Renewable Methanol as an Agent for the Decarbonization of Maritime Logistic Systems: A Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Criteria
2.2. Data Selection and Extraction
2.3. Bibliometric Analysis Methodology
3. Bibliometric Analysis and State-of-the-Art
3.1. First Set of Keywords
3.1.1. Trends and Impact in Renewable Methanol Research
3.1.2. Advances in Methanol Production and Maritime Applications
3.2. Second Set of Keywords
3.2.1. Emerging Research on Maritime Decarbonization Fuels
3.2.2. Alternative Fuels for Sustainable Maritime Transport
4. Maritime Transportation and Decarbonization
4.1. Greenhouse Gas Emissions (GHGs) in Maritime Transportation
4.2. Concepts and Policies for Decarbonization
4.3. The Role of Methanol in Maritime Transport Decarbonization
5. Methodologies for the Production of Renewable Methanol
5.1. Methanol Produced from Biomass
5.1.1. Biomass Gasification
5.1.2. Biomass Pyrolysis
5.2. Methanol Produced from Carbon Dioxide
5.2.1. Water Electrolysis and CO2 Conversion
5.2.2. Artificial Photosynthesis
5.3. Methanol Produced from Urban and Industrial Waste
5.4. Comparative Evaluation of Methodologies
6. Challenges and Opportunities in Renewable Methanol Production
6.1. Energy Efficiency
6.2. Costs and Economic Viability
6.3. Environmental Impacts and Sustainability
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Hu, G.; Mu, X.; Kong, L. From low carbon to carbon neutrality: A bibliometric analysis of the status, evolution and development trend. J. Environ. Manag. 2022, 322, 116087. [Google Scholar] [CrossRef] [PubMed]
- Nunes, L.J. The rising threat of atmospheric CO2: A review on the causes, impacts, and mitigation strategies. Environments 2023, 10, 66. [Google Scholar] [CrossRef]
- Rabbi, M.F.; Popp, J.; Máté, D.; Kovács, S. Energy security and energy transition to achieve carbon neutrality. Energies 2022, 15, 8126. [Google Scholar] [CrossRef]
- Elavarasan, R.M.; Pugazhendhi, R.; Irfan, M.; Mihet-Popa, L.; Khan, I.A.; Campana, P.E. State-of-the-art sustainable approaches for deeper decarbonization in Europe–An endowment to climate neutral vision. Renew. Sustain. Energy Rev. 2022, 159, 112204. [Google Scholar] [CrossRef]
- Macarthur, E.; Heading, H. How the circular economy tackles climate change. Ellen MacArthur Found 2019, 1, 1–71. [Google Scholar]
- Richardson, M. A time bomb for global trade: Maritime-related terrorism in an age of weapons of mass destruction. Marit. Stud. 2004, 2004, 1–8. [Google Scholar] [CrossRef]
- Lindstad, H.; Asbjørnslett, B.E.; Strømman, A.H. Reductions in greenhouse gas emissions and cost by shipping at lower speeds. Energy Policy 2011, 39, 3456–3464. [Google Scholar] [CrossRef]
- Chen, J.; Fei, Y.; Wan, Z. The relationship between the development of global maritime fleets and GHG emission from shipping. J. Environ. Manag. 2019, 242, 31–39. [Google Scholar] [CrossRef]
- Bode, S.; Isensee, J.; Krause, K.; Michaelowa, A. Climate policy: Analysis of ecological, technical and economic implications for international maritime transport. Int. J. Marit. Econ. 2002, 4, 164–184. [Google Scholar] [CrossRef]
- Wan, Z.; El Makhloufi, A.; Chen, Y.; Tang, J. Decarbonizing the international shipping industry: Solutions and policy recommendations. Mar. Pollut. Bull. 2018, 126, 428–435. [Google Scholar] [CrossRef]
- Gray, N.; McDonagh, S.; O’Shea, R.; Smyth, B.; Murphy, J.D. Decarbonising ships, planes and trucks: An analysis of suitable low-carbon fuels for the maritime, aviation and haulage sectors. Adv. Appl. Energy 2021, 1, 100008. [Google Scholar] [CrossRef]
- Bazaluk, O.; Havrysh, V.; Nitsenko, V.; Baležentis, T.; Streimikiene, D.; Tarkhanova, E.A. Assessment of green methanol production potential and related economic and environmental benefits: The case of China. Energies 2020, 13, 3113. [Google Scholar] [CrossRef]
- Lee, B.; Lee, H.; Lim, D.; Brigljević, B.; Cho, W.; Cho, H.-S.; Kim, C.-H.; Lim, H. Renewable methanol synthesis from renewable H2 and captured CO2: How can power-to-liquid technology be economically feasible? Appl. Energy 2020, 279, 115827. [Google Scholar] [CrossRef]
- Matzen, M.; Alhajji, M.; Demirel, Y. Chemical storage of wind energy by renewable methanol production: Feasibility analysis using a multi-criteria decision matrix. Energy 2015, 93, 343–353. [Google Scholar] [CrossRef]
- Rivarolo, M.; Bellotti, D.; Magistri, L.; Massardo, A. Feasibility study of methanol production from different renewable sources and thermo-economic analysis. Int. J. Hydrogen Energy 2016, 41, 2105–2116. [Google Scholar] [CrossRef]
- Bellotti, D.; Rivarolo, M.; Magistri, L. Economic feasibility of methanol synthesis as a method for CO2 reduction and energy storage. Energy Procedia 2019, 158, 4721–4728. [Google Scholar] [CrossRef]
- Selçuk, A.A. A guide for systematic reviews: PRISMA. Turk. Arch. Otorhinolaryngol. 2019, 57, 57. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Taarning, E.; Nielsen, I.S.; Egeblad, K.; Madsen, R.; Christensen, C.H. Chemicals from renewables: Aerobic oxidation of furfural and hydroxymethylfurfural over gold catalysts. ChemSusChem Chem. Sustain. Energy Mater. 2008, 1, 75–78. [Google Scholar] [CrossRef]
- Strazza, C.; Del Borghi, A.; Costamagna, P.; Traverso, A.; Santin, M. Comparative LCA of methanol-fuelled SOFCs as auxiliary power systems on-board ships. Appl. Energy 2010, 87, 1670–1678. [Google Scholar] [CrossRef]
- Kim, J.; Henao, C.A.; Johnson, T.A.; Dedrick, D.E.; Miller, J.E.; Stechel, E.B.; Maravelias, C.T. Methanol production from CO2 using solar-thermal energy: Process development and techno-economic analysis. Energy Environ. Sci. 2011, 4, 3122–3132. [Google Scholar] [CrossRef]
- Sarma, S.J.; Dhillon, G.S.; Brar, S.K.; Le Bihan, Y.; Buelna, G.; Verma, M. Investigation of the effect of different crude glycerol components on hydrogen production by Enterobacter aerogenes NRRL B-407. Renew. Energy 2013, 60, 566–571. [Google Scholar] [CrossRef]
- García-Moreno, P.J.; Khanum, M.; Guadix, A.; Guadix, E.M. Optimization of biodiesel production from waste fish oil. Renew. Energy 2014, 68, 618–624. [Google Scholar] [CrossRef]
- Rivarolo, M.; Marmi, S.; Riveros-Godoy, G.; Magistri, L. Development and assessment of a distribution network of hydro-methane, methanol, oxygen and carbon dioxide in Paraguay. Energy Convers. Manag. 2014, 77, 680–689. [Google Scholar] [CrossRef]
- Sánchez, M.; Bergamin, F.; Pena, E.; Martínez, M.; Aracil, J. A comparative study of the production of esters from Jatropha oil using different short-chain alcohols: Optimization and characterization. Fuel 2015, 143, 183–188. [Google Scholar] [CrossRef]
- Verma, P.; Sharma, M. Comparative analysis of effect of methanol and ethanol on Karanja biodiesel production and its optimisation. Fuel 2016, 180, 164–174. [Google Scholar] [CrossRef]
- Roh, K.; Lee, J.H.; Gani, R. A methodological framework for the development of feasible CO2 conversion processes. Int. J. Greenh. Gas Control 2016, 47, 250–265. [Google Scholar] [CrossRef]
- Sánchez, M.; Avhad, M.R.; Marchetti, J.M.; Martínez, M.; Aracil, J. Enhancement of the jojobyl alcohols and biodiesel production using a renewable catalyst in a pressurized reactor. Energy Convers. Manag. 2016, 126, 1047–1053. [Google Scholar] [CrossRef]
- Dasireddy, V.D.; Likozar, B. The role of copper oxidation state in Cu/ZnO/Al2O3 catalysts in CO2 hydrogenation and methanol productivity. Renew. Energy 2019, 140, 452–460. [Google Scholar] [CrossRef]
- Ampah, J.D.; Yusuf, A.A.; Afrane, S.; Jin, C.; Liu, H. Reviewing two decades of cleaner alternative marine fuels: Towards IMO’s decarbonization of the maritime transport sector. J. Clean. Prod. 2021, 320, 128871. [Google Scholar] [CrossRef]
- Watanabe, M.D.; Cherubini, F.; Tisserant, A.; Cavalett, O. Drop-in and hydrogen-based biofuels for maritime transport: Country-based assessment of climate change impacts in Europe up to 2050. Energy Convers. Manag. 2022, 273, 116403. [Google Scholar] [CrossRef]
- Yakubson, K. Prospects for Using Hydrogen in Various Branches of the World Economy as One of the Directions of Its Decarbonization. Russ. J. Appl. Chem. 2022, 95, 309–340. [Google Scholar] [CrossRef]
- Sevim, C.; Zincir, B. Biodiesel and renewable diesel as a drop-in fuel for decarbonized maritime transportation. In Potential and Challenges of Low Carbon Fuels for Sustainable Transport; Springer: Berlin/Heidelberg, Germany, 2022; pp. 319–345. [Google Scholar]
- Khan, M.Z.A.; Khan, H.A.; Ravi, S.S.; Turner, J.W.; Aziz, M. Potential of clean liquid fuels in decarbonizing transportation–An overlooked net-zero pathway? Renew. Sustain. Energy Rev. 2023, 183, 113483. [Google Scholar] [CrossRef]
- Ramsay, W.; Fridell, E.; Michan, M. Maritime energy transition: Future fuels and future emissions. J. Mar. Sci. Appl. 2023, 22, 681–692. [Google Scholar] [CrossRef]
- Elkafas, A.G.; Rivarolo, M.; Barberis, S.; Massardo, A.F. Feasibility Assessment of Alternative Clean Power Systems Onboard Passenger Short-Distance Ferry. J. Mar. Sci. Eng. 2023, 11, 1735. [Google Scholar] [CrossRef]
- Bertagna, S.; Bucci, V.; Marinò, A.; Sulligoi, G.; Vicenzutti, A. Impact of Fuel Switch to Methanol on the Design of an all Electric Cruise Ship. In Proceedings of the 2023 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Venice, Italy, 29–31 March 2023; pp. 1–6. [Google Scholar]
- Parris, D.; Spinthiropoulos, K.; Ragazou, K.; Giovou, A.; Tsanaktsidis, C. Methanol, a Plugin Marine Fuel for Green House Gas Reduction—A Review. Energies 2024, 17, 605. [Google Scholar] [CrossRef]
- deManuel-López, F.; Díaz-Gutiérrez, D.; Camarero-Orive, A.; Parra-Santiago, J.I. Iberian Ports as a Funnel for Regulations on the Decarbonization of Maritime Transport. Sustainability 2024, 16, 862. [Google Scholar] [CrossRef]
- Demaria, F. Shipbreaking at Alang–Sosiya (India): An ecological distribution conflict. Ecol. Econ. 2010, 70, 250–260. [Google Scholar] [CrossRef]
- Dalsøren, S.B.; Eide, M.; Endresen, Ø.; Mjelde, A.; Gravir, G.; Isaksen, I.S. Update on emissions and environmental impacts from the international fleet of ships: The contribution from major ship types and ports. Atmos. Chem. Phys. 2009, 9, 2171–2194. [Google Scholar] [CrossRef]
- Endresen, Ø.; Sørgård, E.; Sundet, J.K.; Dalsøren, S.B.; Isaksen, I.S.; Berglen, T.F.; Gravir, G. Emission from international sea transportation and environmental impact. J. Geophys. Res. Atmos. 2003, 108, D17. [Google Scholar] [CrossRef]
- Philibert, C.; Pershing, J. Considering the options: Climate targets for all countries. Clim. Policy 2001, 1, 211–227. [Google Scholar] [CrossRef]
- Ljevaja, D. Impact of emissions of marine diesel engines to air pollution on the example of the Yugoslav river shipping. Int. J. Traffic Transp. Eng. 2011, 1, 149–157. [Google Scholar]
- Timilsina, G.R.; Shrestha, A. Transport sector CO2 emissions growth in Asia: Underlying factors and policy options. Energy Policy 2009, 37, 4523–4539. [Google Scholar] [CrossRef]
- Lamb, W.F.; Wiedmann, T.; Pongratz, J.; Andrew, R.; Crippa, M.; Olivier, J.G.; Wiedenhofer, D.; Mattioli, G.; Al Khourdajie, A.; House, J. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ. Res. Lett. 2021, 16, 073005. [Google Scholar] [CrossRef]
- Čampara, L.; Hasanspahić, N.; Vujičić, S. Overview of MARPOL ANNEX VI regulations for prevention of air pollution from marine diesel engines. In Proceedings of the SHS Web of Conferences, Virtual, 3 December 2018; p. 01004. [Google Scholar]
- Deniz, C.; Kilic, A. Estimation and assessment of shipping emissions in the region of Ambarlı Port, Turkey. Environ. Prog. Sustain. Energy 2010, 29, 107–115. [Google Scholar] [CrossRef]
- Czermański, E.; Cirella, G.T.; Oniszczuk-Jastrząbek, A.; Pawłowska, B.; Notteboom, T. An energy consumption approach to estimate air emission reductions in container shipping. Energies 2021, 14, 278. [Google Scholar] [CrossRef]
- Svindland, M. The environmental effects of emission control area regulations on short sea shipping in Northern Europe: The case of container feeder vessels. Transp. Res. Part D Transp. Environ. 2018, 61, 423–430. [Google Scholar] [CrossRef]
- Bouman, E.A.; Lindstad, E.; Rialland, A.I.; Strømman, A.H. State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping–A review. Transp. Res. Part D Transp. Environ. 2017, 52, 408–421. [Google Scholar] [CrossRef]
- Balcombe, P.; Brierley, J.; Lewis, C.; Skatvedt, L.; Speirs, J.; Hawkes, A.; Staffell, I. How to decarbonise international shipping: Options for fuels, technologies and policies. Energy Convers. Manag. 2019, 182, 72–88. [Google Scholar] [CrossRef]
- Bonenkamp, T.; Middelburg, L.; Hosli, M.; Wolffenbuttel, R. From bioethanol containing fuels towards a fuel economy that includes methanol derived from renewable sources and the impact on European Union decision-making on transition pathways. Renew. Sustain. Energy Rev. 2020, 120, 109667. [Google Scholar] [CrossRef]
- Rahman, F.A.; Aziz, M.M.A.; Saidur, R.; Bakar, W.A.W.A.; Hainin, M.; Putrajaya, R.; Hassan, N.A. Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future. Renew. Sustain. Energy Rev. 2017, 71, 112–126. [Google Scholar] [CrossRef]
- Fulton, L.M.; Lynd, L.R.; Körner, A.; Greene, N.; Tonachel, L.R. The need for biofuels as part of a low carbon energy future. Biofuels Bioprod. Biorefining 2015, 9, 476–483. [Google Scholar] [CrossRef]
- Papadis, E.; Tsatsaronis, G. Challenges in the decarbonization of the energy sector. Energy 2020, 205, 118025. [Google Scholar] [CrossRef]
- Gilbert, P.; Bows, A. Exploring the scope for complementary sub-global policy to mitigate CO2 from shipping. Energy Policy 2012, 50, 613–622. [Google Scholar] [CrossRef]
- Miola, A.; Marra, M.; Ciuffo, B. Designing a climate change policy for the international maritime transport sector: Market-based measures and technological options for global and regional policy actions. Energy Policy 2011, 39, 5490–5498. [Google Scholar] [CrossRef]
- Boykoff, M.T.; Bumpus, A.; Liverman, D.; Randalls, S. Theorizing the carbon economy: Introduction to the special issue. Environ. Plan. A 2009, 41, 2299–2304. [Google Scholar] [CrossRef]
- Psaraftis, H.N.; Kontovas, C.A. Speed models for energy-efficient maritime transportation: A taxonomy and survey. Transp. Res. Part C Emerg. Technol. 2013, 26, 331–351. [Google Scholar] [CrossRef]
- Baldauf, M.; Baumler, R.; Olcer, A.; Nakazawa, T.; Benedict, K.; Fischer, S.; Schaub, M. Energy-efficient ship operation–training requirements and challenges. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2013, 7, 283–290. [Google Scholar] [CrossRef]
- Muradov, N.Z.; Veziroğlu, T.N. “Green” path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies. Int. J. Hydrogen Energy 2008, 33, 6804–6839. [Google Scholar] [CrossRef]
- Yue, H.; Zhao, Y.; Ma, X.; Gong, J. Ethylene glycol: Properties, synthesis, and applications. Chem. Soc. Rev. 2012, 41, 4218–4244. [Google Scholar] [CrossRef]
- Li, H.; Hong, H.; Jin, H.; Cai, R. Analysis of a feasible polygeneration system for power and methanol production taking natural gas and biomass as materials. Appl. Energy 2010, 87, 2846–2853. [Google Scholar] [CrossRef]
- Olah, G.A.; Goeppert, A.; Prakash, G.S. Chemical recycling of carbon dioxide to methanol and dimethyl ether: From greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J. Org. Chem. 2009, 74, 487–498. [Google Scholar] [CrossRef]
- Pearson, R.J.; Eisaman, M.D.; Turner, J.W.; Edwards, P.P.; Jiang, Z.; Kuznetsov, V.L.; Littau, K.A.; Di Marco, L.; Taylor, S.G. Energy Storage via Carbon-Neutral Fuels Made from CO2, Water, and Renewable Energy. Proc. IEEE 2011, 100, 440–460. [Google Scholar]
- Mignard, D.; Pritchard, C. Processes for the synthesis of liquid fuels from CO2 and marine energy. Chem. Eng. Res. Des. 2006, 84, 828–836. [Google Scholar] [CrossRef]
- McDowall, W.; Eames, M. Towards a sustainable hydrogen economy: A multi-criteria sustainability appraisal of competing hydrogen futures. Int. J. Hydrogen Energy 2007, 32, 4611–4626. [Google Scholar] [CrossRef]
- Prater, D.N.; Rusek, J.J. Energy density of a methanol/hydrogen-peroxide fuel cell. Appl. Energy 2003, 74, 135–140. [Google Scholar] [CrossRef]
- Mattila, T.; Antikainen, R. Backcasting sustainable freight transport systems for Europe in 2050. Energy Policy 2011, 39, 1241–1248. [Google Scholar] [CrossRef]
- Kumar, S.; Cho, J.H.; Park, J.; Moon, I. Advances in diesel–alcohol blends and their effects on the performance and emissions of diesel engines. Renew. Sustain. Energy Rev. 2013, 22, 46–72. [Google Scholar] [CrossRef]
- Mansha, M.; Shahid, E.M.; Qureshi, A. Control of combustion generated emissions from spark ignition engines: A review. Pak. J. Eng. Appl. Sci. 2012, 11, 114–128. [Google Scholar]
- Olah, G.A. Beyond oil and gas: The methanol economy. Angew. Chem. Int. Ed. 2005, 44, 2636–2639. [Google Scholar] [CrossRef]
- Markewitz, P.; Kuckshinrichs, W.; Leitner, W.; Linssen, J.; Zapp, P.; Bongartz, R.; Schreiber, A.; Müller, T.E. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ. Sci. 2012, 5, 7281–7305. [Google Scholar] [CrossRef]
- Herzog, H.; Eliasson, B.; Kaarstad, O. Capturing greenhouse gases. Sci. Am. 2000, 282, 72–79. [Google Scholar] [CrossRef]
- Wang, L.; Weller, C.L.; Jones, D.D.; Hanna, M.A. Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production. Biomass Bioenergy 2008, 32, 573–581. [Google Scholar] [CrossRef]
- Tijm, P.; Waller, F.; Brown, D. Methanol technology developments for the new millennium. Appl. Catal. A Gen. 2001, 221, 275–282. [Google Scholar] [CrossRef]
- Couto, N.; Rouboa, A.; Silva, V.; Monteiro, E.; Bouziane, K. Influence of the biomass gasification processes on the final composition of syngas. Energy Procedia 2013, 36, 596–606. [Google Scholar] [CrossRef]
- Kumar, A.; Jones, D.D.; Hanna, M.A. Thermochemical biomass gasification: A review of the current status of the technology. Energies 2009, 2, 556–581. [Google Scholar] [CrossRef]
- Kirubakaran, V.; Sivaramakrishnan, V.; Nalini, R.; Sekar, T.; Premalatha, M.; Subramanian, P. A review on gasification of biomass. Renew. Sustain. Energy Rev. 2009, 13, 179–186. [Google Scholar] [CrossRef]
- Salehi, E.; Abedi, J.; Harding, T. Bio-oil from sawdust: Pyrolysis of sawdust in a fixed-bed system. Energy Fuels 2009, 23, 3767–3772. [Google Scholar] [CrossRef]
- Ringpfeil, M.; Sander, H.J.; Gerhardt, M.; Wolf, M. Methanol from Biomass. In Bioenergy; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 221–233. [Google Scholar]
- Demirbaş, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Manag. 2001, 42, 1357–1378. [Google Scholar] [CrossRef]
- Holladay, J.E.; White, J.F.; Bozell, J.J.; Johnson, D. Top Value-Added Chemicals from Biomass-Volume II—Results of Screening for Potential Candidates from Biorefinery Lignin; Pacific Northwest National Lab.(PNNL): Richland, WA, USA, 2007.
- Cifre, P.G.; Badr, O. Renewable hydrogen utilisation for the production of methanol. Energy Convers. Manag. 2007, 48, 519–527. [Google Scholar] [CrossRef]
- Penner, S. Steps toward the hydrogen economy. Energy 2006, 31, 33–43. [Google Scholar] [CrossRef]
- Zhao, Y.-F.; Yang, Y.; Mims, C.; Peden, C.H.; Li, J.; Mei, D. Insight into methanol synthesis from CO2 hydrogenation on Cu (1 1 1): Complex reaction network and the effects of H2O. J. Catal. 2011, 281, 199–211. [Google Scholar] [CrossRef]
- Farsi, M.; Jahanmiri, A. Dynamic modeling of a H2O-permselective membrane reactor to enhance methanol synthesis from syngas considering catalyst deactivation. J. Nat. Gas Chem. 2012, 21, 407–414. [Google Scholar] [CrossRef]
- Tachibana, Y.; Vayssieres, L.; Durrant, J.R. Artificial photosynthesis for solar water-splitting. Nat. Photonics 2012, 6, 511–518. [Google Scholar] [CrossRef]
- Centi, G.; Perathoner, S. CO2-based energy vectors for the storage of solar energy. Greenh. Gases Sci. Technol. 2011, 1, 21–35. [Google Scholar] [CrossRef]
- Lianos, P. Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell: The concept of the photofuelcell: A review of a re-emerging research field. J. Hazard. Mater. 2011, 185, 575–590. [Google Scholar] [CrossRef]
- Roy, S.C.; Varghese, O.K.; Paulose, M.; Grimes, C.A. Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 2010, 4, 1259–1278. [Google Scholar] [CrossRef]
- Memming, R. Photoelectrochemical solar energy conversion. In Electrochemistry II; Springer: Berlin/Heidelberg, Germany, 2005; pp. 79–112. [Google Scholar]
- Song, C. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal. Today 2006, 115, 2–32. [Google Scholar] [CrossRef]
- Themelis, N.J.; Kim, Y.H.; Brady, M.H. Energy recovery from New York City municipal solid wastes. Waste Manag. Res. 2002, 20, 223–233. [Google Scholar] [CrossRef]
- McKendry, P. Energy production from biomass (part 3): Gasification technologies. Bioresour. Technol. 2002, 83, 55–63. [Google Scholar] [CrossRef]
- Hamer, G. Solid waste treatment and disposal: Effects on public health and environmental safety. Biotechnol. Adv. 2003, 22, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.S.K.; Pfaltzgraff, L.A.; Herrero-Davila, L.; Mubofu, E.B.; Abderrahim, S.; Clark, J.H.; Koutinas, A.A.; Kopsahelis, N.; Stamatelatou, K.; Dickson, F. Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ. Sci. 2013, 6, 426–464. [Google Scholar] [CrossRef]
- Faaij, A.P. Bio-energy in Europe: Changing technology choices. Energy Policy 2006, 34, 322–342. [Google Scholar] [CrossRef]
- Oteng-Ababio, M. E-waste: An emerging challenge to solid waste management in Ghana. Int. Dev. Plan. Rev. 2010, 32, 191–206. [Google Scholar] [CrossRef]
- Lehmann, S. Optimizing urban material flows and waste streams in urban development through principles of zero waste and sustainable consumption. Sustainability 2011, 3, 155–183. [Google Scholar] [CrossRef]
- Chua, K.J.; Chou, S.K.; Yang, W.; Yan, J. Achieving better energy-efficient air conditioning–a review of technologies and strategies. Appl. Energy 2013, 104, 87–104. [Google Scholar] [CrossRef]
- Chakraborty, S.; Aggarwal, V.; Mukherjee, D.; Andras, K. Biomass to biofuel: A review on production technology. Asia-Pac. J. Chem. Eng. 2012, 7, S254–S262. [Google Scholar] [CrossRef]
- Prins, M.J.; Ptasinski, K.J.; Janssen, F.J. More efficient biomass gasification via torrefaction. Energy 2006, 31, 3458–3470. [Google Scholar] [CrossRef]
- Van der Woerd, K.; de Wit, C.; Kolk, A.; Levy, D.; Vellinga, P.; Behlyarova, E. Diverging Business Strategies Towards Climate Change; Institute for Environmental Studies, Vrije Universiteit: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Union, E. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Off. J. Eur. Union 2009, 5, 2009. [Google Scholar]
- Thomas, R.; Ritchie, A. Energy and information. In Sustainable Urban Design: An Environmental Approach; Taylor & Francis: Abingdon, UK, 2003; pp. 56–73. [Google Scholar]
- Junfeng, L.; Li, Z.; Runqing, H.; Zhengmin, Z.; Jingli, S.; Yangin, S. Policy analysis of the barriers to renewable energy development in the People’s Republic of China. Energy Sustain. Dev. 2002, 6, 11–20. [Google Scholar] [CrossRef]
- Pinaud, B.A.; Benck, J.D.; Seitz, L.C.; Forman, A.J.; Chen, Z.; Deutsch, T.G.; James, B.D.; Baum, K.N.; Baum, G.N.; Ardo, S. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 2013, 6, 1983–2002. [Google Scholar] [CrossRef]
- Hamelinck, C.N.; Faaij, A.P.; den Uil, H.; Boerrigter, H. Production of FT transportation fuels from biomass; technical options, process analysis and optimisation, and development potential. Energy 2004, 29, 1743–1771. [Google Scholar] [CrossRef]
- Caputo, A.C.; Palumbo, M.; Pelagagge, P.M.; Scacchia, F. Economics of biomass energy utilization in combustion and gasification plants: Effects of logistic variables. Biomass Bioenergy 2005, 28, 35–51. [Google Scholar] [CrossRef]
- Wiesner, J. A Grassroots Vehicle for Sustainable Energy: The Conservation Reserve Program & (and) Renewable Energy. Wm. Mary Envtl. L. Pol’y Rev. 2006, 31, 571. [Google Scholar]
- Mueller-Langer, F.; Tzimas, E.; Kaltschmitt, M.; Peteves, S. Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term. Int. J. Hydrogen Energy 2007, 32, 3797–3810. [Google Scholar] [CrossRef]
- Mignard, D.; Sahibzada, M.; Duthie, J.; Whittington, H. Methanol synthesis from flue-gas CO2 and renewable electricity: A feasibility study. Int. J. Hydrogen Energy 2003, 28, 455–464. [Google Scholar] [CrossRef]
- Omer, A.M. Energy, environment and sustainable development. Renew. Sustain. Energy Rev. 2008, 12, 2265–2300. [Google Scholar] [CrossRef]
- Prasad, S. Aspects of the use of biomass as an energy source for cooNing in Fiji. Fijian Stud. A J. Contemp. Fiji 2011, 9, 72–88. [Google Scholar]
- Crawford, K.M.; Rudgers, J.A. Plant species diversity and genetic diversity within a dominant species interactively affect plant community biomass. J. Ecol. 2012, 100, 1512–1521. [Google Scholar] [CrossRef]
- Aresta, M.; Dibenedetto, A.; Angelini, A. The use of solar energy can enhance the conversion of carbon dioxide into energy-rich products: Stepping towards artificial photosynthesis. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120111. [Google Scholar] [CrossRef]
- Malmsheimer, R.W.; Heffernan, P.; Brink, S.; Crandall, D.; Deneke, F.; Galik, C.; Gee, E.; Helms, J.A.; McClure, N.; Mortimer, M. Forest management solutions for mitigating climate change in the United States. J. For. 2008, 106, 115–173. [Google Scholar] [CrossRef]
- Palo, D.R.; Dagle, R.A.; Holladay, J.D. Methanol steam reforming for hydrogen production. Chem. Rev. 2007, 107, 3992–4021. [Google Scholar] [CrossRef] [PubMed]
- Rey Benayas, J.M.; Martins, A.; Nicolau, J.M.; Schulz, J.J. Abandonment of agricultural land: An overview of drivers and consequences. CABI Rev. 2007, 2, 1–14. [Google Scholar] [CrossRef]
- Swain, P.K.; Das, L.; Naik, S. Biomass to liquid: A prospective challenge to research and development in 21st century. Renew. Sustain. Energy Rev. 2011, 15, 4917–4933. [Google Scholar] [CrossRef]
- Litman, T.; Burwell, D. Issues in sustainable transportation. Int. J. Glob. Environ. Issues 2006, 6, 331–347. [Google Scholar] [CrossRef]
- Armaroli, N.; Balzani, V. The future of energy supply: Challenges and opportunities. Angew. Chem. Int. Ed. 2007, 46, 52–66. [Google Scholar] [CrossRef]
Keywords | Documents |
---|---|
Methanol | 309,817 |
Renewable + Methanol | 4679 |
Renewable + Methanol + Production | 2687 |
Renewable + Methanol + Production + Methodologies | 188 |
Keywords | Documents |
---|---|
Methanol + Decarbonization + Maritime + Transport | 10 |
Author(s) | Methodology/Focus | Key Findings | Identified Gaps |
---|---|---|---|
Taarning et al. (2008) [19] | Biomass (catalysts) | Demonstrated viability of gold catalysts for converting biomass into chemicals like methanol. | Lack of life cycle assessment (LCA) for maritime applications. |
Strazza et al. (2010) [20] | Methanol in fuel cells (SOFCs) | Assessed environmental benefits of methanol-fueled SOFCs for auxiliary power on ships. | Limited analysis on large-scale implementation costs. |
Kim et al. (2011) [21] | CO2 (solar thermal energy) | Showed feasibility of producing methanol from CO2 using solar thermal energy. | High energy requirements limit economic feasibility. |
Sarma et al. (2013) [22] | Bio-hydrogen from glycerol | Found crude glycerol viable for hydrogen production, supporting biofuel waste management. | Limited direct application to methanol production or maritime use. |
García-Moreno et al. (2014) [23] | Waste fish oil (biodiesel) | Optimized biodiesel production from waste fish oil, with potential methanol integration. | Need to evaluate environmental and economic impacts at large scale. |
Rivarolo et al. (2014) [24] | Biomass and CO2 (distribution networks) | Analyzed distribution networks for methanol and other fuels in regional scenarios. | Focused on regional case studies; lacking global maritime extrapolation. |
Sánchez et al. (2015) [25] | Biomass (Jatropha oils) | Optimized biodiesel production using renewable catalysts and alcohols. | Limited data for direct maritime sector application. |
Verma and Sharma (2016) [26] | Methanol/ethanol in biodiesel | Compared methanol and ethanol effects on Karanja biodiesel, optimizing transesterification. | Limited focus on maritime-specific applications. |
Roh et al. (2016) [27] | CO2 (conversion processes) | Proposed techno-economic methods for converting CO2 into methanol. | High energy requirements remain a challenge. |
Sánchez et al. (2016) [28] | Biomass (jojobyl alcohols) | Enhanced biodiesel and alcohol production using renewable catalysts in a pressurized reactor. | Limited scalability data for maritime fuel use. |
Dasireddy & Likozar (2019) [29] | CO2 (advanced catalysts) | Improved Cu/ZnO/Al2O3 catalysts for CO2 conversion to methanol. | Limited data on catalyst stability at industrial scale. |
Ampah et al. (2021) [30] | Bibliometric review (alternative fuels) | Highlighted rising focus on methanol, ammonia, and hydrogen for maritime decarbonization. | Limited integration of economic analyses across fuel options. |
Watanabe et al. (2022) [31] | Biofuels (drop-in and hydrogen-based) | Assessed climate change impacts of biofuels in European maritime transport up to 2050. | Regional focus limits applicability to global maritime contexts. |
Yakubson (2022) [32] | Hydrogen and other fuels | Evaluated hydrogen, ammonia, methanol, and synthetic kerosene for decarbonization potential. | Broad scope lacks detailed methanol-specific maritime analysis. |
Sevim and Zincir (2022) [33] | Biodiesel/renewable diesel | Discussed drop-in fuels’ compatibility with existing maritime systems. | Limited exploration of methanol-specific benefits or challenges. |
Khan et al. (2023) [34] | Clean liquid fuels | Explored potential of liquid fuels like methanol for transportation decarbonization. | Limited focus on maritime-specific implementation barriers. |
Ramsay et al. (2023) [35] | Future fuels and emissions | Outlined transition needs for low/zero-emission fuels, including methanol. | Broad overview lacks detailed methanol production analysis. |
Elkafas et al. (2023) [36] | Clean propulsion (hydrogen, methanol) | Identified hydrogen PEMFC as best for short-distance ferries, with methanol as an option. | Limited cost-benefit analysis for methanol in broader maritime use. |
Bertagna et al. (2023) [37] | Methanol in electric cruise ships | Analyzed methanol’s impact on all-electric cruise ship design. | Emerging interest; lacks long-term operational data. |
Parris et al. (2024) [38] | Methanol as marine fuel | Reviewed methanol’s economic and environmental viability for GHG reduction. | Recent study; limited data on large-scale adoption feasibility. |
deManuel-López et al. (2024) [39] | Port regulations (Iberian context) | Analyzed port roles in supporting decarbonization, including methanol infrastructure needs. | Regional focus; lacks global port network implications. |
Author(s) | Production Methodology | Key Findings | Identified Gaps |
Taarning et al. (2008) [19] | Biomass (catalysts) | Demonstrated the viability of gold catalysts for converting biomass into chemicals such as methanol. | Lack of life cycle assessment (LCA) for maritime applications. |
Kim et al. (2011) [21] | CO2 (solar thermal energy) | Presented feasibility for producing methanol from CO2 using solar thermal energy. | High energy requirements for the process, limiting its economic feasibility. |
Dasireddy & Likozar (2019) [29] | CO2 (advanced catalysts) | Analyzed improvements in Cu/ZnO/Al2O3 catalysts for CO2 conversion into methanol. | Limited data on catalyst stability at an industrial scale. |
Strazza et al. (2010) [20] | Methanol in fuel cells (SOFCs) | Assessed environmental benefits of using methanol in fuel cells for auxiliary systems on ships. | Limited analysis on large-scale implementation costs. |
Sánchez et al. (2015) [25] | Biomass (Jatropha oils) | Optimized biodiesel production using different alcohols and renewable catalysts. | Limited data for direct application in the maritime sector. |
Rivarolo et al. (2014) [24] | Biomass and CO2 | Analyzed distribution networks for methanol and other fuels in regional scenarios. | Focused on regional case studies, with no extrapolation to the global maritime context. |
García-Moreno et al. (2014) [23] | Waste fish oil | Demonstrated high efficiency in biodiesel production from waste, with potential integration into methanol. | Need to evaluate environmental and economic impacts at a large scale. |
Roh et al. (2016) [27] | CO2 (conversion processes) | Proposed innovative methods for converting CO2 into methanol using techno-economic approaches. | High energy requirements remain a challenge. |
Sources | Articles |
---|---|
2023 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles and International Transportation Electrification Conference, ESARS-ITEC 2023 | 1 |
Energies | 1 |
Energy Conversion and Management | 1 |
Energy, Environment, and Sustainability | 1 |
Journal of Cleaner Production | 1 |
Journal of Marine Science and Application | 1 |
Journal of Marine Science and Engineering | 1 |
Renewable and Sustainable Energy Reviews | 1 |
Russian Journal of Applied Chemistry | 1 |
Sustainability | 1 |
Metric | Biodiesel | Methanol (CO2) | Methanol (Biomass) |
---|---|---|---|
Carbon Footprint | Moderate | Low | Low–Moderate |
Energy Efficiency | High | Moderate | High |
Economic Feasibility | High | Low | Moderate |
Technological Maturity | High | Low | Moderate–High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, L.J.R. Renewable Methanol as an Agent for the Decarbonization of Maritime Logistic Systems: A Review. Future Transp. 2025, 5, 54. https://doi.org/10.3390/futuretransp5020054
Nunes LJR. Renewable Methanol as an Agent for the Decarbonization of Maritime Logistic Systems: A Review. Future Transportation. 2025; 5(2):54. https://doi.org/10.3390/futuretransp5020054
Chicago/Turabian StyleNunes, Leonel J. R. 2025. "Renewable Methanol as an Agent for the Decarbonization of Maritime Logistic Systems: A Review" Future Transportation 5, no. 2: 54. https://doi.org/10.3390/futuretransp5020054
APA StyleNunes, L. J. R. (2025). Renewable Methanol as an Agent for the Decarbonization of Maritime Logistic Systems: A Review. Future Transportation, 5(2), 54. https://doi.org/10.3390/futuretransp5020054