A Systematic Review of GIS Evolution in Transportation Planning: Towards AI Integration
Abstract
1. Introduction
- Examine evolving thematic domains and subdomains to identify trends in research focus.
- Analyze motivations and goals to uncover priorities driving GIS-transportation studies.
- Assess developments in data types and sources to highlight expanding capabilities.
- Synthesize methods and findings to demonstrate analytical advances and contributions.
2. Methodology
3. Trend Analysis
3.1. Trends in Research Domains
3.2. Trends in Research Objectives
3.3. Trends in Methodological Approaches and Models
3.4. Data Trends
3.5. Synthesis of Findings
4. Challenges and Limitations
5. Integrating AI in GIS-Based Transportation Planning
6. Outlook and Directions
6.1. Future Outlook
6.2. Technology Interactions
- Combining geospatial analytics with AI and big data infrastructure can enable more sophisticated dynamic modeling [3]. But biases and limitations must be evaluated.
- Leveraging IoT sensors and real-time data analytics to support intelligent transportation systems requires strong cybersecurity and data protections [27].
- Immersive visualization technologies require thoughtful UX design and accessibility considerations to broaden access [53].
- Cloud computing facilitates scalable geospatial analysis but should adhere to location data and privacy regulations [64].
7. Policy Implications
- I.
- Develop Open Data Portals: Support and sustain open geospatial data platforms, such as OpenStreetMap, to enhance data access, particularly in developing regions where limited data availability constrains GIS-T applications [2].
- II.
- III.
- Promote Workforce Development: Establish interdisciplinary training programs to build GIS-T expertise among planners, addressing technical skill shortages in resource-limited regions [17].
- IV.
- V.
- Incorporate Equity Assessments: Mandate the inclusion of equity evaluations in GIS-T projects to address spatial disparities in transportation access, aligning with trends in geographic equity analysis [24].
- VI.
Author Contributions
Funding
Conflicts of Interest
References
- Chen, D.; Kang, K.; Koo, D.D.; Peng, C.; Gkritza, K.; Labi, S. Agent-Based Model of Electric Vehicle Charging Demand for Long-Distance Driving in the State of Indiana. Transp. Res Rec. 2022, 2677, 555–563. [Google Scholar] [CrossRef]
- Ul Hussnain, M.Q.; Waheed, A.; Anjum, G.A.; Naeem, M.A.; Hussain, E.; Wakil, K.; Pettit, C.J. A framework to bridge digital planning tools’ utilization gap in peri-urban spatial planning: Lessons from Pakistan. Comput. Environ. Urban Syst. 2020, 80, 101451. [Google Scholar] [CrossRef]
- Soltani, A.; Mansourihanis, O.; RoohaniQadikolaei, M.; Zaroujtaghi, A. Two Decades of Geospatial Evolution: Tracing the Analytical Journey towards Data-Driven Road Crash Prevention. Appl. Spat. Anal. Policy 2024, 17, 1301–1334. [Google Scholar] [CrossRef]
- Aderibigbe, O.O.; Gumbo, T.; Fadare, S.O. Transportation Technologies and Transportation Management. In Emerging Technologies for Smart Cities: Sustainable Transport Planning in the Global North and Global South; Springer Nature: Cham, Switzerland, 2024; pp. 131–169. [Google Scholar]
- Fiorini, L.; Falasca, F.; Marucci, A.; Saganeiti, L. Discretization of the urban and non-urban shape: Unsupervised machine learning techniques for territorial planning. Appl. Sci. 2022, 12, 10439. [Google Scholar] [CrossRef]
- Liu, X.; Payakkamas, P.; Dijk, M.; de Kraker, J. GIS Models for Sustainable Urban Mobility Planning: Current Use, Future Needs and Potentials. Future Transp. 2023, 3, 384–402. [Google Scholar] [CrossRef]
- Mishra, K.; Garg, R.D. Machine Learning-Based Handling of Geospatial Big Data From Hyperspectral Sensors for Urban Area Characterization. In Emerging Trends, Techniques, and Applications in Geospatial Data Science; Gaur, L., Garg, P., Eds.; IGI Global: Hershey, PA, USA, 2023; pp. 125–156. [Google Scholar] [CrossRef]
- Sutton, J.C. GIS applications in transit planning and operations: A review. Transp. Plan. Technol. 2005, 28, 237–250. [Google Scholar] [CrossRef]
- Lovelace, R. Open source tools for geographic analysis in transport planning. J. Geogr. Syst. 2021, 23, 547–578. [Google Scholar] [CrossRef]
- Zhang, A.; Tariq, A.; Quddoos, A.; Naz, I.; Aslam, R.W.; Barboza, E.; Ullah, S.; Abdullah-Al-Wadud, M. Spatio-temporal analysis of urban expansion and land use dynamics using Google Earth Engine and predictive models. Sci. Rep. 2025, 15, 6993. [Google Scholar] [CrossRef]
- Kumaar, K.S.; Muralimohan, N.; Paranthaman, M.; Tamilselvan, V.; Udhayaprakash, M.; Kumar, K.A. Multimodal Complex Road Network and Its Traffic Organization using GIS. Technol. Innov. Eng. Res. 2022, 2, 97–110. [Google Scholar] [CrossRef]
- Miller, H.J.; Shaw, S.-L. Geographic Information Systems for Transportation: Principles and Applications; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Thill, J.-C. Geographic Information Systems in Transportation Research; Emerald Publishing: Leeds, UK, 2000; Volume 8, pp. 3–12. [Google Scholar]
- Nóbrega, R.A.d.A.; Vieira, R.R.T.; Berberian, C.F.Q.; Filho, N.D.; Masukawa, N.; Quadros, E.A.T. Inteligência geográfica para avaliação de propostas de projeto de concessão de corredores ferroviários. Transportes 2016, 24, 75–84. [Google Scholar] [CrossRef]
- Zaroujtaghi, A.; Mansourihanis, O.; Tayarani, M.; Mansouri, F.; Hemmati, M.; Soltani, A. PRISMA 2020 Checklist. GIS Evolution in Transportation Planning: Towards AI Integration. Future Transp. Available online: https://static1.squarespace.com/static/65b880e13b6ca75573dfe217/t/67ad313f1c80aa5235fce0d0/1739403584136/PRISMA_2020_checklist.pdf (accessed on 3 July 2025).
- Xia, H.; Liu, Z.; Maria, E.; Liu, X.; Lin, C. Study on city digital twin technologies for sustainable smart city design: A review and bibliometric analysis of geographic information system and building information modeling integration. Sustain. Cities Soc. 2022, 84, 104009. [Google Scholar] [CrossRef]
- Kim, M.; Kim, D.; Jin, D.; Kim, G. Application of Explainable Artificial Intelligence (XAI) in Urban Growth Modeling: A Case Study of Seoul Metropolitan Area, Korea. Land 2023, 12, 420. [Google Scholar] [CrossRef]
- Liu, C.C.; Lin, T.C.; Yuan, K.Y.; Chiueh, P.; Chen, Y. Spatio-temporal prediction and factor identification of urban air quality using support vector machine. Urban Clim. 2022, 41, 101055. [Google Scholar] [CrossRef]
- Dragan, D.; Keshavarzsaleh, A.; Popovic, V.; Jereb, B.; Intihar, M. Heuristic-based Optimisation Approach: Cost-effective School Transportation. Proc. Inst. Civ. Eng.-Transp. 2022, 175, 220–237. [Google Scholar] [CrossRef]
- Abid, S.K.; Sulaiman, N.; Chan, S.W.; Nazir, U.; Abid, M.; Han, H.; Ariza-Montes, A.; Vega-Muñoz, A. Toward an Integrated Disaster Management Approach: How Artificial Intelligence Can Boost Disaster Management. Sustainability 2021, 13, 12560. [Google Scholar] [CrossRef]
- Phan, N.D.; Chapman, L.; Tight, M. Resilient transport systems to reduce urban vulnerability to floods in emerging-coastal cities: A case study of Ho Chi Minh City, Vietnam. Travel Behav. Soc. 2019, 15, 28–43. [Google Scholar] [CrossRef]
- Yang, X.; Li, L.; Chen, L.; Zhang, Y.; Chen, L.; Li, C. Use of a non-planning driving background change methodology to assess the land-use planning impact on the environment. Environ. Impact Assess. Rev. 2020, 84, 106440. [Google Scholar] [CrossRef]
- Zou, H.; Yue, Y.; Li, Q.; Yeh, A.G. An improved distance metric for the interpolation of link-based traffic data using kriging: A case study of a large-scale urban road network. Int. J. Geogr. Inf. Sci. 2012, 26, 667–689. [Google Scholar] [CrossRef]
- Shi, F.; Kim, C. Research on Accessibility and Equity of Urban Transport Based on Multisource Big Data. J. Adv. Transp. 2021, 2021, 1103331. [Google Scholar] [CrossRef]
- Griffin, G.P.; Jiao, J. The Geography and Equity of Crowdsourced Public Participation for Active Transportation Planning. Transp. Res. Rec. 2019, 2673, 460–468. [Google Scholar] [CrossRef]
- Park, Y.; Akar, G. Why do bicyclists take detours? A multilevel regression model using smartphone GPS data. J. Transp. Geogr. 2019, 74, 191–200. [Google Scholar] [CrossRef]
- Caspari, A.; Wood, D.; Campbell, A.; Jefferson, D.; Huynh, T.; Reddy, A. Using Real-Time Data to Detect Delays and Improve Customer Communications at New York City Transit. Transp. Res Rec. 2021, 2675, 45–57. [Google Scholar] [CrossRef]
- Iamtrakul, P.; Chayphong, S.; Kantavat, P.; Hayashi, Y.; Kijsirikul, B.; Iwahori, Y. Exploring the Spatial Effects of Built Environment on Quality of Life Related Transportation by Integrating GIS and Deep Learning Approaches. Sustainability 2023, 15, 2785. [Google Scholar] [CrossRef]
- Ifkirne, M.; El Bouhi, H.; Acharki, S.; Pham, Q.B.; Farah, A.; Nguyen, T.T.L. Multi-Criteria GIS-Based Analysis for Mapping Suitable Sites for Onshore Wind Farms in Southeast France. Land 2022, 11, 1839. [Google Scholar] [CrossRef]
- Zheng, M.; Liu, J.; Gao, J.; Zhou, N.; Jiang, S. Navigating urban challenges: Quantifying emergency service accessibility and robustness amid meteorological disasters. Int. J. Disaster Risk Reduct. 2024, 110, 104655. [Google Scholar] [CrossRef]
- Qi, L.; Jia, L.; Luo, Y.; Chen, Y.; Peng, M. The External Characteristics and Mechanism of Urban Road Corridors to Agglomeration: Case Study for Guangzhou, China. Land 2022, 11, 1087. [Google Scholar] [CrossRef]
- Liu, T.; Meidani, H. End-to-end heterogeneous graph neural networks for traffic assignment. Transp. Res. Part C Emerg. Technol. 2024, 165, 104695. [Google Scholar] [CrossRef]
- Jana, D.; Malama, S.; Narasimhan, S.; Taciroglu, E.; Donta, P.K. Edge-based graph neural network for ranking critical road segments in a network. PLoS ONE 2023, 18, e0296045. [Google Scholar] [CrossRef]
- Jiang, W.; Luo, J. Graph neural network for traffic forecasting: A survey. Expert Syst. Appl. 2022, 207, 117921. [Google Scholar] [CrossRef]
- Randák, J.; Marada, M.; Vrtiška, M. Application of Potential Accessibility Models in Decision-making on HSR Routing: The Case of Rapid Connections in Czechia. AUC Geogr. 2021, 56, 108–119. [Google Scholar] [CrossRef]
- Vahedi Saheli, M.; Effati, M. Segment-based count regression geospatial modeling of the effect of roadside land uses on pedestrian crash frequency in rural roads. Int. J. Intell. Transp. Syst. Res. 2021, 19, 347–365. [Google Scholar] [CrossRef]
- Milligan, B.; Kraus-Polk, A.; Huang, Y. Park, Fish, Salt and Marshes: Participatory Mapping and Design in a Watery Uncommons. Land 2020, 9, 454. [Google Scholar] [CrossRef]
- Tessema, Y.M.; Jasinska, J.; Yadeta, L.T.; Switoniak, M.; Puchalka, R.; Gebregeorgis, E.G. Soil loss estimation for conservation planning in the Welmel Watershed of the Genale Dawa Basin, Ethiopia. Agronomy 2020, 10, 777. [Google Scholar] [CrossRef]
- Mehran, B.; Khan, M.A.; Mehran, M.; Roh, H.; Sharma, S. Case study scenarios in site selection of hazardous material facilities based on transportation preferences. J. Mod. Transp. 2019, 27, 317–333. [Google Scholar] [CrossRef]
- Ryu, S.; Chen, A.; Zhang, H.M.; Recker, W. Path flow estimator for planning applications in small communities. Transp. Res. Part A Policy Pract. 2014, 69, 212–242. [Google Scholar] [CrossRef]
- Malarvizhi, K.; Kumar, S.V.; Porchelvan, P. Urban sprawl modelling and prediction using regression and Seasonal ARIMA: A case study for Vellore, India. Model. Earth Syst. Environ. 2022, 8, 1597–1615. [Google Scholar] [CrossRef]
- Shen, S.; Dragicevic, S.; Dujmovic, J. GIS-based Logic Scoring of Preference method for urban densification suitability analysis. Comput. Environ. Urban Syst. 2021, 89, 101654. [Google Scholar] [CrossRef]
- Uhl, J.H.; Leyk, S.; Chiang, Y.-Y.; Knoblock, C.A. Towards the automated large-scale reconstruction of past road networks from historical maps. Comput. Environ. Urban Syst. 2022, 94, 101794. [Google Scholar] [CrossRef]
- Soltani, A.; Askari, S. Exploring spatial autocorrelation of traffic crashes based on severity. Injury 2017, 48, 637–647. [Google Scholar] [CrossRef]
- Mansourihanis, O.; Maghsoodi Tilaki, M.J.; Zaroujtaghi, A.; Tayarani, M.; Sheikhfarshi, S. Inequalities in emergency service accessibility: Spatial analysis of urban infrastructure. J. Place Manag. Dev. 2024, 17, 584–614. [Google Scholar] [CrossRef]
- Qabaja, H.; Ashqer, M.I.; Bikdash, M.; Ashqar, H.I. A Meso-Scale Petri Net Model to Simulate a Massive Evacuation along the Highway System. Future Transp. 2023, 3, 311–328. [Google Scholar] [CrossRef]
- Blackburn, L.; Epanchin-Niell, R.; Thompson, A.; Liebhold, A.; Beggs, J. Predicting costs of alien species surveillance across varying transportation networks. J. Appl. Ecol. 2017, 54, 225–233. [Google Scholar] [CrossRef]
- Zheng, G.H.; Jiang, D.F.; Luan, Y.F.; Yao, Y. GIS-based spatial differentiation of ethnic minority villages in Guizhou Province, China. J. Mt. Sci. 2022, 19, 987–1000. [Google Scholar] [CrossRef]
- Liu, T.; Meidani, H. Optimizing seismic retrofit of bridges: Integrating efficient graph neural network surrogates and transportation equity. In Proceedings of the Cyber-Physical Systems and Internet of Things Week 2023, San Antonio, TX, USA, 9–12 May 2023; pp. 367–372. [Google Scholar]
- Gerges, F.; Nassif, H.; Geng, X.; Michael, H.A.; Boufadel, M.C. GIS-based approach for evaluating a community intrinsic resilience index. Nat. Hazards 2022, 111, 1271–1299. [Google Scholar] [CrossRef]
- Winters, M.; Brauer, M.; Setton, E.M.; Teschke, K. Mapping bikeability: A spatial tool to support sustainable travel. Environ. Plan. B Plan. Des. 2013, 40, 865–883. [Google Scholar] [CrossRef]
- Lwin, K.K.; Sekimoto, Y.; Takeuchi, W. Development of GIS Integrated Big Data Research Toolbox (BigGIS-RTX) for Mobile CDR Data Processing in Disasters Management. J. Disaster Res. 2018, 13, 380–386. [Google Scholar] [CrossRef]
- Shahumyan, H.; Moeckel, R. Integration of land use, land cover, transportation, and environmental impact models: Expanding scenario analysis with multiple modules. Environ. Plan. B Urban Anal. City Sci. 2017, 44, 531–552. [Google Scholar] [CrossRef]
- Išoraitė, M.; Jarašūnienė, A.; Samašonok, K. Assessment of the Impact of Advertising in Promoting Sustainable Mobility and Multimodality in the Urban Transport System. Future Transp. 2023, 3, 210–235. [Google Scholar] [CrossRef]
- Biljecki, F.; Ito, K. Street view imagery in urban analytics and GIS: A review. Landsc. Urban Plan. 2021, 215, 104217. [Google Scholar] [CrossRef]
- Zhang, C.; Bao, J.; Yu, W. Fine-grained urban land use classification based on a dual-path convolutional neural network and comparative analysis. ISPRS Int. J. Geo-Inf. 2020, 9, 406. [Google Scholar]
- Soltani, A.; Askari, S. Analysis of intra-urban traffic accidents using spatiotemporal visualization techniques. Transp. Telecommun. J. 2014, 15, 227–232. [Google Scholar] [CrossRef]
- Soltani, A.; Afshari, S.; Amiri, M.A. Time-series projecting road traffic fatalities in Australia: Insights for targeted safety interventions. Injury 2025, 56, 112166. [Google Scholar] [CrossRef]
- Soltani, A.; RoohaniQadikolaei, M.; Sobhani, A. Shifting landscapes, escalating risks: How land use conversion shapes long-term road crash outcomes in Melbourne. Future Transp. 2025, 5, 75. [Google Scholar] [CrossRef]
- Zhang, S.; Feick, R. Understanding public opinions from geosocial media. ISPRS Int. J. Geo-Inf. 2016, 5, 74. [Google Scholar] [CrossRef]
- Yildirim, Y.; Arefi, M.; Parlak, Y. Mapping noise and characteristics of transit-oriented developments (TODs): A Sunbelt region case study. Appl. Acoust. 2021, 179, 108053. [Google Scholar] [CrossRef]
- Soltani, A.; Azmoodeh, M.; Qadikolaei, M.R. Post COVID-19 transformation in the frequency and location of traffic crashes involving older adults. Transp. Res. Rec. 2023, 2678, 493–511. [Google Scholar] [CrossRef]
- Soltani, A.; Azmoodeh, M.; Qadikolaei, M.R. Road crashes in Adelaide metropolitan region, the consequences of COVID-19. J. Transp. Health 2023, 30, 101581. [Google Scholar] [CrossRef]
- Jha, M.K. Feasibility of Computer Visualization in Highway Development: A Fuzzy Logic-Based Approach. Comput.-Aided Civ. Infrastruct. Eng. 2006, 21, 136–147. [Google Scholar] [CrossRef]
- Burke, C.M.; Scott, D.M. Identifying Sensible Locations for Separated Bike Lanes on a Congested Urban Road Network: A Toronto Case Study. Prof. Geogr. 2018, 70, 541–551. [Google Scholar] [CrossRef]
- Viegas, J.M.; Martinez, L.M.; Silva, E.A. Effects of the modifiable areal unit problem on the delineation of traffic analysis zones. Environ. Plan. B Plan. Des. 2009, 36, 625–643. [Google Scholar] [CrossRef]
- Ma, Y.; Zou, G.; Shin, J.H.; Kang, Y.; Gao, S.; Siu, K.W.M.; Zhang, S. Locating community-based comprehensive service facilities for older adults using the GIS-NEMA method in Harbin, China. J. Urban Plan. Dev. 2021, 147, 5021010. [Google Scholar] [CrossRef]
- Zhu, L.; Yu, F.R.; Wang, Y.; Ning, B.; Tang, T. Big data analytics in intelligent transportation systems: A survey. IEEE Trans. Intell. Transp. Syst. 2018, 20, 383–398. [Google Scholar] [CrossRef]
- Soltani, A.; Allan, A.; Nguyen, H.A.; Berry, S. Bikesharing experience in the city of Adelaide: Insight from a preliminary study. Case Stud. Transp. Policy 2019, 7, 250–260. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Item | Sub-Item | Details |
---|---|---|
Keywords | Main keywords | GIS, transportation planning, urban mobility, geographic information systems |
Supplemented keywords | Land use, mobility, transportation geography, spatial analysis, network analysis, transport modeling, smart cities, sustainability, equity | |
Operators | “OR”, “AND” | |
Time period | February 2004–February 2024 | |
Language | English | |
Document type (included) | Journal paper | |
Document type (excluded) | Excluded document types include conference proceedings, non-peer-reviewed articles, book chapters, government or consulting reports, preliminary papers, and theses/dissertations | |
Inclusion criteria | Articles employing GIS techniques/analysis for urban transportation planning | |
Exclusion criteria | Studies focused solely on rural or regional transportation planning, studies not substantially involving GIS | |
Non-English studies were omitted from the evaluation process | ||
Date of search | Sunday, 16 February 2025 |
Domain | Estimated Frequency (% of Studies) | Subdomains | Key Focus | Temporal Trends (2004–2024) | References |
---|---|---|---|---|---|
Land Use–Transportation Integration | 30% (~72) | Land use–transportation integration, environmental impact assessment | Aligning spatial planning with transport networks | Consistently dominant, increasing focus | [16] |
Geographic Equity Analysis | 15% (~36) | Accessibility, social inclusion | Ensuring equitable access | Growing post-2010 | [1,24] |
Transit Planning and Analysis | 10% (~24) | Transit network optimization | Enhancing public transit efficiency | Steady, with multimodal focus | [8,19] |
Public Participation | 7.5% (~18) | Community involvement | Inclusive decision-making | Increasing with participatory GIS | [25] |
Sustainability | 5.4% (~13) | Environmental impact assessment | Mitigating ecological footprint | Rising focus on environmental metrics | [22] |
Non-Motorized Planning | 5.4% (~13) | Active transportation planning | Enhancing walkability and bikeability | Growing with urban health trends | [26] |
Intelligent Transportation Systems | 5.4% (~13) | ITS adoption | Real-time traffic management | Emerging post-2015 | [27] |
Peri-Urban Structure Plans | 5.4% (~13) | Peri-urban mobility planning | Connectivity in transitional areas | Emerging recently | [28] |
Multi-Criteria Decision Analysis | 5.4% (~13) | Decision support systems | Optimizing infrastructure choices | Increasing with complex projects | [29] |
Technological Advancements | 5.4% (~13) | Network optimization | Leveraging AI and IoT | Rapid growth | [30] |
Emergency Response Planning | 5.4% (~13) | Disaster mobility planning | Supporting crisis scenarios | Increasing with resilience focus | [31] |
Year | Key Methods | Key Models | References |
---|---|---|---|
Early 2000s Phase | Network analysis, route optimization, spatial analysis | Network optimization models, travel demand forecasting models, land use–transportation integration models | [25,51] |
Mid-2010s Span | Land use–transportation integration, geographic equity analysis, non-motorized planning, public participation | Geographic equity analysis, travel demand forecasting, transit evaluation models | [52,53] |
Late 2010s Era | ITS, MCDA, tracking analysis, real-time data, remote sensing | Geographic equity analysis, remote sensing, spatial econometrics, machine learning | [16,17,28,30] |
Current Decade Segment | Machine learning/AI, big data, IoT, data visualization, modeling, VR/AR | Virtual reality, digital twin models, deep learning, travel demand forecasting | [8,23,37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaroujtaghi, A.; Mansourihanis, O.; Tayarani, M.; Mansouri, F.; Hemmati, M.; Soltani, A. A Systematic Review of GIS Evolution in Transportation Planning: Towards AI Integration. Future Transp. 2025, 5, 97. https://doi.org/10.3390/futuretransp5030097
Zaroujtaghi A, Mansourihanis O, Tayarani M, Mansouri F, Hemmati M, Soltani A. A Systematic Review of GIS Evolution in Transportation Planning: Towards AI Integration. Future Transportation. 2025; 5(3):97. https://doi.org/10.3390/futuretransp5030097
Chicago/Turabian StyleZaroujtaghi, Ayda, Omid Mansourihanis, Mohammad Tayarani, Fatemeh Mansouri, Moein Hemmati, and Ali Soltani. 2025. "A Systematic Review of GIS Evolution in Transportation Planning: Towards AI Integration" Future Transportation 5, no. 3: 97. https://doi.org/10.3390/futuretransp5030097
APA StyleZaroujtaghi, A., Mansourihanis, O., Tayarani, M., Mansouri, F., Hemmati, M., & Soltani, A. (2025). A Systematic Review of GIS Evolution in Transportation Planning: Towards AI Integration. Future Transportation, 5(3), 97. https://doi.org/10.3390/futuretransp5030097