang, Z.; Long, G.-Y.; Jin, D.-C. Effects of sublethal concentrations of deltamethrin on fitness of white-backed planthopper, Sogatella furcifera (Horváth). Int. J. Pest Manag. 2019, 65, 165–170. [Google Scholar] [CrossRef]
- Horgan, F.G.; Kudavidanage, E.P. Use and avoidance of pesticides as responses by farmers to change impacts in rice ecosystems of southern Sri Lanka. Environ. Manag. 2020, 65, 787–803. [Google Scholar] [CrossRef]
- Kanungo, P.K.; Adhya, T.K.; Rajaranamohan Rao, V. Influence of repeated applications of carbofuran on nitrogenase activity and nitrogen-fixing bacteria associated with rhizosphere of tropical rice. Chemosphere 1995, 31, 3249–3257. [Google Scholar] [CrossRef]
- Horgan, F.G.; Crisol Martínez, E.; Stuart, A.M.; Bernal, C.C.; de Cima Martín, E.; Almazan, M.L.P.; Ramal, A.F. Effects of vegetation strips, fertilizer levels and varietal resistance on the integrated management of arthropod biodiversity in a tropical rice ecosystem. Insects 2019, 10, 328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widiarta, I.N.; Matsumura, M.; Suzuki, Y.; Nakasuji, F. Effects of sublethal doses of imidacloprid on the fecundity of green leafhoppers, Nephotettix spp. (Hemiptera: Cicadellidae) and their natural enemies. Appl. Entomol. Zool. 2001, 36, 501–507. [Google Scholar] [CrossRef] [Green Version]
- Preetha, G.; Stanley, J.; Suresh, S.; Kuttalam, S.; Samiyappan, R. Toxicity of selected insecticides to Trichogramma chilonis: Assessing their safety in the rice ecosystem. Phytoparasitica 2009, 37, 209–215. [Google Scholar] [CrossRef]
- Lakshmi, V.J.; Krishnaiah, N.; Pasalu, I.; Lingaiah, T.; Krishnaiah, K. Safety of thiamethoxam to Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae), a predator of brown planthopper, Nilaparvata lugens (Stal) in rice. J. Biol. Control 2001, 15, 53–58. [Google Scholar]
- Horgan, F.G.; Ramal, A.F.; Villegas, J.M.; Jamoralin, A.; Bernal, C.C.; Perez, M.O.; Pasang, J.M.; Naredo, A.I.; Almazan, M.L.P. Effects of bund crops and insecticide treatments on arthropod diversity and herbivore regulation in tropical rice fields. J. Appl. Entomol. 2017, 141, 587–599. [Google Scholar] [CrossRef]
- Fritz, L.L.; Heinrichs, E.A.; Machado, V.; Andreis, T.F.; Pandolfo, M.; de Salles, S.M.; de Oliviera, J.V.; Fiuza, L.M. Impact of lambdacyhalothrin on arthropod natural enemy populations in irrigated rice fields in southern Brazil. Int. J. Trop. Insect Sci. 2013, 33, 178–187. [Google Scholar] [CrossRef] [Green Version]
Treatments | Egg Clusters (Number Plant−1) 1,2 | Eggs (Number Plant−1) 1,2 | Cluster Size (Number of Eggs) 1 | Nymph Survival (Proportions) 1,2 | Nymph Biomass (mg Dry Weight Plant−1) 1,2 |
---|---|---|---|---|---|
IR62 | |||||
Buprofezin | 12.40 ± 1.40 b | 50.40 ± 9.04 b | 3.93 ± 0.36 | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
Carbofuran | 13.00 ± 0.89 b | 53.80 ± 4.21 b | 4.17 ± 0.26 | 0.64 ± 0.64 d | 1.54 ± 1.54 d |
Cartap hydrochloride | 13.60 ± 0.75 b | 52.00 ± 4.86 b | 3.82 ± 0.29 | 0.28 ± 0.28 b | 1.51 ± 1.51 b |
Cypermethrin | 6.20 ± 1.69 a | 20.00 ± 6.08 a | 3.16 ± 0.23 | 0.02 ± 0.02 a | 0.02 ± 0.02 a |
Deltamethrin | 13.60 ± 1.60 b | 43.40 ± 5.66 b | 3.38 ± 0.69 | 0.40 ± 0.40 c | 1.20 ± 1.20 c |
Fipronil | 5.20 ± 1.46 a | 22.40 ± 7.35 a | 3.93 ± 0.64 | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
Thiamethoxam-chlorantraniliprole | 3.80 ± 0.86 a | 17.00 ± 4.35 a | 4.47 ± 0.32 | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
Control | 12.60 ± 1.03 b | 49.00 ± 7.16 b | 3.88 ± 0.54 | 0.80 ± 0.80 d | 2.92 ± 2.92 d |
IR64 | |||||
Buprofezin | 21.00 ± 1.64 | 109.40 ± 13.46 | 5.56 ± 1.17 | 0.00 ± 0.00 | 0.00 ± 0.00 |
Carbofuran | 18.20 ± 4.04 | 98.80 ± 29.39 | 5.24 ± 0.74 | 0.86 ± 0.86 | 4.20 ± 4.20 |
Cartap hydrochloride | 21.40 ± 6.19 | 114.60 ± 31.41 | 5.49 ± 0.64 | 0.10 ± 0.10 | 0.45 ± 0.45 |
Cypermethrin | 3.80 ± 2.33 | 19.80 ± 11.55 | 5.50 ± 0.58 | 0.00 ± 0.00 | 0.00 ± 0.00 |
Deltamethrin | 15.60 ± 2.09 | 75.00 ± 15.81 | 4.73 ± 0.69 | 0.40 ± 0.40 | 2.01 ± 2.01 |
Fipronil | 3.80 ± 0.86 | 21.00 ± 5.52 | 5.46 ± 0.80 | 0.00 ± 0.00 | 0.00 ± 0.00 |
Thiamethoxam-chlorantraniliprole | 2.60 ± 0.75 | 8.00 ± 2.12 | 3.73 ± 1.33 | 0.00 ± 0.00 | 0.00 ± 0.00 |
Control | 17.40 ± 3.64 | 75.20 ± 23.44 | 4.26 ± 0.73 | 0.86 ± 0.86 | 3.60 ± 3.60 |
F-treatment 3 | 19.898 *** | 19.898 *** | 0.541 ns | 133.811 *** | 108.451 *** |
F-variety 3 | 2.596 ns | 7.607 ** | 7.471 ** | 1.080 ns | 0.008 ns |
F-interaction 3 | 1.840 ns | 2.034 ns | 0.610 ns | 4.902 *** | 9.496 *** |
Treatment | BPH Density (Number Plant−1) 1 | WBPH Density (Number Plant−1) 1 | GLH Density (Number Plant−1) 1 | Density of Planthoppers and Leafhoppers (Number Plant−1) 1 | Biomass of Planthoppers and Leafhoppers (mg Dry Weight) 1 |
---|---|---|---|---|---|
IR62 | |||||
Buprofezin | 15.40 ± 3.02 a | 0.30 ± 0.20 a | 0.80 ± 0.51 a | 16.70 ± 3.21 a | 3.31 ± 1.00 a |
Carbofuran | 8.00 ± 3.70 a | 0.60 ± 0.37 a | 0.30 ± 0.12 a | 8.90 ± 3.58 a | 2.43 ± 1.47 a |
Cartap hydrochloride | 68.70 ± 49.34 a | 1.10 ± 0.53 a | 0.30 ± 0.20 a | 70.10 ± 49.15 a | 7.44 ± 3.31 a |
Cypermethrin | 18.60 ± 6.09 a | 1.70 ± 1.34 a | 0.20 ± 0.12 a | 20.50 ± 7.28 a | 4.81 ± 1.42 a |
Deltamethrin | 314.20 ± 179.98 b | 27.60 ± 20.25 b | 1.00 ± 0.69 b | 342.90 ± 199.74 b | 36.78 ± 10.61 b |
Fipronil | 5.90 ± 4.36 a | 0.10 ± 0.10 a | 0.20 ± 0.20 a | 6.20 ± 4.40 a | 0.97 ± 0.38 a |
Thiamethoxam-chlorantraniliprole | 5.60 ± 2.35 a | 0.10 ± 0.10 a | 0.40 ± 0.29 a | 6.20 ± 2.18 a | 1.21 ± 0.44 a |
Control | 33.20 ± 4.60 a | 1.10 ± 0.40 a | 1.10 ± 0.56 a | 35.40 ± 4.79 a | 8.34 ± 3.50 a |
IR64 | |||||
Buprofezin | 14.30 ± 3.22 | 0.40 ± 0.19 | 1.00 ± 0.55 | 15.70 ± 3.56 | 5.19 ± 1.32 |
Carbofuran | 9.80 ± 4.43 | 0.40 ± 0.29 | 1.90 ± 1.11 | 12.10 ± 5.08 | 3.05 ± 1.31 |
Cartap hydrochloride | 24.20 ± 14.05 | 1.00 ± 0.61 | 0.30 ± 0.20 | 25.50 ± 13.87 | 3.97 ± 1.23 |
Cypermethrin | 12.20 ± 2.63 | 0.80 ± 0.58 | 0.30 ± 0.30 | 13.30 ± 3.00 | 3.28 ± 1.13 |
Deltamethrin | 318.50 ± 202.28 | 27.30 ± 23.70 | 4.10 ± 2.29 | 349.90 ± 225.78 | 36.32 ± 12.71 |
Fipronil | 13.10 ± 10.56 | 0.70 ± 0.25 | 0.90 ± 0.56 | 14.80 ± 10.65 | 1.40 ± 0.52 |
Thiamethoxam-chlorantraniliprole | 6.20 ± 3.07 | 0.40 ± 0.19 | 0.10 ± 0.10 | 6.80 ± 3.07 | 0.81 ± 0.35 |
Control | 24.20 ± 1.93 | 1.30 ± 0.60 | 1.00 ± 0.35 | 26.50 ± 2.00 | 6.56 ± 0.87 |
F-treatment | 21.092 *** | 13.157 *** | 2.859 * | 19.985 *** | 63.428 *** |
F-variety | 0.130 ns | 0.001 ns | 1.456 ns | 0.106 ns | 0.319 ns |
F-interaction | 0.127 ns | 0.008 ns | 3.059 ** | 0.116 ns | 0.315 ns |
Treatment | Tiller Number 1 | Plant Biomass (g Dry Weight) 1 | Time to Harvest (Days) 1 | Weight of Filled Grain (g Dry Weight) 1 | Number of Filled Grain (1000s) 1 | Unfilled Grain (Proportion) 1 | 1000 Grain Weight 1 |
---|---|---|---|---|---|---|---|
IR62 | |||||||
Buprofezin | 26.60 ± 2.06 ab | 46.43 ± 3.85 ab | 79.90 ± 1.68 ab | 57.76 ± 6.83 ab | 3.61 ± 0.61 ab | 0.11 ± 0.03 a | 20.08 ± 0.42 ab |
Carbofuran | 29.00 ± 1.06 ab | 55.46 ± 3.57 b | 77.20 ± 0.80 ab | 74.48 ± 6.91 b | 4.46 ± 0.61 ab | 0.11 ± 0.01 a | 21.03 ± 0.54 b |
Cartap hydrochloride | 28.20 ± 3.27 ab | 48.96 ± 4.70 ab | 79.20 ± 1.53 b | 64.30 ± 7.12 ab | 4.15 ± 0.64 ab | 0.12 ± 0.01 b | 20.23 ± 0.65 a |
Cypermethrin | 28.70 ± 3.01 a | 49.57 ± 5.62 a | 77.60 ± 1.03 b | 60.32 ± 8.22 a | 4.10 ± 0.67 ab | 0.14 ± 0.02 a | 19.65 ± 0.76 a |
Deltamethrin | 26.20 ± 3.45 a | 45.92 ± 5.88 a | 78.40 ± 1.08 ab | 56.98 ± 8.32 ab | 3.79 ± 0.47 ab | 0.12 ± 0.01 a | 20.30 ± 0.63 ab |
Fipronil | 23.80 ± 1.76 ab | 46.07 ± 6.57 ab | 77.00 ± 1.79 ab | 52.66 ± 3.90 a | 3.18 ± 0.32 a | 0.13 ± 0.02 a | 21.28 ± 0.47 b |
Thiamethoxam-chlorantraniliprole | 26.50 ± 2.50 b | 45.47 ± 4.29 b | 77.20 ± 1.02 a | 57.77 ± 6.88 ab | 4.08 ± 0.61 b | 0.13 ± 0.02 a | 20.19 ± 0.67 ab |
Control | 31.20 ± 2.47 b | 54.01 ± 5.55 b | 77.20 ± 0.80 ab | 70.45 ± 5.20 b | 3.96 ± 0.36 ab | 0.12 ± 0.02 a | 20.76 ± 0.50 ab |
IR64 | |||||||
Buprofezin | 23.40 ± 2.50 | 50.64 ± 7.47 | 83.50 ± 1.24 | 50.80 ± 9.52 | 2.70 ± 0.54 | 0.08 ± 0.01 | 22.77 ± 0.39 |
Carbofuran | 20.40 ± 0.97 | 45.91 ± 1.41 | 85.40 ± 0.73 | 49.51 ± 3.12 | 2.63 ± 0.23 | 0.06 ± 0.00 | 22.95 ± 0.36 |
Cartap hydrochloride | 21.20 ± 0.75 | 43.36 ± 2.85 | 85.20 ± 1.40 | 42.73 ± 5.79 | 2.38 ± 0.26 | 0.15 ± 0.07 | 20.50 ± 2.34 |
Cypermethrin | 19.90 ± 0.89 | 39.68 ± 2.72 | 87.10 ± 1.35 | 39.20 ± 5.52 | 2.50 ± 0.28 | 0.08 ± 0.02 | 21.71 ± 0.70 |
Deltamethrin | 19.80 ± 1.81 | 43.25 ± 3.57 | 84.60 ± 0.68 | 47.10 ± 4.96 | 2.77 ± 0.24 | 0.08 ± 0.01 | 23.14 ± 0.12 |
Fipronil | 21.20 ± 1.74 | 46.97 ± 3.11 | 84.50 ± 0.89 | 48.88 ± 3.92 | 2.74 ± 0.27 | 0.08 ± 0.01 | 22.47 ± 0.42 |
Thiamethoxam-chlorantraniliprole | 25.20 ± 2.87 | 54.04 ± 4.65 | 83.80 ± 1.96 | 55.94 ± 5.46 | 3.47 ± 0.53 | 0.10 ± 0.01 | 22.65 ± 0.72 |
Control | 21.60 ± 0.76 | 46.78 ± 3.42 | 86.00 ± 0.96 | 49.40 ± 5.43 | 2.67 ± 0.29 | 0.08 ± 0.01 | 22.83 ± 0.49 |
F-treatment | 4.100 ns | 3.410 ** | 2.253 ns | 5.150 *** | 2.555 * | 3.923 ** | 4.924 *** |
F-variety | 168.232 *** | 7.665 * | 547.500 *** | 104.356 *** | 118.242 *** | 32.308 *** | 106.597 *** |
F-interaction | 5.980 *** | 6.113 *** | 4.824 *** | 5.760 *** | 2.921 ** | 2.769 ** | 2.552 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horgan, F.G.; Peñalver-Cruz, A.; Almazan, M.L.P. Rice Resistance Buffers against the Induced Enhancement of Brown Planthopper Fitness by Some Insecticides. Crops 2021, 1, 166-184. https://doi.org/10.3390/crops1030016
Horgan FG, Peñalver-Cruz A, Almazan MLP. Rice Resistance Buffers against the Induced Enhancement of Brown Planthopper Fitness by Some Insecticides. Crops. 2021; 1(3):166-184. https://doi.org/10.3390/crops1030016
Chicago/Turabian StyleHorgan, Finbarr G., Ainara Peñalver-Cruz, and Maria Liberty P. Almazan. 2021. "Rice Resistance Buffers against the Induced Enhancement of Brown Planthopper Fitness by Some Insecticides" Crops 1, no. 3: 166-184. https://doi.org/10.3390/crops1030016
APA StyleHorgan, F. G., Peñalver-Cruz, A., & Almazan, M. L. P. (2021). Rice Resistance Buffers against the Induced Enhancement of Brown Planthopper Fitness by Some Insecticides. Crops, 1(3), 166-184. https://doi.org/10.3390/crops1030016