Crash Patterns in the COVID-19 Pandemic: The Tale of Four Florida Counties
Abstract
:1. Introduction
- (1)
- How, and to what extent, did the COVID-19-induced decrease in traffic flow impact the pattern of the crash density?
- (2)
- Were there any significant crash pattern differences in selected demographically different Florida counties during the pandemic?
2. Literature Review
3. Study Area and Data Description
3.1. Demographic Data and Curfew Information
3.2. Crash Data
4. Methodology
4.1. Spatial Analysis to Estimate Crash Densities
4.2. Crash Density Comparison and Statistical Testing
4.3. Modeling of the Reduction in Crash Counts
5. Results and Discussions
5.1. Statistical Comparison of Crash Densities
5.2. Spatial Analysis of Change in Crash Densities
5.3. Analysis of Temporal Variation in Crash Counts
5.4. Modeling the Change in Crash Counts
6. Conclusions
7. Limitations and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). 2021. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 7 September 2021).
- Centers for Disease Control and Prevention (CDC). 2021. Available online: https://covid.cdc.gov/covid-data-tracker/#datatracker-home (accessed on 7 September 2021).
- Johns Hopkins University. Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE). Available online: https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6 (accessed on 5 October 2020).
- Ulak, M.B.; Ozguven, E.E.; Spainhour, L. Age-based stratification of drivers to evaluate the effects of age on crash involvement. Transp. Res. Procedia 2017, 22, 551–560. [Google Scholar] [CrossRef]
- Govindan, K.; Mina, H.; Alavi, B. A decision support system for demand management in healthcare supply chains considering the epidemic outbreaks: A case study of coronavirus disease 2019 (COVID-19). Transp. Res. Part E Logist. Transp. Rev. 2020, 138, 101967. [Google Scholar] [CrossRef] [PubMed]
- American Community Survey (ACS). Available online: https://www.census.gov/acs/www/data/data-tables-and-tools/data-profiles/ (accessed on 7 September 2021).
- Harbeck, E.L.; Glendon, A.I. Driver prototypes and behavioral willingness: Young driver risk perception and reported engagement in risky driving. J. Saf. Res. 2018, 66, 195–204. [Google Scholar] [CrossRef]
- Laflamme, L.; Hasselberg, M.; Kullgren, A.; Vaez, M. First car-to-car crashes involving young adult drivers: Main patterns and their relation to car and driver characteristics. Int. J. Inj. Control. Saf. Promot. 2006, 13, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Mannering, F.; Bhat, C. Analytic methods in accident research: Methodological frontier and future directions. Anal. Methods Accid. Res. 2014, 1, 1–22. [Google Scholar] [CrossRef]
- Lord, D.; Mannering, F. The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives. Transp. Res. Part A Policy Pract. 2010, 44, 291–305. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Aty, M.A.; Radwan, A. Modeling traffic accident occurrence and involvement. Accid. Anal. Prev. 2000, 32, 633–642. [Google Scholar] [CrossRef]
- Ullman, D.S.; Ginis, I.; Huang, W.; Nowakowski, C.; Chen, X.; Stempel, P. Assessing the Multiple Impacts of Extreme Hurricanes in Southern New England, USA. Geosciences 2019, 9, 265. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Abdel-Aty, M.A.; Darwiche, A.L. County-Level Crash Risk Analysis in Florida: Bayesian Spatial Modeling. Transp. Res. Rec. J. Transp. Res. Board 2010, 2148, 27–37. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Zhang, Z.; Parr, S.A.; Pande, A.; Wolshon, B. Identifying High Crash Risk Highway Segments Using Jerk-Cluster Analysis. In Proceedings of the International Conference on Transportation and Development 2019: Smarter and Safer Mobility and Cities, Alexandria, Virginia, 9–12 June 2019. [Google Scholar]
- Mansourkhaki, A.; Karimpour, A.; Yazdi, H.S. Non-stationary concept of accident prediction. Proc. Inst. Civ. Eng.-Transp. 2017, 170, 140–151. [Google Scholar] [CrossRef]
- Lai, P.C.; Chan, W.Y. GIS for Road Accident Analysis in Hong Kong. Ann. GIS 2004, 10, 58–67. [Google Scholar] [CrossRef]
- Manap, N.; Borhan, M.; Yazid, M.; Hambali, M.; Rohan, A. Determining Spatial Patterns of Road Accidents at Expressway by Applying Getis-Ord Gi* Spatial Statistic. Int. J. Recent Technol. Eng. 2019, 8, 345–350. [Google Scholar] [CrossRef]
- Rogerson, P.A. Maximum Getis-Ord Statistic Adjusted for Spatially Autocorrelated Data. Geogr. Anal. 2014, 47, 20–33. [Google Scholar] [CrossRef]
- Law, J.; Quick, M.; Chan, P.W. Analyzing Hotspots of Crime Using a Bayesian Spatiotemporal Modeling Approach: A Case Study of Violent Crime in the Greater Toronto Area. Geogr. Anal. 2014, 47, 1–19. [Google Scholar] [CrossRef]
- Cheng, S.; Lu, F.; Peng, P.; Wu, S. Short-term traffic forecasting: An adaptive ST-KNN model that considers spatial heterogeneity. Comput. Environ. Urban Syst. 2018, 71, 186–198. [Google Scholar] [CrossRef]
- Han, Q.; Zhu, Y.; Zeng, L.; Ye, L.; He, X.; Liu, X.; Wu, H.; Zhu, Q. A Road Hotspots Identification Method Based on Natural Nearest Neighbor Clustering. In Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems, Las Palmas de Gran Canaria, Spain, 15–18 September 2015; pp. 553–557. [Google Scholar] [CrossRef]
- Abdulhafedh, A. Identifying Vehicular Crash High Risk Locations along Highways via Spatial Autocorrelation Indices and Kernel Density Estimation. World J. Eng. Technol. 2017, 05, 198–215. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Ming, Y.; Song, G. A New Approach to Identifying Crash Hotspot Intersections (CHIs) Using Spatial Weights Matrices. Appl. Sci. 2020, 10, 1625. [Google Scholar] [CrossRef] [Green Version]
- Prasannakumar, V.; Vijith, H.; Charutha, R.; Geetha, N. Spatio-Temporal Clustering of Road Accidents: GIS Based Analysis and Assessment. Procedia-Soc. Behav. Sci. 2011, 21, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Dai, D.; Taquechel, E.; Steward, J.; Strasser, S. The impact of built environment on pedestrian crashes and the identifica-tion of crash clusters on an urban university campus. West. J. Emerg. Med. 2010, 11, 294–301. [Google Scholar]
- Borruso, G. Network Density Estimation: A GIS Approach for Analysing Point Patterns in a Network Space. Trans. GIS 2008, 12, 377–402. [Google Scholar] [CrossRef]
- Chow, T.E.; Choi, Y.; Yang, M.; Mills, D.; Yue, R. Geographic pattern of human mobility and COVID-19 before and after Hubei lockdown. Ann. GIS 2020, 27, 241–243. [Google Scholar] [CrossRef]
- Ghorbanzadeh, M.; Kim, K.; Ozguven, E.E.; Horner, M.W. Spatial Accessibility Assessment of COVID-19 Patients to Healthcare Facilities: A Case Study of Florida. Travel Behav. Soc. 2021, 24, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Ghorbanzadeh, M.; Horner, M.H.; Ozguven, E.E. Identifying areas of potential critical healthcare shortages: A case study of spatial accessibility to ICU beds during the COVID-19 pandemic in Florida. Transp. Policy 2021, 110, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Kerlin, K. California COVID-19 Traffic Report Finds Silver Lining. 2020. Available online: https://www.ucdavis.edu/coronavirus/news/california-covid-19-traffic-report (accessed on 7 September 2021).
- Bain, M. COVID-19 Has Halved California’s Traffic Accidents. 2020. Available online: https://qz.com/1840736/coronavirus-reduces-california-traffic-accidents-by-half/ (accessed on 7 September 2021).
- Oguzoglu, U. COVID-19 Lockdowns and Decline in Traffic Related Deaths and Injuries; IZA Discuss, Institute of Labor Economics. Pap., No. 13278; University of Manitoba and IZA: Winnipeg, MB, Canada, 2020. [Google Scholar]
- Brodeur, A.; Cook, N.; Wright, T. On the Effects of COVID-19 Safer-At-Home Policies on Social Distancing, Car Crashes and Pollution; IZA Discuss, Institute of Labor Economics. Pap., No. 13255; University of Ottawa and IZA: Ottawa, ON, Canada, 2020. [Google Scholar]
- Kirby, B. Coronavirus Side Effect—Alabama Highway Traffic Wrecks Plummet. 2020. Available online: https://www.fox10tv.com/news/coronavirus/coronavirus-side-effect-alabama-highway-traffic-wrecks-plummet/article_3d5df80e-8a74-11ea-b0c7-db9eea522371.html (accessed on 7 September 2021).
- NCDOT. Effect of the COVID-19 Crisis on Traffic Crashes in North Carolina. 2020. Available online: https://connect.ncdot.gov/resources/safety/CrashDataandTeaasSystem/COVID-19_ImpactOnTrafficCrashes.pdf (accessed on 7 September 2021).
- National Police Foundation. Assessing the Impact of COVID-19 and Community Responses on Traffic Crashes and Fatali-ties. 2020. Available online: https://www.policefoundation.org/assessing-the-impact-of-covid-19-and-community-responses-on-traffic-crashes-and-fatalities/ (accessed on 7 September 2021).
- Farrell, C.L. COVID-19 Order Leads to Fewer Indiana Traffic Accidents. 2020. Available online: https://www.cflblaw.com/2020/04/covid-indiana-car-accidents/ (accessed on 7 September 2021).
- Parr, S.; Wolshon, B.; Renne, J.; Murray-Tuite, P.; Kim, K. Traffic Impacts of the COVID-19 Pandemic: Statewide Analysis of Social Separation and Activity Restriction. Nat. Hazards Rev. 2020, 21, 04020025. [Google Scholar] [CrossRef]
- Xiong, C.; Hu, S.; Yang, M.; Luo, W.; Zhang, L. Mobile device data reveal the dynamics in a positive relationship between human mobility and COVID-19 infections. Proc. Natl. Acad. Sci. USA 2020, 117, 27087–27089. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.F.; Skali, A.; Savage, D.A.; Stadelmann, D.; Torgler, B. Risk attitudes and human mobility during the COVID-19 pandemic. Sci. Rep. 2020, 10, 19931. [Google Scholar] [CrossRef]
- Borkowski, P.; Jażdżewska-Gutta, M.; Szmelter-Jarosz, A. Lockdowned: Everyday mobility changes in response to COVID-19. J. Transp. Geogr. 2020, 90, 102906. [Google Scholar] [CrossRef]
- Rotem-Mindali, O.; Salomon, I. The impacts of E-retail on the choice of shopping trips and delivery: Some preliminary findings. Transp. Res. Part A Policy Pract. 2007, 41, 176–189. [Google Scholar] [CrossRef]
- Shilling, F.; Waetjen, D. Impact of COVID19 Mitigation on Numbers and Costs of California Traffic Crashes Impact of COVID19 Mitigation on California Traffic Crashes; Road Ecology Center, UC Davis: Davis, CA, USA, 2020; Volume 2020. [Google Scholar]
- Chang, M.-C.; Kahn, R.; Li, Y.-A.; Lee, C.-S.; Buckee, C.O.; Chang, H.-H. Variation in human mobility and its impact on the risk of future COVID-19 outbreaks in Taiwan. BMC Public Health 2021, 21, 226. [Google Scholar] [CrossRef]
- Doucette, M.L.; Tucker, A.; Auguste, M.E.; Watkins, A.; Green, C.; Pereira, F.E.; Borrup, K.T.; Shapiro, D.; Lapidus, G. Initial impact of COVID-19′s stay-at-home order on motor vehicle traffic and crash patterns in Connecticut: An interrupted time series analysis. Inj. Prev. 2020, 27, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Brimley, B.K.; Saito, M.; Schultz, G.G. Calibration of Highway Safety Manual Safety Performance Function. Transp. Res. Rec. J. Transp. Res. Board 2012, 2279, 82–89. [Google Scholar] [CrossRef]
- Jonsson, T.; Lyon, C.; Ivan, J.N.; Washington, S.P.; van Schalkwyk, I.; Lord, D. Differences in the Performance of Safety Performance Functions Estimated for Total Crash Count and for Crash Count by Crash Type. Transp. Res. Rec. J. Transp. Res. Board 2009, 2102, 115–123. [Google Scholar] [CrossRef]
- Hayden, A.; Tight, M.; Burrow, M. Is Reducing Car Use a Utopian Vision? Transp. Res. Procedia 2017, 25, 3944–3956. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, H. Traffic Structure Optimization in Historic Districts Based on Green Transportation and Sustainable Development Concept. Adv. Civ. Eng. 2019, 2019, 9196263. [Google Scholar] [CrossRef]
- Hongjun, L. Study on Sustainable Development Highway Traffic. In Proceedings of the 2nd International Conference on Civil Architecture and Energy Science (CAES 2020), Changchun, China, 20–22 March 2020; Volume 165, p. 04043. [Google Scholar] [CrossRef]
- Geels, F.W. A socio-technical analysis of low-carbon transitions: Introducing the multi-level perspective into transport studies. J. Transp. Geogr. 2012, 24, 471–482. [Google Scholar] [CrossRef]
- Beck, M.J.; Hensher, D.A.; Wei, E. Slowly coming out of COVID-19 restrictions in Australia: Implications for working from home and commuting trips by car and public transport. J. Transp. Geogr. 2020, 88, 102846. [Google Scholar] [CrossRef]
- Omer, I.; Gitelman, V.; Rofè, Y.; Lerman, Y.; Kaplan, N.; Doveh, E. Evaluating Crash Risk in Urban Areas Based on Vehicle and Pedestrian Modeling. Geogr. Anal. 2017, 49, 387–408. [Google Scholar] [CrossRef]
- Florida’s Signal Four Analytics. 2020. Available online: https://s4.geoplan.ufl.edu/ (accessed on 7 September 2021).
- Saeed, T.U.; Nateghi, R.; Hall, T.; Waldorf, B.S. Statistical Analysis of Area-wide Alcohol-related Driving Crashes: A Spatial Econometric Approach. Geogr. Anal. 2019, 52, 394–417. [Google Scholar] [CrossRef]
- Pulugurtha, S.S.; Krishnakumar, V.K.; Nambisan, S.S. New methods to identify and rank high pedestrian crash zones: An illustration. Accid. Anal. Prev. 2007, 39, 800–811. [Google Scholar] [CrossRef]
- Plug, C.; Xia, J.; Caulfield, C. Spatial and temporal visualisation techniques for crash analysis. Accid. Anal. Prev. 2011, 43, 1937–1946. [Google Scholar] [CrossRef]
- Ulak, M.B.; Ozguven, E.E.; Spainhour, L.; Vanli, O.A. Spatial investigation of aging-involved crashes: A GIS-based case study in Northwest Florida. J. Transp. Geogr. 2016, 58, 71–91. [Google Scholar] [CrossRef]
- Ghorbanzadeh, M.; Koloushani, M.; Ulak, M.B.; Ozguven, E.E.; Jouneghani, R.A.; Arghandeh, R. Statistical and Spatial Analysis of Hurricane-induced Roadway Closures and Power Outages. Energies 2020, 13, 1098. [Google Scholar] [CrossRef] [Green Version]
- Vemulapalli, S.S.; Ulak, M.; Ozguven, E.E.; Sando, T.; Horner, M.W.; AbdelRazig, Y.; Moses, R. GIS-based Spatial and Temporal Analysis of Aging-Involved Accidents: A Case Study of Three Counties in Florida. Appl. Spat. Anal. Policy 2016, 10, 537–563. [Google Scholar] [CrossRef]
- Jiang, X.; Yan, X.; Huang, B.; Richards, S.H. Influence of Curbs on Traffic Crash Frequency on High-Speed Roadways. Traffic Inj. Prev. 2011, 12, 412–421. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, P.F.; Brown, J.K.; Sochor, M.R.; Wang, S.C.; Eichelberger, M.E. Factors influencing pediatric Injury Severity Score and Glasgow Coma Scale in pediatric automobile crashes: Results from the Crash Injury Research Engineering Network. J. Pediatr. Surg. 2006, 41, 1854–1858. [Google Scholar] [CrossRef]
- Bakhshi, A.K.; Ahmed, M.M. Utilizing black-box visualization tools to interpret non-parametric real-time risk assessment models. Transp. A Transp. Sci. 2020, 17, 739–765. [Google Scholar] [CrossRef]
- Ye, X.; Wang, K.; Zou, Y.; Lord, D. A semi-nonparametric Poisson regression model for analyzing motor vehicle crash data. PLoS ONE 2018, 13, e0197338. [Google Scholar] [CrossRef]
- Nilsson, P.; Nilsson, S. Application of Poisson Regression on Traffic Safety; Royal Institute of Technology: Stockholm, Sweden, 2015. [Google Scholar]
- Mohammadi, M.A.; Samaranayake, V.A.; Bham, G. Crash frequency modeling using negative binomial models: An application of generalized estimating equation to longitudinal data. Anal. Methods Accid. Res. 2014, 2, 52–69. [Google Scholar] [CrossRef]
- Elvik, R.; Goel, R. Safety-in-numbers: An updated meta-analysis of estimates. Accid. Anal. Prev. 2019, 129, 136–147. [Google Scholar] [CrossRef]
- Arentze, T.; Borgers, A.; Timmermans, H. A model of multi-purpose shopping trip behavior. Pap. Reg. Sci. 1993, 72, 239–256. [Google Scholar] [CrossRef] [Green Version]
- Russo, F.; Comi, A. The Simulation of Shopping Trips at Urban Scale: Attraction Macro-Model. Procedia-Soc. Behav. Sci. 2012, 39, 387–399. [Google Scholar] [CrossRef]
- Wang, L.; Abdel-Aty, M.; Lee, J.; Shi, Q. Analysis of real-time crash risk for expressway ramps using traffic, geometric, trip generation, and socio-demographic predictors. Accid. Anal. Prev. 2017, 122, 378–384. [Google Scholar] [CrossRef]
- Naderan, A.; Shahi, J. Aggregate crash prediction models: Introducing crash generation concept. Accid. Anal. Prev. 2010, 42, 339–346. [Google Scholar] [CrossRef]
- Shariat-Mohaymany, A.; Shahri, M.; Mirbagheri, B.; Matkan, A.A. Exploring Spatial Non-Stationarity and Varying Relationships between Crash Data and Related Factors Using Geographically Weighted Poisson Regression. Trans. GIS 2014, 19, 321–337. [Google Scholar] [CrossRef]
- Chung, Y.-S. Factor complexity of crash occurrence: An empirical demonstration using boosted regression trees. Accid. Anal. Prev. 2012, 61, 107–118. [Google Scholar] [CrossRef]
- Chen, F.; Chen, S.; Ma, X. Analysis of hourly crash likelihood using unbalanced panel data mixed logit model and real-time driving environmental big data. J. Saf. Res. 2018, 65, 153–159. [Google Scholar] [CrossRef]
- Iwamoto, D.K.; Liu, W.M. The impact of racial identity, ethnic identity, Asian values, and race-related stress on Asian Americans and Asian international college students’ psychological well-being. J. Couns. Psychol. 2010, 57, 79–91. [Google Scholar] [CrossRef] [Green Version]
- De Vos, J. The effect of COVID-19 and subsequent social distancing on travel behavior. Transp. Res. Interdiscip. Perspect. 2020, 5, 100121. [Google Scholar] [CrossRef] [PubMed]
- Nakaya, T.; Yano, K. Visualising Crime Clusters in a Space-time Cube: An Exploratory Data-analysis Approach Using Space-time Kernel Density Estimation and Scan Statistics. Trans. GIS 2010, 14, 223–239. [Google Scholar] [CrossRef]
- Kim, K.; Pant, P.; Yamashita, E. Accidents and Accessibility: Measuring Influences of Demographic and Land Use Variables in Honolulu, Hawaii. Transp. Res. Rec. J. Transp. Res. Board 2010, 2147, 9–17. [Google Scholar] [CrossRef]
- Ouyang, Y.; Bejleri, I. Geographic Information System–Based Community-Level Method to Evaluate the Influence of Built Environment on Traffic Crashes. Transp. Res. Rec. J. Transp. Res. Board 2014, 2432, 124–132. [Google Scholar] [CrossRef]
- Xie, B.; An, Z.; Zheng, Y.; Li, Z. Incorporating transportation safety into land use planning: Pre-assessment of land use conversion effects on severe crashes in urban China. Appl. Geogr. 2018, 103, 1–11. [Google Scholar] [CrossRef]
Characteristics | County | ||||
---|---|---|---|---|---|
Escambia | Hillsborough | Leon | Liberty | ||
Total number of census block group | 191 | 881 | 177 | 6 | |
Area [ac] | 559,808.2 | 810,059.8 | 449,144.7 | 539,598.5 | |
Total population | Sum | 311,522 | 1,378,883 | 288,102 | 8365 |
Mean | 1631 | 1565.1 | 1627.7 | 1394.2 | |
STD | 961.5 | 1230.3 | 850.9 | 665.1 | |
Asian Population | Average Percentage | 2.8% | 3.3% | 2.9% | 0.1% |
Sum | 9886 | 55,157 | 10,107 | 20 | |
Mean | 51.8 | 62.6 | 57.1 | 3.3 | |
STD | 88.4 | 129.9 | 104.2 | 5.2 | |
Hispanic or Latino Population | Average Percentage | 5.4% | 27.1% | 6.2% | 4.9% |
Sum | 17,293 | 386,478 | 18,050 | 484 | |
Mean | 90.5 | 438.7 | 101.9 | 80.6 | |
STD | 127.8 | 466.2 | 106.8 | 112.9 | |
Population with a Disabilities | Average Percentage | 7.7% | 6.2% | 6.1% | 20.2% |
Sum | 23,025 | 78,548 | 17,077 | 800 | |
Mean | 120.5 | 89.1 | 96.5 | 133.3 | |
STD | 88.5 | 74.2 | 80.9 | 48.1 | |
Aging (+65) Population | Average Percentage | 17.3% | 15.5% | 13.5% | 17.9% |
Sum | 50,472 | 189,676 | 35,700 | 1305 | |
Mean | 264.2 | 215.3 | 201.6 | 217.5 | |
STD | 172.6 | 195.1 | 159.5 | 90 | |
Young (18–29) Population | Average Percentage | 18.3% | 16.3% | 29.8% | 17.1% |
Sum | 62,136 | 235,380 | 87,422 | 1514 | |
Mean | 325.3 | 267.1 | 493.9 | 252.3 | |
STD | 458.6 | 333.4 | 522.6 | 172.4 | |
Average Household Size | Sum | 465.9 | 2285 | 419.4 | 17.4 |
Mean | 2.4 | 2.6 | 2.37 | 2.91 | |
STD | 0.46 | 0.6 | 0.55 | 0.32 | |
Household below Poverty Level | Sum | 14,238 | 73,474 | 21,755 | 375 |
Mean | 74.5 | 83.4 | 122.9 | 62.5 | |
STD | 69.2 | 84.8 | 149.8 | 16.9 | |
Use of Walk/Bike | Sum | 4082 | 13,676 | 4233 | 25 |
Mean | 21.4 | 15.5 | 23.9 | 4.1 | |
STD | 77.8 | 34.7 | 42.4 | 9.3 | |
Total Enrollment | 22,388 | 89,409 | 64,891 | 0 | |
Percentage to Total Population | 7% | 6% | 23% | 0% | |
Curfew starting date | NA | 13 April | 25 March | NA | |
Time | - | 21:00–5:00 | 23:00–5:00 | - |
Time Period | Escambia | Hillsborough | Leon | Liberty | |||||
---|---|---|---|---|---|---|---|---|---|
Count | Change | Count | Change | Count | Change | Count | Change | ||
Crash | 2020 After COVID * | 1480 | - | 5032 | - | 1078 | - | 20 | - |
2018 ** | 2442 | 39.4% | 11,130 | 54.8% | 2829 | 61.9% | 27 | 25.9% | |
2019 | 2539 | 41.7% | 11,112 | 54.7% | 2702 | 60.1% | 34 | 41.2% | |
2020 Before COVID *** | 2194 | 32.5% | 10,475 | 52% | 2564 | 58% | 33 | 39.4% | |
AADT | 2019 | 13,652 | 22,804 | 14,628 | 2651 | ||||
2020 | 13,051 | 19,781 | 12,900 | 2481 |
Predictor Variable | Description |
---|---|
Total Population [/104] | Total population in census block group |
Average Household Size | Average Household Size of Occupied Housing Units by Tenure |
African American (RP) | Ratio of black or African American population to total population |
Asian (RP) | Ratio of Asian population to total population |
Hispanic or Latino (RP) | Ratio of Hispanic or Latino population to total population |
Young (18–29) (RP) | Ratio of young (18–29) population to total population |
Aging (65+) (RP) | Ratio of aging (65+) population to total population |
Population with a Disability (RP) | Ratio of the population (20–64) years with a disability to total population |
Use of Walk/Bike for (RT) | Ratio of use of walk/bike to total number of transportation to work |
Households below Poverty (RH) | Ratio of households with income below poverty level to total number household |
CCD (Dependent Variable) | Crash count decrease in each census block group during COVID-19 pandemic |
County | Pair of Comparison | ||||||
---|---|---|---|---|---|---|---|
Vs. | Mean | SD | df | p-Value | |||
Escambia | 2020 After COVID * | 2.118 | 5.281 | ||||
2020 before COVID ** | 3.255 | 9.163 | 27,989 | 13,898 | ≈0 | ||
2019 *** | 3.787 | 11.461 | 28,145 | 14,757 | ≈0 | ||
2018 | 3.634 | 11.039 | 28,511 | 14,871 | ≈0 | ||
Hillsborough | 2020 After COVID | 3.913 | 7.212 | ||||
2020 before COVID | 8.828 | 18.933 | 48,799 | 37,374 | ≈0 | ||
2019 | 9.306 | 19.64 | 48,944 | 38,026 | ≈0 | ||
2018 | 8.702 | 18.098 | 49,080 | 38,566 | ≈0 | ||
Leon | 2020 After COVID | 1.433 | 4.337 | ||||
2020 before COVID | 3.777 | 15.878 | 43,334 | 20,210 | ≈0 | ||
2019 | 3.803 | 15.874 | 42,236 | 19,136 | ≈0 | ||
2018 | 3.646 | 15.502 | 42,141 | 18,830 | ≈0 | ||
Liberty | 2020 After COVID | 0.040 | 0.083 | ||||
2020 before COVID | 0.063 | 0.08 | 52,036 | 45,836 | ≈0 | ||
2019 | 0.077 | 0.226 | 38,978 | 26,677 | ≈0 | ||
2018 | 0.063 | 0.19 | 37,486 | 19,918 | ≈0 |
Range of Decrease | Number of Census Block | |||||||
---|---|---|---|---|---|---|---|---|
Escambia | Hillsborough | Leon | Liberty | |||||
<0 * | 32 | (16.8%) ** | 96 | (10.9%) | 17 | (9.6%) | 1 | (16.7%) |
0–10 | 122 | (64.2%) | 620 | (70.6%) | 111 | (62.7%) | 5 | (83.3%) |
11–50 | 34 | (17.9%) | 151 | (17.2%) | 48 | (27.1%) | 0 | (0.0%) |
51–100 | 1 | (0.5%) | 9 | (1.0%) | 0 | (0.0%) | 0 | (0.0%) |
>100 | 1 | (0.5%) | 2 | (0.2%) | 1 | (0.6%) | 0 | (0.0%) |
Regressors | Escambia County | Hillsborough County | Leon County | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
β | SE | p | 90% | β | SE | p | 90% | β | SE | p | 90% | |
Intercept | 3.52 | 0.813 | ✓ | 3.25 | 0.318 | ✓ | 3.752 | 0.48 | ✓ | |||
Total Population [/104] | 2.817 | 1 × 10−4 | 0.01 | ✓ | 1.33 | 3 × 10−5 | ✓ | 2.771 | 9 × 10−5 | 0.003 | ✓ | |
Asian (RP *) | 2.81 | 0.02 | 0.163 | ✗ | −0.195 | 8 × 10−3 | 0.811 | ✗ | −4.508 | 0.018 | 0.014 | ✓ |
Hispanic or Latino (RP *) | −0.642 | 0.015 | 0.666 | ✗ | 1.005 | 2 × 10−3 | ✓ | 0.377 | 0.014 | 0.789 | ✗ | |
Average Household Size | −1.029 | 0.263 | ✓ | −0.652 | 0.091 | ✓ | −0.878 | 0.186 | ✓ | |||
Youth (18–29) (RP *) | −1.597 | 0.01 | 0.108 | ✗ | −0.299 | 5 × 10−3 | 0.512 | ✗ | 0.65 | 0.003 | 0.065 | ✓ |
Aging (65+) (RP *) | −0.329 | 0.013 | 0.805 | ✗ | −1.61 | 4 × 10−3 | ✓ | - | - | - | - | |
Population with a Disability (RP *) | 2.12 | 0.014 | 0.12 | ✗ | 0.261 | 6 × 10−3 | 0.672 | ✗ | −0.55 | 0.012 | 0.642 | ✗ |
Use of Walk/Bike (RT **) | 1.47 | 0.025 | 0.556 | ✗ | −0.386 | 8 × 10−3 | 0.638 | ✗ | 2.154 | 0.013 | 0.087 | ✓ |
Households below Poverty Level (RH ***) | 3.151 | 0.01 | 0.003 | ✓ | 1.416 | 4 × 10−3 | ✓ | - | - | - | - | |
N: 157; df: 148; AIC: 955.54 | N: 776; df: 767; AIC: 4738.5 | N: 155; df: 148; AIC: 1025.2 | ||||||||||
Residual deviance = 177.77 | Residual deviance = 881.12 | Residual deviance = 174.23 | ||||||||||
Dispersion parameter = 0.8332 | Dispersion parameter = 0.8578 | Dispersion parameter = 1.5209 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koloushani, M.; Ghorbanzadeh, M.; Ozguven, E.E.; Ulak, M.B. Crash Patterns in the COVID-19 Pandemic: The Tale of Four Florida Counties. Future Transp. 2021, 1, 414-442. https://doi.org/10.3390/futuretransp1030023
Koloushani M, Ghorbanzadeh M, Ozguven EE, Ulak MB. Crash Patterns in the COVID-19 Pandemic: The Tale of Four Florida Counties. Future Transportation. 2021; 1(3):414-442. https://doi.org/10.3390/futuretransp1030023
Chicago/Turabian StyleKoloushani, Mohammadreza, Mahyar Ghorbanzadeh, Eren Erman Ozguven, and Mehmet Baran Ulak. 2021. "Crash Patterns in the COVID-19 Pandemic: The Tale of Four Florida Counties" Future Transportation 1, no. 3: 414-442. https://doi.org/10.3390/futuretransp1030023
APA StyleKoloushani, M., Ghorbanzadeh, M., Ozguven, E. E., & Ulak, M. B. (2021). Crash Patterns in the COVID-19 Pandemic: The Tale of Four Florida Counties. Future Transportation, 1(3), 414-442. https://doi.org/10.3390/futuretransp1030023