Exploring CBC Data for Anemia Diagnosis: A Machine Learning and Ontology Perspective
Abstract
1. Introduction
2. Related Works
3. Methodology
Algorithm 1: Average Rank Method |
|
4. Data Description and Analysis
Query 1: Retrieve all anemia types and their diagnostic indicators |
Sparql CopyEdit PREFIX : <http://www.example.org/anemia#>, accessed on 1 June 2025 SELECT ?anemiaType ?indicator WHERE { ?anemiaType a :AnemiaType . ?anemiaType :hasIndicator ?indicator . } |
- IronDeficiencyAnemia → LowFerritin, LowMCV, LowHemoglobin.
- B12DeficiencyAnemia → HighMCV, LowB12.
Query 2: Get threshold values for each lab test used in categorization |
Sparql CopyEdit PREFIX : <http://www.example.org/anemia#> SELECT ?test ?lowThreshold ?highThreshold WHERE { ?test a :LabTest . ?test :hasLowThreshold ?lowThreshold . ?test :hasHighThreshold ?highThreshold . } |
- HGB → 12.0 (low), 17.0 (high).
- MCV → 80.0 (low), 100.0 (high).
Query 3: Infer possible anemia type given a combination of abnormal lab values |
Sparql CopyEdit PREFIX : <http://www.example.org/anemia#> SELECT ?type WHERE { ?type a :AnemiaType . ?type :hasIndicator :LowMCV . ?type :hasIndicator :LowFerritin . ?type :hasIndicator :LowHemoglobin . } |
5. Experimental Results
5.1. Data Preprocessing
5.2. System Specification
5.3. Analysis and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Altinier, S.; Varagnolo, M.; Zaninotto, M.; Plebani, M. Identification and quantification of hemoglobins in whole blood: The analytical and organizational aspects of Capillarys 2 Flex Piercing compared with agarose electrophoresis and HPLC methods. Clin. Chem. Lab. Med. (CCLM) 2013, 51, 791–797. [Google Scholar] [CrossRef] [PubMed]
- El Adawy, S.; Tahar, S.; Mostafa, H.; Abou ElFutouh, H. Iron Deficiency Anemia and its Relation to Bone Density. Al-Azhar Int. Med. J. 2024, 5, 26. [Google Scholar] [CrossRef]
- Mohammed, S.G.; Mousa, A.; Hamead, M.; Hashim, A.M. Role of Hypochromia and Microcytosis in the prediction of iron deficiency anemia. Minia J. Med. Res. (MJMR) 2020, 31, 262–268. [Google Scholar] [CrossRef]
- Lee, Y.P.; Loh, C.H.; Hwang, M.J.; Lin, C.P. Vitamin B12 deficiency and anemia in 140 Taiwanese female lacto-vegetarians. J. Formos. Med. Assoc. 2021, 120, 2003–2009. [Google Scholar] [CrossRef] [PubMed]
- Green, R.; Miller, J.W. Vitamin B12 deficiency. In Vitamins and Hormones; Academic Press: Cambridge, MA, USA, 2022; Volume 119, pp. 405–439. [Google Scholar]
- Gebremichael, B.; Roba, H.S.; Getachew, A.; Tesfaye, D.; Asmerom, H. Folate deficiency among women of reproductive age in Ethiopia: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0285281. [Google Scholar] [CrossRef]
- Lee, D.T.; Plesa, M.L. Anemia. In Family Medicine: Principles and Practice; Springer International Publishing: Cham, Switzerland, 2022; pp. 1815–1829. [Google Scholar]
- Beutler, E.; Waalen, J. The definition of anemia: What is the lower limit of normal of the blood hemoglobin concentration? Blood 2006, 107, 1747–1750. [Google Scholar] [CrossRef]
- Crichton, R.; Charloteauxwauters, M. Iron transport and storage. Eur. J. Biochem. 1987, 164, 485. [Google Scholar] [CrossRef]
- Pasricha, S.R.; Tye-Din, J.; Muckenthaler, M.U.; Swinkels, D.W. Iron deficiency. Lancet 2021, 397, 233–248. [Google Scholar] [CrossRef]
- Mohammed, K.K.; Dahmani, N.; Ahmed, R.; Darwish, A.; Hassanien, A.E. An Explainable AI and Optimized Multi-Branch Convolutional Neural Network Model for Eye Anemia Diagnosis. IEEE Access 2025, 13, 71840–71857. [Google Scholar] [CrossRef]
- Saleem, M.; Aslam, W.; Lali, M.I.; Rauf, H.T.; Nasr, E.A. Predicting Thalassemia Using Feature Selection Techniques: A Comparative Analysis. Diagnostics 2023, 13, 3441. [Google Scholar] [CrossRef]
- Kurstjens, S.; De Bel, T.; Van Der Horst, A.; Kusters, R.; Krabbe, J.; Van Balveren, J. Automated prediction of low ferritin concentrations using a machine learning algorithm. Clin. Chem. Lab. Med. (CCLM) 2022, 60, 1921–1928. [Google Scholar] [CrossRef] [PubMed]
- Gómez, J.G.; Parra Urueta, C.; Álvarez, D.S.; Hernández Riaño, V.; Ramirez-Gonzalez, G. Anemia Classification System Using Machine Learning. Informatics 2025, 12, 19. [Google Scholar] [CrossRef]
- Desuky, A.S.; Hussain, S. An improved hybrid approach for handling class imbalance problem. Arab. J. Sci. Eng. 2021, 46, 3853–3864. [Google Scholar] [CrossRef]
- Wang, K.; Chen, N.; Chen, T. Joint medical ontology representation learning for healthcare predictions. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; IEEE: Piscataway, NJ, USA; pp. 1–7. [Google Scholar]
- Harahap, M.K.; Nasution, M.K.; Hasibuan, N.A. Ontology for Intelligent Disease Diagnosis. In Proceedings of the 2024 International Conference on Electrical Engineering and Informatics (ICELTICs), Banda Aceh, Indonesia, 12–13 September 2024; IEEE: Piscataway, NJ, USA; pp. 56–61. [Google Scholar]
- Riaño, D.; Real, F.; López-Vallverdú, J.A.; Campana, F.; Ercolani, S.; Mecocci, P.; Annicchiarico, R.; Caltagirone, C. An ontology-based personalization of health-care knowledge to support clinical decisions for chronically ill patients. J. Biomed. Inform. 2012, 45, 429–446. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhao, X.; Wang, J. Medical knowledge-enhanced prompt learning for diagnosis classification from clinical text. In Proceedings of the 5th Clinical Natural Language Processing Workshop, Toronto, ON, Canada, 14 July 2023; pp. 278–288. [Google Scholar]
- Bodenreider, O. The unified medical language system (UMLS): Integrating biomedical terminology. Nucleic Acids Res. 2004, 32, 267–270. [Google Scholar] [CrossRef]
- Jing, X.; Min, H.; Gong, Y.; Biondich, P.; Robinson, D.; Law, T.; Nohr, C.; Faxvaag, A.; Rennert, L.; Hubig, N.; et al. Ontologies applied in clinical decision support system rules: Systematic review. JMIR Med. Inform. 2023, 11, e43053. [Google Scholar] [CrossRef]
- Al-Naseem, A.; Sallam, A.; Choudhury, S.; Thachil, J. Iron deficiency without anemia: A diagnosis that matters. Clin. Med. 2021, 21, 107–113. [Google Scholar] [CrossRef]
- Purwar, S.; Tripathi, R.K.; Ranjan, R.; Saxena, R. Detection of microcytic hypochromia using cbc and blood film features extracted from convolution neural network by different classifiers. Multimed. Tools Appl. 2020, 79, 4573–4595. [Google Scholar] [CrossRef]
- Saputra, D.C.; Sunat, K.; Ratnaningsih, T. A new artificial intelligence approach using extreme learning machine as the potentially effective model to predict and analyze the diagnosis of anemia. Healthcare 2023, 11, 697. [Google Scholar] [CrossRef]
- Erhabor, O.; Muhammad, H.A.; Muhammad, K.; Onwuchekwa, C.; Egenti, N.B. Interpretation of full blood count parameters in health and disease. Haematol. Int. J. 2021, 5, 10080. [Google Scholar]
- Ramzan, M.; Sheng, J.; Saeed, M.U.; Wang, B.; Duraihem, F.Z. Revolutionizing anemia detection: Integrative machine learning models and advanced attention mechanisms. Vis. Comput. Ind. Biomed. Art 2024, 7, 18. [Google Scholar] [CrossRef] [PubMed]
- Marey, A.; Arjmand, P.; Alerab, A.D.; Eslami, M.J.; Saad, A.M.; Sanchez, N.; Umair, M. Explainability, transparency and black box challenges of AI in radiology: Impact on patient care in cardiovascular radiology. Egypt. J. Radiol. Nucl. Med. 2024, 55, 183. [Google Scholar] [CrossRef]
- Robinson, P.N.; Haendel, M.A. Ontologies, knowledge representation, and machine learning for translational research: Recent contributions. Yearb. Med. Inform. 2020, 29, 159–162. [Google Scholar] [CrossRef]
- Sahoo, S.S.; Kobow, K.; Zhang, J.; Buchhalter, J.; Dayyani, M.; Upadhyaya, D.P.; Prantzalos, K.; Bhattacharjee, M.; Blumcke, I.; Wiebe, S.; et al. Ontology-based feature engineering in machine learning workflows for heterogeneous epilepsy patient records. Sci. Rep. 2022, 12, 19430. [Google Scholar] [CrossRef]
- Sun, C.; Dumontier, M. Generating Patient’s Electronic Health Records with Unseen Diseases Using Ontology-Enhanced Generative Adversarial Networks; Research Square: Durham, NC, USA, 11 September 2024; PREPRINT (Version 1). [Google Scholar] [CrossRef]
- Sun, C.; Dumontier, M. Generating unseen diseases patient data using ontology enhanced generative adversarial networks. npj Digit. Med. 2025, 8, 4. [Google Scholar] [CrossRef]
- Elgamal, M.; Abou-Kreisha, M.; Abo Elezz, R.; Hamada, S. An Ontology-based Name Entity Recognition NER and NLP Systems in Arabic Storytelling. Al-Azhar Bull. Sci. 2020, 31, 31–38. [Google Scholar] [CrossRef]
- Elsayed, E.K.; Fathy, D.R. Sign Language Semantic Translation System using Ontology and Deep Learning. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 2020, 11, 141–147. [Google Scholar] [CrossRef]
- Saida, D.; Najib, N.; Abdellah, J. Rank Average for handover decision making in heterogeneous wireless networks. ICST Trans. Mob. Commun. Appl. 2018, 3, 153555. [Google Scholar]
- Hashim, M.; Rahayu, S.; Noraini, A.; Azwal, A. Ranking method using multiple weighted score analysis. Borneo Sci. J. Sci. Technol. 2007, 21, 19–26. [Google Scholar]
- Available online: https://www.kaggle.com/code/serhathoca/anemia-disease-dataset?select=SKILICARSLAN_Anemia_DataSet.xlsx (accessed on 30 March 2025).
- Hand, D.J. Assessing the performance of classification methods. Int. Stat. Rev. 2012, 80, 400–414. [Google Scholar] [CrossRef]
Parameter | Desc. | Unit | Reference Range |
---|---|---|---|
B12 | B12 | ng/mL | 200–503 |
BA | Basophils | 103/µL | 0.01–0.07 |
EO | Eozinofiller | 103/µL | 0.03–0.59 |
FERRITE | Ferrite | ng/mL | 30–400 |
FOLATE | Folate | ng/mL | 4–175 |
GENDER | Female/Male | - | 0–1 |
HCT | Hematocrit | % | 35–45 |
HGB | Hemoglobin | gr/dL | 13.5–16.9 |
LY | Lenfosit | 103/µL | 1.26–3.31 |
MCH | Mean Corpuscular Hemoglobin | pg | 27–32.3 |
MCHC | Mean Corpuscular Hemoglobin Concentration | gr/dL | 32.35 |
MCV | Mean Corpuscular Volume | fL | 81.8–95.5 |
MO | Monositler | 103/µL | 0.29–0.95 |
MPV | Mean Platelet Volume | fL | 9.3–12.1 |
NE | Neutrophils | 103/µL | 1.8–6.98 |
PCT | Plateletcrit | K/µL | 0.17–0.32 |
PDW | Platelet Distribution Width | fL | 10.1–16.1 |
PLT | Platelets | K/µL | 166–308 |
RBC | Red Blood Cells | million/µL | 4.44–5.61 |
RDW | Red Cell Distribution Width | % | 12–13.6 |
SD | Serum Iron | µg/dL | 20–50 |
SDTSD | (SD/TSD) × 100 | µg/dL | 20-50 |
TSD | Total Serum Iron | µg/dL | 250–450 |
WBC | White Blood Cells | 103/µL | 3.91–10.2 |
No. of Records | No- Anemia | Hgb | Iron | Folate | B12 | |
---|---|---|---|---|---|---|
ADASYN | 49,749 | 9747 | 9942 | 10,492 | 9744 | 9823 |
SMOTE | 48,736 | 9747 | 9747 | 9747 | 9747 | 9747 |
ROS | 48,736 | 9747 | 9747 | 9747 | 9747 | 9747 |
Crossover | 24,895 | 9747 | 1019 | 4182 | 9747 | 199 |
Original | 15,300 | 9747 | 1019 | 4182 | 153 | 199 |
Oversampling | Class | Precision | Recall (Sensitivity) | F1- Score | Specificity |
---|---|---|---|---|---|
ADASYN | No-Anemia | 0.86 | 0.44 | 0.58 | 0.99 |
Hgb | 0.8 | 0.98 | 0.88 | 0.96 | |
Iron | 0.78 | 0.88 | 0.83 | 0.96 | |
Folate | 0.92 | 0.99 | 0.96 | 0.99 | |
B12 | 0.95 | 1 | 0.98 | 0.99 | |
SMOTE | No-Anemia | 0.81 | 0.47 | 0.6 | 0.98 |
Hgb | 0.92 | 0.81 | 0.98 | 0.96 | |
Iron | 0.78 | 0.85 | 0.81 | 0.96 | |
Folate | 0.92 | 0.99 | 0.95 | 0.99 | |
B12 | 0.95 | 1 | 0.97 | 0.99 | |
ROS | No-Anemia | 0.76 | 0.53 | 0.63 | 0.97 |
Hgb | 0.81 | 0.99 | 0.89 | 0.96 | |
Iron | 0.77 | 0.78 | 0.78 | 0.96 | |
Folate | 0.97 | 1 | 0.99 | 1 | |
B12 | 0.96 | 1 | 0.98 | 0.99 | |
Original | No-Anemia | 0.73 | 0.87 | 0.79 | 0.89 |
Hgb | 0.36 | 0.17 | 0.23 | 0.98 | |
Iron | 0.65 | 0.47 | 0.55 | 0.94 | |
Folate | 1 | 0.03 | 0.06 | 1 | |
B12 | 0.64 | 0.20 | 0.3 | 1 |
Oversampling | Class | Precision | Recall (Sensitivity) | F1- Score | Specificity |
---|---|---|---|---|---|
ADASYN | No-Anemia | 0.83 | 0.8 | 0.82 | 0.97 |
Hgb | 0.81 | 0.6 | 0.69 | 0.97 | |
Iron | 0.67 | 0.85 | 0.75 | 0.93 | |
Folate | 0.98 | 0.99 | 0.99 | 1 | |
B12 | 0.91 | 0.92 | 0.91 | 0.98 | |
SMOTE | No-Anemia | 0.94 | 0.92 | 0.93 | 0.99 |
Hgb | 0.92 | 0.92 | 0.83 | 0.99 | |
Iron | 0.86 | 0.92 | 0.89 | 0.98 | |
Folate | 0.98 | 1 | 0.99 | 1 | |
B12 | 0.96 | 0.99 | 0.97 | 0.86 | |
ROS | No-Anemia | 1 | 0.98 | 0.99 | 1 |
Hgb | 0.93 | 0.98 | 0.96 | 0.99 | |
Iron | 0.98 | 0.9 | 0.93 | 1 | |
Folate | 0.99 | 1 | 0.99 | 1 | |
B12 | 0.97 | 1 | 0.98 | 0.99 | |
Original | No-Anemia | 0.99 | 1 | 1 | 1 |
Hgb | 0.85 | 0.78 | 0.81 | 0.99 | |
Iron | 0.94 | 0.97 | 0.95 | 0.99 | |
Folate | 0.93 | 0.81 | 0.86 | 1 | |
B12 | 0.93 | 0.57 | 0.7 | 1 |
Oversampling | Class | Precision | Recall (Sensitivity) | F1- Score | Specificity |
---|---|---|---|---|---|
ADASYN | No-Anemia | 0.98 | 0.95 | 0.96 | 0.99 |
Hgb | 0.97 | 1 | 0.98 | 1 | |
Iron | 0.99 | 0.98 | 0.98 | 1 | |
Folate | 1 | 1 | 1 | 1 | |
B12 | 0.99 | 1 | 1 | 1 | |
SMOTE | No-Anemia | 0.98 | 0.96 | 0.97 | 0.99 |
Hgb | 0.92 | 0.97 | 1 | 1 | |
Iron | 0.99 | 0.97 | 0.98 | 1 | |
Folate | 1 | 1 | 1 | 1 | |
B12 | 0.99 | 1 | 1 | 1 | |
ROS | No-Anemia | 1 | 0.99 | 1 | 1 |
Hgb | 1 | 1 | 1 | 1 | |
Iron | 1 | 1 | 1 | 1 | |
Folate | 1 | 1 | 1 | 1 | |
B12 | 1 | 1 | 1 | 1 | |
Original | No-Anemia | 0.99 | 1 | 1 | 1 |
Hgb | 0.95 | 0.97 | 0.96 | 1 | |
Iron | 1 | 1 | 1 | 1 | |
Folate | 1 | 0.76 | 0.86 | 1 | |
B12 | 0.98 | 0.76 | 0.85 | 1 |
Oversampling | Class | Precision | Recall (Sensitivity) | F1- Score | Specificity |
---|---|---|---|---|---|
ADASYN | No-Anemia | 0.96 | 0.95 | 0.96 | 0.99 |
Hgb | 0.98 | 0.98 | 0.98 | 0.99 | |
Iron | 0.98 | 0.98 | 0.98 | 0.99 | |
Folate | 1 | 1 | 1 | 1 | |
B12 | 1 | 1 | 1 | 1 | |
SMOTE | No-Anemia | 0.96 | 0.96 | 0.96 | 0.99 |
Hgb | 0.92 | 0.98 | 0.98 | 1 | |
Iron | 0.98 | 0.98 | 0.98 | 1 | |
Folate | 1 | 1 | 1 | 1 | |
B12 | 1 | 1 | 1 | 1 | |
ROS | No-Anemia | 1 | 1 | 1 | 1 |
Hgb | 1 | 1 | 1 | 1 | |
Iron | 1 | 1 | 1 | 1 | |
Folate | 1 | 1 | 1 | 1 | |
B12 | 1 | 1 | 1 | 1 | |
Original | No-Anemia | 1 | 1 | 1 | 1 |
Hgb | 0.99 | 0.99 | 0.99 | 1 | |
Iron | 1 | 1 | 1 | 1 | |
Folate | 0.98 | 0.98 | 0.98 | 1 | |
B12 | 1 | 0.96 | 0.98 | 1 |
Oversampling | Class | Precision | Recall (Sensitivity) | F1- Score | Specificity |
---|---|---|---|---|---|
ADASYN | No-Anemia | 0.96 | 0.96 | 0.96 | 0.99 |
Hgb | 0.97 | 0.96 | 0.96 | 0.99 | |
Iron | 0.97 | 0.96 | 0.97 | 0.99 | |
Folate | 0.98 | 1 | 0.99 | 1 | |
B12 | 0.98 | 0.99 | 0.98 | 0.99 | |
SMOTE | No-Anemia | 0.97 | 0.96 | 0.97 | 1 |
Hgb | 0.92 | 0.95 | 0.96 | 1 | |
Iron | 0.98 | 0.95 | 0.96 | 0.99 | |
Folate | 0.99 | 0.99 | 0.99 | 1 | |
B12 | 0.97 | 1 | 0.98 | 1 | |
ROS | No-Anemia | 0.99 | 0.99 | 0.99 | 1 |
Hgb | 0.99 | 1 | 0.99 | 1 | |
Iron | 0.99 | 0.98 | 0.98 | 1 | |
Folate | 1 | 1 | 1 | 1 | |
B12 | 1 | 1 | 1 | 1 | |
Original | No-Anemia | 0.98 | 0.98 | 0.98 | 1 |
Hgb | 0.6 | 0.61 | 0.6 | 0.98 | |
Iron | 0.93 | 0.93 | 0.93 | 0.99 | |
Folate | 0.24 | 0.32 | 0.27 | 0.99 | |
B12 | 0.24 | 0.17 | 0.2 | 0.99 |
Oversampling | Class | Precision | Recall (Sensitivity) | F1- Score | Specificity |
---|---|---|---|---|---|
ADASYN | No-Anemia | 0.97 | 0.94 | 0.95 | 0.99 |
Hgb | 0.95 | 0.94 | 0.94 | 0.99 | |
Iron | 0.96 | 0.96 | 0.96 | 0.99 | |
Folate | 0.97 | 0.99 | 0.98 | 1 | |
B12 | 0.96 | 0.98 | 0.97 | 0.99 | |
SMOTE | No-Anemia | 0.97 | 0.96 | 0.97 | 1 |
Hgb | 0.92 | 0.97 | 0.96 | 1 | |
Iron | 0.97 | 0.96 | 0.97 | 0.99 | |
Folate | 0.99 | 1 | 0.99 | 1 | |
B12 | 0.98 | 1 | 0.99 | 1 | |
ROS | No-Anemia | 1 | 0.98 | 0.99 | 1 |
Hgb | 0.98 | 1 | 0.99 | 1 | |
Iron | 0.99 | 0.99 | 0.99 | 1 | |
Folate | 1 | 1 | 1 | 1 | |
B12 | 1 | 1 | 1 | 1 | |
Original | No-Anemia | 0.99 | 0.99 | 0.99 | 1 |
Hgb | 0.63 | 0.68 | 0.66 | 0.98 | |
Iron | 0.95 | 0.96 | 0.95 | 0.99 | |
Folate | 0.23 | 0.23 | 0.23 | 0.99 | |
B12 | 0.27 | 0.15 | 0.19 | 0.99 |
Oversampling | Class | Precision | Recall (Sensitivity) | F1- Score | Specificity |
---|---|---|---|---|---|
ADASYN | No-Anemia | 0.96 | 0.97 | 0.96 | 0.99 |
Hgb | 0.96 | 0.95 | 0.96 | 0.99 | |
Iron | 0.98 | 0.95 | 0.96 | 1 | |
Folate | 0.98 | 0.99 | 0.99 | 1 | |
B12 | 0.97 | 0.99 | 0.98 | 1 | |
SMOTE | No-Anemia | 0.97 | 0.96 | 0.96 | 0.99 |
Hgb | 0.92 | 0.96 | 0.94 | 0.99 | |
Iron | 0.97 | 0.95 | 0.96 | 0.99 | |
Folate | 0.98 | 1 | 0.99 | 1 | |
B12 | 0.97 | 1 | 0.98 | 0.99 | |
ROS | No-Anemia | 1 | 0.98 | 0.99 | 1 |
Hgb | 0.99 | 1 | 0.99 | 1 | |
Iron | 0.99 | 0.99 | 0.99 | 1 | |
Folate | 1 | 1 | 1 | 1 | |
B12 | 1 | 1 | 1 | 1 | |
Original | No-Anemia | 0.99 | 0.99 | 0.99 | 1 |
Hgb | 0.62 | 0.71 | 0.66 | 0.98 | |
Iron | 0.95 | 0.96 | 0.95 | 0.99 | |
Folate | 0.23 | 0.16 | 0.19 | 0.99 | |
B12 | 0.27 | 0.13 | 0.18 | 0.99 |
Oversampling | Class | Precision | Recall (Sensitivity) | F1- Score | Specificity |
---|---|---|---|---|---|
ADASYN | No-Anemia | 0.91 | 0.92 | 0.92 | 0.98 |
Hgb | 0.87 | 0.83 | 0.85 | 0.97 | |
Iron | 0.92 | 0.89 | 0.90 | 0.98 | |
Folate | 0.99 | 1.00 | 0.99 | 1.00 | |
B12 | 0.98 | 0.99 | 0.99 | 0.99 | |
SMOTE | No-Anemia | 0.94 | 0.94 | 0.94 | 0.99 |
Hgb | 0.91 | 0.94 | 0.92 | 0.98 | |
Iron | 0.93 | 0.91 | 0.92 | 0.98 | |
Folate | 1.00 | 1.00 | 1.00 | 1.00 | |
B12 | 0.99 | 1.00 | 0.99 | 1.00 | |
ROS | No-Anemia | 1.00 | 0.99 | 1.00 | 1.00 |
Hgb | 0.98 | 0.99 | 0.98 | 1.00 | |
Iron | 0.97 | 0.95 | 0.96 | 0.99 | |
Folate | 1.00 | 1.00 | 1.00 | 1.00 | |
B12 | 1.00 | 1.00 | 1.00 | 1.00 | |
Original | No-Anemia | 0.95 | 0.97 | 0.96 | 0.99 |
Hgb | 0.78 | 0.72 | 0.75 | 0.96 | |
Iron | 0.91 | 0.89 | 0.90 | 0.98 | |
Folate | 0.87 | 0.85 | 0.86 | 0.98 | |
B12 | 0.82 | 0.77 | 0.79 | 0.98 |
Oversampling | Class | Precision | Recall (Sensitivity) | F1- Score | Specificity |
---|---|---|---|---|---|
ADASYN | No-Anemia | 0.97 | 0.96 | 0.96 | 0.99 |
Hgb | 0.96 | 0.96 | 0.96 | 0.99 | |
Iron | 0.97 | 0.96 | 0.96 | 0.99 | |
Folate | 0.99 | 0.99 | 0.99 | 1.00 | |
B12 | 0.98 | 0.99 | 0.99 | 1.00 | |
SMOTE | No-Anemia | 0.98 | 0.97 | 0.97 | 1.00 |
Hgb | 0.96 | 0.95 | 0.95 | 1.00 | |
Iron | 0.97 | 0.96 | 0.96 | 0.99 | |
Folate | 1.00 | 1.00 | 1.00 | 1.00 | |
B12 | 1.00 | 1.00 | 1.00 | 1.00 | |
ROS | No-Anemia | 1.00 | 1.00 | 1.00 | 1.00 |
Hgb | 1.00 | 1.00 | 1.00 | 1.00 | |
Iron | 1.00 | 1.00 | 1.00 | 1.00 | |
Folate | 1.00 | 1.00 | 1.00 | 1.00 | |
B12 | 1.00 | 1.00 | 1.00 | 1.00 | |
Original | No-Anemia | 0.97 | 0.96 | 0.96 | 0.99 |
Hgb | 0.76 | 0.73 | 0.74 | 0.96 | |
Iron | 0.88 | 0.84 | 0.86 | 0.97 | |
Folate | 0.72 | 0.70 | 0.71 | 0.96 | |
B12 | 0.68 | 0.66 | 0.67 | 0.97 |
Oversampling | Class | Precision | Recall (Sensitivity) | F1- Score | Specificity |
---|---|---|---|---|---|
ADASYN | No-Anemia | 0.99 | 0.98 | 0.98 | 0.99 |
Hgb | 0.99 | 1 | 0.99 | 0.99 | |
Iron | 1 | 0.99 | 0.99 | 0.99 | |
Folate | 1 | 1 | 1 | 0.99 | |
B12 | 1 | 1 | 1 | 0.99 | |
SMOTE | No-Anemia | 0.99 | 0.98 | 0.99 | 0.99 |
Hgb | 0.99 | 1 | 0.99 | 0.99 | |
Iron | 1 | 0.98 | 0.99 | 0.99 | |
Folate | 1 | 1 | 1 | 0.99 | |
B12 | 1 | 1 | 1 | 0.99 | |
ROS | No-Anemia | 1 | 1 | 1 | 1 |
Hgb | 1 | 1 | 1 | 1 | |
Iron | 1 | 1 | 1 | 1 | |
Folate | 1 | 1 | 1 | 1 | |
B12 | 1 | 1 | 1 | 1 | |
Original | No-Anemia | 1 | 1 | 1 | 1 |
Hgb | 0.99 | 1 | 0.99 | 0.99 | |
Iron | 1 | 1 | 1 | 1 | |
Folate | 0.97 | 1 | 0.98 | 0.99 | |
B12 | 0.99 | 0.95 | 0.97 | 0.99 |
ROS | ADASYN | SMOTE | Original | |
---|---|---|---|---|
KNN | 2.10 | 2.35 | 2.43 | 3.13 |
SVM | 1.53 | 3.55 | 2.48 | 2.45 |
RF | 1.38 | 1.98 | 1.7 | 2.95 |
DT | 1.78 | 3.05 | 2.85 | 2.4 |
CNN | 1.15 | 1.93 | 2.25 | 3.68 |
CNN+RF | 1.15 | 1.8 | 2.45 | 4.6 |
CNN+SVM | 1.15 | 1.95 | 2.5 | 4.4 |
Onto-SVM | 1.10 | 2 | 3.15 | 3.85 |
Onto-CNN+SVM | 1.0 | 1.8 | 2.50 | 3.70 |
XGBoost | 1.0 | 1.0 | 1.0 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awaad, A.S.; Elbarawy, Y.M.; Mancy, H.; Ghannam, N.E. Exploring CBC Data for Anemia Diagnosis: A Machine Learning and Ontology Perspective. BioMedInformatics 2025, 5, 35. https://doi.org/10.3390/biomedinformatics5030035
Awaad AS, Elbarawy YM, Mancy H, Ghannam NE. Exploring CBC Data for Anemia Diagnosis: A Machine Learning and Ontology Perspective. BioMedInformatics. 2025; 5(3):35. https://doi.org/10.3390/biomedinformatics5030035
Chicago/Turabian StyleAwaad, Amira S., Yomna M. Elbarawy, H. Mancy, and Naglaa E. Ghannam. 2025. "Exploring CBC Data for Anemia Diagnosis: A Machine Learning and Ontology Perspective" BioMedInformatics 5, no. 3: 35. https://doi.org/10.3390/biomedinformatics5030035
APA StyleAwaad, A. S., Elbarawy, Y. M., Mancy, H., & Ghannam, N. E. (2025). Exploring CBC Data for Anemia Diagnosis: A Machine Learning and Ontology Perspective. BioMedInformatics, 5(3), 35. https://doi.org/10.3390/biomedinformatics5030035