Research on the Application and Interpretability of Predictive Statistical Data Analysis Methods in Medicine
1. Introduction
2. Interpretable Complex Predictive Algorithms
3. Multivariable Data Can Be Analyzed in Several Ways
4. Statistical Synthesis of Results from a Series of Studies
Funding
Conflicts of Interest
References
- Rowe, M. An Introduction to Machine Learning for Clinicians. Acad. Med. 2019, 94, 1433–1436. [Google Scholar] [CrossRef] [PubMed]
- Petch, J.; Di, S.; Nelson, W. Opening the Black Box: The Promise and Limitations of Explainable Machine Learning in Cardiology. Can. J. Cardiol. 2022, 38, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Athanasopoulou, K.; Daneva, G.N.; Adamopoulos, P.G.; Scorilas, A. Artificial Intelligence: The Milestone in Modern Biomedical Research. BioMedInformatics 2022, 2, 727–744. [Google Scholar] [CrossRef]
- Matheny, M.; Israni, S.T.; Ahmed, M.; Whicher, D. (Eds.) Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril; National Academy of Medicine: Washington, DC, USA, 2019; ISBN 2013206534. [Google Scholar]
- Carvalho, D.V.; Pereira, E.M.; Cardoso, J.S. Machine Learning Interpretability: A Survey on Methods and Metrics. Electronics 2019, 8, 832. [Google Scholar] [CrossRef]
- Vilone, G.; Longo, L. Notions of Explainability and Evaluation Approaches for Explainable Artificial Intelligence. Inf. Fusion 2021, 76, 89–106. [Google Scholar] [CrossRef]
- Ultsch, A.; Hoffmann, J.; Röhnert, M.A.; von Bonin, M.; Oelschlägel, U.; Brendel, C.; Thrun, M.C. An Explainable AI System for the Diagnosis of High Dimensional Biomedical Data. BioMedInformatics 2024, 4, 197–218. [Google Scholar] [CrossRef]
- Krause, T.; Wassan, J.T.; Mc Kevitt, P.; Wang, H.; Zheng, H.; Hemmje, M. Analyzing Large Microbiome Datasets Using Machine Learning and Big Data. BioMedInformatics 2021, 1, 138–165. [Google Scholar] [CrossRef]
- Saarela, M.; Jauhiainen, S. Comparison of Feature Importance Measures as Explanations for Classification Models. SN Appl. Sci. 2021, 3, 272. [Google Scholar] [CrossRef]
- Yin, Y.; Bingi, Y. Using Machine Learning to Classify Human Fetal Health and Analyze Feature Importance. BioMedInformatics 2023, 3, 280–298. [Google Scholar] [CrossRef]
- Lötsch, J.; Kringel, D.; Ultsch, A. Explainable Artificial Intelligence (XAI) in Biomedicine: Making AI Decisions Trustworthy for Physicians and Patients. BioMedInformatics 2022, 2, 1–17. [Google Scholar] [CrossRef]
- Eder, M.; Moser, E.; Holzinger, A.; Jean-Quartier, C.; Jeanquartier, F. Interpretable Machine Learning with Brain Image and Survival Data. BioMedInformatics 2022, 2, 492–510. [Google Scholar] [CrossRef]
- Gashi, M.; Vuković, M.; Jekic, N.; Thalmann, S.; Holzinger, A.; Jean-Quartier, C.; Jeanquartier, F. State-of-the-Art Explainability Methods with Focus on Visual Analytics Showcased by Glioma Classification. BioMedInformatics 2022, 2, 139–158. [Google Scholar] [CrossRef]
- Christodoulou, E.; Ma, J.; Collins, G.S.; Steyerberg, E.W.; Verbakel, J.Y.; Van Calster, B. A Systematic Review Shows No Performance Benefit of Machine Learning over Logistic Regression for Clinical Prediction Models. J. Clin. Epidemiol. 2019, 110, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Lötsch, J.; Ultsch, A. Pitfalls of Using Multinomial Regression Analysis to Identify Class-Structure-Relevant Variables in Biomedical Data Sets: Why a Mixture of Experts (MOE) Approach Is Better. BioMedInformatics 2023, 3, 869–884. [Google Scholar] [CrossRef]
- Strelcenia, E.; Prakoonwit, S. Effective Feature Engineering and Classification of Breast Cancer Diagnosis: A Comparative Study. BioMedInformatics 2023, 3, 616–631. [Google Scholar] [CrossRef]
- Nieminen, P. Application of Standardized Regression Coefficient in Meta-Analysis. BioMedInformatics 2022, 2, 434–458. [Google Scholar] [CrossRef]
- Hudon, A.; Aird, M.; La Haye-Caty, N. Deciphering the Mosaic of Therapeutic Potential: A Scoping Review of Neural Network Applications in Psychotherapy Enhancements. BioMedInformatics 2023, 3, 1101–1111. [Google Scholar] [CrossRef]
- Christopoulou, S.C. Towards Automated Meta-Analysis of Clinical Trials: An Overview. BioMedInformatics 2023, 3, 115–140. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieminen, P. Research on the Application and Interpretability of Predictive Statistical Data Analysis Methods in Medicine. BioMedInformatics 2024, 4, 321-325. https://doi.org/10.3390/biomedinformatics4010018
Nieminen P. Research on the Application and Interpretability of Predictive Statistical Data Analysis Methods in Medicine. BioMedInformatics. 2024; 4(1):321-325. https://doi.org/10.3390/biomedinformatics4010018
Chicago/Turabian StyleNieminen, Pentti. 2024. "Research on the Application and Interpretability of Predictive Statistical Data Analysis Methods in Medicine" BioMedInformatics 4, no. 1: 321-325. https://doi.org/10.3390/biomedinformatics4010018
APA StyleNieminen, P. (2024). Research on the Application and Interpretability of Predictive Statistical Data Analysis Methods in Medicine. BioMedInformatics, 4(1), 321-325. https://doi.org/10.3390/biomedinformatics4010018