Biomass Yield and Nutritive Value of Rye (Secale cereale L.) and Wheat (Triticum aestivum L.) Forages While Grazed by Cattle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sample Collections
2.3. Nutritive Value Analyses
2.4. Statistical Analyses
3. Results
3.1. Weather
3.2. Forage Biomass Yield
3.3. Nutritive Value
3.4. NDF and TTNDFD
3.5. NFC
3.6. CP
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greene, C.; McBride, W. Consumer demand for organic milk continues to expand—Can the US dairy sector catch up? Agric. Appl. Econ. Assoc. 2015, 30, 1–6. [Google Scholar]
- Brummer, E.C.; Moore, K.J. Persistence of perennial cool-season grass and legume cultivars under continuous grazing by beef cattle. Agron. J. 2000, 92, 466–471. [Google Scholar] [CrossRef]
- Kallenbach, R.L.; Bishop-Hurley, G.J.; Massie, M.D.; Kerley, M.S.; Roberts, C.A. Stockpiled annual ryegrass for winter forage in the lower Midwestern USA. Crop Sci. 2003, 43, 1414–1419. [Google Scholar] [CrossRef]
- McCormick, J.S.; Sulc, R.M.; Barker, D.J.; Beuerlein, J.E. Yield and nutritive value of autumn-seeded winter-hardy and winter-sensitive annual forages. Crop Sci. 2006, 46, 1981–1989. [Google Scholar] [CrossRef]
- Coblentz, W.K.; Bertram, M.G.; Martin, N.P. Planting date effects on fall forage production of oat cultivars in Wisconsin. Agron. J. 2011, 103, 145–155. [Google Scholar] [CrossRef]
- Grev, A.M.; Sheaffer, C.C.; DeBoer, M.L.; Catalano, D.N.; Martinson, K.L. Preference, yield, and forage nutritive value of annual grasses under horse grazing. Agron. J. 2017, 109, 1561–1572. [Google Scholar] [CrossRef]
- Sovell, L.A.; Vondracek, B.; Frost, J.A.; Mumford, K.G. Impacts of rotational grazing and riparian buffers on physicochemical and biological characteristics of Southeastern Minnesota, USA, streams. Environ. Manag. 2000, 26, 629–641. [Google Scholar] [CrossRef]
- Oates, L.G.; Undersander, D.J.; Gratton, C.; Bell, M.M.; Jackson, R.D. Management-intensive rotational grazing enhances forage production and quality of subhumid cool-season pastures. Crop Sci. 2011, 51, 892–901. [Google Scholar] [CrossRef] [Green Version]
- Hardison, W.A.; Reid, J.T.; Martin, C.M.; Woolfolk, P.G. Degree of herbage selection by grazing cattle. J. Dairy Sci. 1954, 37, 89–102. [Google Scholar] [CrossRef]
- Barrett, P.D.; Laidlaw, A.S.; Mayne, C.S.; Christie, H. Pattern of herbage intake rate and bite dimensions of rotationally grazed dairy cows as sward height declines. Grass Forage Sci. 2001, 56, 362–373. [Google Scholar] [CrossRef]
- Dabney, S.M.; Delgato, J.A.; Reeves, D.W. Using winter cover crops to improve soil and water quality. Commun. Soil Sci. Plant Anal. 2001, 32, 1221–1250. [Google Scholar] [CrossRef]
- Electronic Code of Federal Regulations. Available online: https://www.ecfr.gov/ (accessed on 10 May 2021).
- Allen, V.G.; Batello, C.; Berretta, E.J.; Hodgson, J.; Kothmann, M.; Li, X.; McIvor, J.; Milne, J.; Morris, C.; Peeters, A.; et al. An international terminology for grazing lands and grazing animals. Grass Forage Sci. 2011, 66, 2–28. [Google Scholar] [CrossRef]
- Sulc, R.M.; Tracy, B.F. Integrated crop-livestock systems in the U.S. corn belt. Agron. J. 2007, 99, 335–345. [Google Scholar] [CrossRef] [Green Version]
- Jensen, J.D.; Christensen, T.; Denver, S.; Ditlevsen, K.; Lassen, J.; Teuber, R. Heterogeneity in consumers’ perceptions and demand for local (organic) food products. Food Qual. Prefer. 2019, 73, 255–265. [Google Scholar] [CrossRef]
- Hayden, J.; Rocker, S.; Phillips, H.; Heins, B.; Smith, A.; Delate, K. The importance of social support and communities of practice: Farmer perceptions of the challenges and opportunities of integrated crop-livestock systems on organically managed farms in the Northern US. Sustainability 2018, 10, 4606. [Google Scholar] [CrossRef] [Green Version]
- Lemaire, G.; Franzluebbers, A.; de Carvalho, P.C.F.; Dedieu, B. Integrated crop-livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agric. Ecosyst. Environ. 2014, 190, 4–8. [Google Scholar] [CrossRef]
- Ritz, K.E.; Heins, B.J.; Moon, R.; Sheaffer, C.; Weyers, S.L. Forage Yield and Nutritive Value of Cool-Season and Warm-Season Forages for Grazing Organic Dairy Cattle. Agronomy 2020, 10, 1963. [Google Scholar] [CrossRef]
- Ritz, K.E.; Heins, B.J.; Moon, R.D.; Sheaffer, C.C.; Weyers, S.L. Milk Production, Body Weight, Body Condition Score, Activity, and Rumination of Organic Dairy Cattle Grazing Two Different Pasture Systems Incorporating Cool- and Warm-Season Forages. Animals 2021, 11, 264. [Google Scholar] [CrossRef] [PubMed]
- Cherney, J.H.; Marten, G.C. Small grain crop forage potential: I. Biological and chemical determinants of quality, and yield. Crop Sci. 1982, 22, 227–231. [Google Scholar] [CrossRef]
- Edmisten, K.L.; Green, J.T.; Mueller, J.P.; Burns, J.C. Winter annual small grain forage potential. I. Dry matter yield in relation to morphological characteristics of four small grain species at six growth stages. Commun. Soil Sci. Plant Anal. 1998, 29, 867–879. [Google Scholar] [CrossRef]
- Kim, K.-S.; Anderson, J.D.; Webb, S.L.; Newell, M.A.; Butler, T.J. Variation of winter forage production in four small grain species-oat, rye, triticale and wheat. Pak. J. Bot. 2017, 49, 553–559. [Google Scholar]
- Cherney, J.H.; Marten, G.C. Small grain crop forage potential: II. Interrelationships among biological, chemical, morphological, and anatomical determinants of quality. Crop Sci. 1982, 22, 240–245. [Google Scholar] [CrossRef]
- Edmisten, K.L.; Green, J.T.; Mueller, J.P.; Burns, J.C. Winter annual small grain forage potential. II. Quantification of nutritive characteristics of four small grain species at six growth stages. Commun. Soil Sci. Plant Anal. 1998, 29, 881–899. [Google Scholar] [CrossRef]
- Moyer, J.L.; Coffey, K.P. Forage quality and production of small grains interseeded into bermudagrass sod or grown in monoculture. Agron. J. 2000, 92, 748–753. [Google Scholar] [CrossRef]
- Geren, H. Dry matter yield and silage quality of some winter cereals harvested at different stages under Mediterranean climate conditions. Turk. J. Field Crop. 2014, 19, 197–202. [Google Scholar] [CrossRef] [Green Version]
- McCartney, D.; Fraser, J.; Ohama, A. Annual cool season crops for grazing by beef cattle. A Canadian Review. Can. J. Anim. Sci. 2008, 88, 517–533. [Google Scholar] [CrossRef]
- Li, Y.; Allen, V.G.; Hou, F.; Chen, J.; Brown, C.P. Steers grazing a rye cover crop influence growth of rye and no-till cotton. Agron. J. 2013, 105, 1571–1580. [Google Scholar] [CrossRef]
- Phillips, H.N.; Heins, B.J.; Delate, K.; Turnbull, R. Fatty Acid Composition Dynamics of Rye (Secale cereale L.) and Wheat (Triticum aestivum L.) Forages under Cattle Grazing. Agronomy 2020, 10, 813. [Google Scholar] [CrossRef]
- Phillips, H.N.; Heins, B.J.; Delate, K.; Turnbull, R. Impact of grazing dairy steers on winter rye (Secale cereale) versus winter wheat (Triticum aestivum) and effects on meat quality, fatty acid and amino acid profiles, and consumer acceptability of organic beef. PLoS ONE 2017, 12, e0187686. [Google Scholar] [CrossRef] [Green Version]
- Nazareth, J.; Shaw, A.; Delate, K.; Turnbull, R. Food safety considerations in integrated organic crop-livestock systems: Prevalence of Sal. Renew. Agric. Food Syst. 2021, 36, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Galindo, F.S.; Delate, K.; Heins, B.; Phillips, H.; Smith, A.; Pagliari, P.H. Cropping System and Rotational Grazing Effects on Soil Fertility and Enzymatic Activity in an Integrated Organic Crop-Livestock System. Agronomy 2020, 10, 803. [Google Scholar] [CrossRef]
- Murison, R.; Scott, J.M. Statistical methodologies for drawing causal inference from an unreplicated farmlet experiment conducted by the Cicerone Project. Anim. Prod. Sci. 2013, 53, 643–648. [Google Scholar] [CrossRef] [Green Version]
- Ankom Technology. NDF Method: Method 13. Available online: https://www.ankom.com/ (accessed on 10 May 2021).
- AOAC International. AOAC Official Method 990.03. Protein (Crude) in Animal Feed. AOAC Int. 2005. Available online: http://www.eoma.aoac.org/ (accessed on 17 May 2021).
- AOAC International. AOAC Official Method 2003.05. Crude Fat in Feeds, Cereal Grains, and Forages. AOAC Int. 2006. Available online: http://www.eoma.aoac.org/ (accessed on 17 May 2021).
- AOAC International. AOAC Official Method 942.05. Ash of Animal Feed. AOAC Int. 2008. Available online: http://www.eoma.aoac.org/ (accessed on 17 May 2021).
- Lopes, F.; Cook, D.E.; Combs, D.K. Validation of an in vitro model for predicting rumen and total-tract fiber digestibility in dairy cows fed corn silages with different in vitro neutral detergent fiber digestibilities at 2 levels of dry matter intake. J. Dairy Sci. 2015, 98, 574–585. [Google Scholar] [CrossRef] [Green Version]
- Goeser, J.P.; Hoffman, P.C.; Combs, D.K. Modification of a rumen fluid priming technique for measuring in vitro neutral detergent fiber digestibility. J. Dairy Sci. 2009, 92, 3842–3848. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Barton, K. MuMIn: Multi-Model Inference. Available online: https://cran.r-project.org/package=MuMIn (accessed on 10 May 2021).
- Nakagawa, S.; Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Keles, G.; Ates, S.; Coskun, B.; Alatas, M.S.; Isik, S. Forage yields and feeding value of small grain winter cereals for lambs. J. Sci. Food Agric. 2016, 96, 4168–4177. [Google Scholar] [CrossRef]
- Lauriault, L.M.; Kirksey, R.E. Yield and nutritive value of irrigated winter cereal forage grass-legume intercrops in the Southern High Plains, USA. Agron. J. 2004, 96, 352–358. [Google Scholar]
- Islam, M.A.; Obour, A.K.; Nachtman, J.J.; Baumgartner, R.E.; Saha, M.C. Small grains have forage production potential and nutritive value in Central High Plains of Wyoming. Forage Grazinglands 2013, 11, 1–10. [Google Scholar] [CrossRef]
- Kantar, M.; Sheaffer, C.; Porter, P.; Krueger, E.; Ochsner, T.E. Growth stage influences forage yield and quality of winter rye. Forage Grazinglands 2011, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Collar, C.; Aksland, G. Harvest stage effects on yield and quality of winter forage. In Proceedings of the 31st California Alfalfa and Forage Symposium, Modesto, CA, USA, 11–13 December 2001. [Google Scholar]
- Carmi, A.; Aharoni, Y.; Edelstein, M.; Umiel, N.; Hagiladi, A.; Yosef, E.; Nikbachat, M.; Zenou, A.; Miron, J. Effects of irrigation and plant density on yield, composition and in vitro digestibility of a new forage sorghum variety, Tal, at two maturity stages. Anim. Feed Sci. Technol. 2006, 131, 120–132. [Google Scholar] [CrossRef]
- Combs, D.K. TTNDFD: A new approach to evaluate forages. In Proceedings of the 2013 Cornell Nutrition Conference, Syracuse, NY, USA, 22–24 October 2013. [Google Scholar]
- Harrison, M.T.; Evans, J.R.; Dove, H.; Moore, A.D. Dual-purpose cereals: Can the relative influences of management and environment on crop recovery and grain yield be dissected? Crop Pasture Sci. 2011, 62, 930–946. [Google Scholar] [CrossRef]
- Holman, J.D.; Roberts, T.; Maxwell, S. 2015 Kansas winter annual forage variety trial. Kansas Agric. Exp. Stn. Res. Rep. 2016, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. Nutrient Requirements of Beef Cattle, 8th ed.; The National Academies Press: Washington, DC, USA, 2016; ISBN 978-0-309-31702-3. [Google Scholar]
- National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; The National Academies Press: Washington, DC, USA, 2001; ISBN 978-0-309-06997-7. [Google Scholar]
Month | Total | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
September | October | November | December | January | February | March | April | May | June | ||
Temperature, °C a | Mean | ||||||||||
2015–2016 | 14 | 6 | 0 | −6 | −11 | −8 | 0 | 3 | 10 | 16 | 2 |
Long-term | 15 | 8 | −1 | −9 | −13 | −10 | −3 | 6 | 14 | 19 | 3 |
Rainfall, mm b | Sum | ||||||||||
2015–2016 | 34 | 40 | 47 | 27 | 7 | 17 | 16 | 47 | 51 | 48 | 333 |
Long-term | 59 | 47 | 25 | 17 | 18 | 18 | 30 | 58 | 76 | 102 | 447 |
Snowfall, mm b | Sum | ||||||||||
2015–2016 | 0 | 0 | 5 | 287 | 112 | 155 | 36 | 36 | 0 | 0 | 630 |
Long-term | 0 | 18 | 127 | 178 | 178 | 188 | 198 | 84 | 3 | 0 | 973 |
Rye | Wheat | Source of Variation 1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
β0 | DayL | DayQ | DayC | β0 | DayL | DayQ | DayC | D | F | F × D | R2 (m) |
Biomass yield, Mg ha−1 | Probability | ||||||||||
2.85 [2.5,3.2] | −2.00 [−4.1,0.1] | −1.25 [−3.5,1.0] | 4.93 [2.8,7.1] | 2.52 [2.2,2.9] | 6.54 [4.4,8.7] | 0.63 [−1.8,2.9] | 0.00 [−2.2,2.2] | 0.001 | 0.24 | <0.0001 | 0.37 |
Rye | Wheat | Source of Variation 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Characteristic 2 | β0 | DayL | DayQ | β0 | DayL | DayQ | D | F | F × D | R2 (m) |
g 100 g−1 of dry matter | Probability | |||||||||
NDF | 48.0 [46.5,49.6] | 42.7 [34.0,51.6] | −5.38 [−15.2,4.4] | 45.2 [43.7,46.8] | 52.1 [43.3,61.0] | 11.6 [1.3,21.0] | <0.0001 | 0.04 | 0.03 | 0.68 |
NFC | 27.7 [25.8,29.6] | −0.105 [−0.17,−0.04] | 28.3 [26.4,30.2] | −0.095 [−0.16,−0.03] | <0.0001 | 0.70 | 0.82 | 0.16 | ||
CP | 21.4 [19.7,23.1] | −0.172 [−0.22,−0.12] | 25.3 [23.6,27.0] | −0.267 [−0.32,−0.21] | <0.0001 | 0.003 | 0.01 | 0.57 | ||
Crude fat | 2.68 [2.6,2.7] | −2.06 [−2.5,−1.7] | 0.822 [0.31,1.23] | 2.41 [2.4,2.5] | −1.59 [−2.0,−1.2] | 0.554 [0.15,0.98] | <0.0001 | 0.003 | 0.18 | 0.72 |
g 100 g−1 of NDF | ||||||||||
TTNDFD | 56.0 [53.6,58.2] | −75.5 [−87.0,−64.3] | −11.9 [−24.0,1.3] | 55.9 [53.6,58.2] | −77.1 [−88.6,−65.9] | −19.6 [−31.7,−6.4] | <0.0001 | 0.99 | 0.68 | 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phillips, H.N.; Heins, B.J.; Delate, K.; Turnbull, R. Biomass Yield and Nutritive Value of Rye (Secale cereale L.) and Wheat (Triticum aestivum L.) Forages While Grazed by Cattle. Crops 2021, 1, 42-53. https://doi.org/10.3390/crops1020006
Phillips HN, Heins BJ, Delate K, Turnbull R. Biomass Yield and Nutritive Value of Rye (Secale cereale L.) and Wheat (Triticum aestivum L.) Forages While Grazed by Cattle. Crops. 2021; 1(2):42-53. https://doi.org/10.3390/crops1020006
Chicago/Turabian StylePhillips, Hannah N., Bradley J. Heins, Kathleen Delate, and Robert Turnbull. 2021. "Biomass Yield and Nutritive Value of Rye (Secale cereale L.) and Wheat (Triticum aestivum L.) Forages While Grazed by Cattle" Crops 1, no. 2: 42-53. https://doi.org/10.3390/crops1020006
APA StylePhillips, H. N., Heins, B. J., Delate, K., & Turnbull, R. (2021). Biomass Yield and Nutritive Value of Rye (Secale cereale L.) and Wheat (Triticum aestivum L.) Forages While Grazed by Cattle. Crops, 1(2), 42-53. https://doi.org/10.3390/crops1020006