Extension of Energy and Transport Scenario Modelling to Include a Life Cycle Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Structure
2.2. Scenarios
2.2.1. Mobility Scenarios
2.2.2. Transport Technology Scenario
2.2.3. Energy Scenarios
3. Results
3.1. Comparison of Methods
3.2. Comparison of Scenarios
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LCA | Life cycle assessment |
pkm | Passenger kilometer |
tkm | Ton kilometer |
GHG | Greenhouse Gas |
LCI | Life cycle inventory |
CCS | Carbon capture and storage |
BEV | Battery electric vehicle |
PHEV | Plug-in electric vehicle |
FCEV | Fuel cell electric vehicle |
CNG | Compressed natural gas |
References
- CAT Climate Target Update Tracker. Available online: https://climateactiontracker.org/climate-target-update-tracker/ (accessed on 25 June 2021).
- Böing, F.; Regett, A. Hourly CO2 emission factors and marginal costs of energy carriers in future multi-energy systems. Energies 2019, 12, 2260. [Google Scholar] [CrossRef] [Green Version]
- Bründlinger, T.; König, J.E.; Frank, O.; Gründig, D.; Jugel, C.; Kraft, P.; Krieger, O.; Mischinger, S.; Prein, P.; Seidl, H.; et al. dena-Leitstudie Integrierte Energiewende. Impulse Gestalt. Energiesyst. 2018, 26, 9262. [Google Scholar]
- Günther, J.; Lehmann, H.; Nuss, P.; Purr, K. Resource-Efficient Pathways towards Greenhouse-Gas-Neutrality-RESCUE: Summary Report; Umweltbundesamt: Dessau-Roßlau, Germany, 2019.
- Robinius, M.; Markewitz, P.; Lopion, P.; Kullmann, F.; Heuser, P.; Syranidis, K. Kosteneffiziente und klimagerechteTransformationsstrategien für das deutsche Energiesystem bis zum Jahr 2050. Forschungszentrum Jülich GmbH 2020, 499, 10–17. [Google Scholar]
- Löffler, K.; Hainsch, K.; Burandt, T.; Oei, P.Y.; Kemfert, C.; Von Hirschhausen, C. Designing a model for the global energy system—GENeSYS-MOD: An application of the open-source energy modeling system (OSeMOSYS). Energies 2017, 10, 1468. [Google Scholar] [CrossRef] [Green Version]
- Connolly, D.; Lund, H.; Mathiesen, B.V.; Leahy, M. A review of computer tools for analysing the integration of renewable energy into various energy systems. Appl. Energy 2010, 87, 1059–1082. [Google Scholar] [CrossRef]
- Wohlgemuth, N. World transport energy demand modelling: Methodology and elasticities. Energy Policy 1997, 25, 1109–1119. [Google Scholar] [CrossRef]
- Anable, J.; Brand, C.; Tran, M.; Eyre, N. Modelling transport energy demand: A socio-technical approach. Energy Policy 2012, 41, 125–138. [Google Scholar] [CrossRef] [Green Version]
- Pichlmaier, S.; Fattler, S.; Bayer, C. Modelling the Transport Sector in the Context of a Dynamic Energy System. In Proceedings of the 41st IAEE Conference, Groningen, The Netherlands, 10–13 June 2018. [Google Scholar]
- Seum, S.; Ehrenberger, S.; Kuhnimhof, T.; Winkler, C. Verkehr und seine Umweltwirkungen. Int. Verkehrswesen 2019, 2, 49–53. [Google Scholar]
- Nordelöf, A.; Messagie, M.; Tillman, A.M.; Söderman, M.L.; Van Mierlo, J. Environmental impacts of hybrid, plug-in hybrid, and battery electric vehicles—What can we learn from life cycle assessment? Int. J. Life Cycle Assess. 2014, 19, 1866–1890. [Google Scholar] [CrossRef] [Green Version]
- Regett, A.; Mauch, W.; Wagner, U. Carbon Footprint of Electric Vehicles—A Plea for More Objectivity. 2019. Available online: https://www.ffe.de/attachments/article/1036/Carbon_footprint_EV_FfE.pdf (accessed on 22 July 2021).
- Philippot, M.; Alvarez, G.; Ayerbe, E.; Van Mierlo, J.; Messagie, M. Eco-efficiency of a lithium-ion battery for electric vehicles: Influence of manufacturing country and commodity prices on ghg emissions and costs. Batteries 2019, 5, 23. [Google Scholar] [CrossRef] [Green Version]
- Emilsson, E.; Dahllöf, L. Lithium-Ion Vehicle Battery Production-Status 2019 on Energy Use, CO2 Emissions, Use of Metals, Products Environmental Footprint, and Recycling; IVL Swedish Environmental Research Institute Ltd.: Stockholm, Sweden, 2019. [Google Scholar]
- Cerdas, F.; Egede, P.; Herrmann, C. LCA of Electromobility. In Life Cycle Assessment; Springer: Cham, Switzerland, 2018; pp. 669–693. [Google Scholar]
- Rauner, S.; Budzinski, M. Holistic energy system modeling combining multi-objective optimization and life cycle assessment. Environ. Res. Lett. 2017, 12, 124005. [Google Scholar] [CrossRef]
- Volkart, K.; Mutel, C.L.; Panos, E. Integrating life cycle assessment and energy system modelling: Methodology and application to the world energy scenarios. Sustain. Prod. Consum. 2018, 16, 121–133. [Google Scholar] [CrossRef]
- Vandepaer, L.; Gibon, T. The integration of energy scenarios into LCA: LCM2017 Conference Workshop, Luxembourg, 5 September 2017. Int. J. Life Cycle Assess. 2018, 23, 970–977. [Google Scholar] [CrossRef]
- Betten, T.; Shammugam, S.; Graf, R. Adjustment of the Life Cycle Inventory in Life Cycle Assessment for the Flexible Integration into Energy Systems Analysis. Energies 2020, 13, 4437. [Google Scholar] [CrossRef]
- Pichlmaier, S.; Regett, A.; Kigle, S. Dynamisation of Life Cycle Assessment through the Integration of Energy System Modelling to Assess Alternative Fuels. In Progress in Life Cycle Assessment 2018; Springer: Cham, Switzerland, 2019; pp. 75–86. [Google Scholar]
- Mendoza Beltran, A.; Cox, B.; Mutel, C.; van Vuuren, D.P.; Font Vivanco, D.; Deetman, S.; Edelenbosch, O.Y.; Guinée, J.; Tukker, A. When the background matters: Using scenarios from integrated assessment models in prospective life cycle assessment. J. Ind. Ecol. 2020, 24, 64–79. [Google Scholar] [CrossRef] [Green Version]
- Sacchi, R.; Mutel, C. Carculator: Prospective Environmental and Economic Life Cycle Assessment of Vehicles; Paul Scherrer Institut: Villigen, Switzerland, 2019. [Google Scholar]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Mutel, C. Brightway: An open source framework for Life Cycle Assessment. J. Open Source Softw. 2017, 2, 236. [Google Scholar] [CrossRef]
- Steubing, B.; de Koning, D. Making the use of scenarios in LCA easier: The superstructure approach. Int. J. Life Cycle Assess. 2021. [Google Scholar]
- Steubing, B.; de Koning, D.; Haas, A.; Mutel, C.L. The Activity Browser—An open source LCA software building on top of the brightway framework. Softw. Impacts 2020, 3, 100012. [Google Scholar] [CrossRef]
- Stehfest, E.; van Vuuren, D.; Bouwman, L.; Kram, T. Integrated Assessment of Global Environmental Change with IMAGE 3.0: Model Description and Policy Applications; PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2014.
- Sacchi, R.; Mutel, C. Carculator-Truck: Prospective Life Cycle Assessment of Medium and Heavy Duty Vehicles. 2020. Available online: https://github.com/romainsacchi/carculator_truck (accessed on 22 July 2021).
- Pichlmaier, S.; Gyetko, M. Techno-Economic Evaluation of Scenarios for the German Energy and Mobility Transition in Transport. In ETG Congress 2021; VDE: Frankfurt am Main, Germany, 2021. [Google Scholar]
- Nobis, C.; Kuhnimhof, T. Mobility in Germany-MiD Report; Technical Report, infas, DLR, IVT and infas 360; Federal Ministry of Transport and Digital Infrastructure: Berlin, Germany, 2018. [Google Scholar]
- Gyetko, M. Impact of Carhsaring on the Transport Sector from the Perspective of the Energy Economy. Bachelor’s Thesis, Chair of Energy Economy and Application Technology, TUM Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany, 2020. [Google Scholar]
- Conrad, J.; Fattler, S.; Regett, A. Dynamis–Dynamic and Intersectoral Evaluation of Measures for a Cost-Efficient Decarbonisation of the Energy System; Technical Report; FfE Munich, Technical University Munich: Munich, Germany, 2019. [Google Scholar]
Scenario | Energy Carrier | 2020 | 2030 | 2040 | 2050 |
---|---|---|---|---|---|
Base | Electricity | 0.45 | 0.35 | 0.18 | 0.15 |
Base | Methane | 0.25 | 0.25 | 0.25 | 0.25 |
Base | Hydrogen | 0.31 | 0.31 | 0.31 | 0.31 |
Base | Liquid Hydrocarbons | 0.30 | 0.30 | 0.30 | 0.30 |
ClimPol | Electricity | 0.45 | 0.28 | 0.12 | 0.05 |
ClimPol | Methane | 0.25 | 0.25 | 0.25 | 0.16 |
ClimPol | Hydrogen | 0.31 | 0.32 | 0.28 | 0.06 |
ClimPol | Liquid Hydrocarbons | 0.30 | 0.30 | 0.30 | 0.04 |
Name | Mobility Scenario | Technology Scenario | Energy Scenario |
---|---|---|---|
Ref-Base | Ref | conservative | Base |
Ref-ClimPol | Ref | ambitious | ClimPol |
CSI-Base | CSI | conservative | Base |
CSI-ClimPol | CSI | ambitious | ClimPol |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pichlmaier, S.; Kult, M.; Wagner, U. Extension of Energy and Transport Scenario Modelling to Include a Life Cycle Perspective. Future Transp. 2021, 1, 188-201. https://doi.org/10.3390/futuretransp1020012
Pichlmaier S, Kult M, Wagner U. Extension of Energy and Transport Scenario Modelling to Include a Life Cycle Perspective. Future Transportation. 2021; 1(2):188-201. https://doi.org/10.3390/futuretransp1020012
Chicago/Turabian StylePichlmaier, Simon, Michael Kult, and Ulrich Wagner. 2021. "Extension of Energy and Transport Scenario Modelling to Include a Life Cycle Perspective" Future Transportation 1, no. 2: 188-201. https://doi.org/10.3390/futuretransp1020012
APA StylePichlmaier, S., Kult, M., & Wagner, U. (2021). Extension of Energy and Transport Scenario Modelling to Include a Life Cycle Perspective. Future Transportation, 1(2), 188-201. https://doi.org/10.3390/futuretransp1020012