Photobiomodulation in the Treatment of Spasticity in Children and Adolescents with Cerebral Palsy: A Controlled, Single-Blinded, Pilot Randomized Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Recruitment
2.2. Eligibility Criteria
2.2.1. Inclusion Criteria
- Children and teenagers with a diagnosis of spastic cerebral palsy affecting the gastrocnemius of the right lower limb, of any etiology, for at least 3 months. These participants have already received medical recommendation for physiotherapy. They are undergoing a standard multidisciplinary rehabilitation program.
- Age: 2 to 18 years old.
2.2.2. Exclusion Criteria
- Fixed anatomical deformities of the ankle that do not allow ankle joint movement assessed clinically using a goniometer by having participants perform both active and passive ankle movements. Participants who exhibited neither passive nor active ankle movement were excluded;
- Acute, untreated clinical conditions with the potential to increase spasticity, such as acute fractures, skin ulcers, acute infections, undiagnosed lesions in the treatment region, presence of severe gastroesophageal reflux disease; a malnutrition state;
- Infection, lesions, or tumor at the therapy application site;
- Another type of movement or tone disorder;
- History of photosensitivity to photonic therapy or light;
- Use of topical photosensitizing medications or creams;
- Use of previous botulinum toxin injection within 6 months before the study.
2.3. Participant Recruitment, Randomization, and Allocation
2.4. Blinding
2.5. Sample Size
2.6. Interventions
2.6.1. Physiotherapy Rehabilitation Hospital’s Standard Program
2.6.2. PBM Intervention Group
2.6.3. Placebo PBM Therapy
2.7. Outcomes and Measures
2.7.1. Primary Outcome
- Change from baseline to 8 weeks in the spasticity of right gastrocnemius muscles evaluated using the Modified Ashworth Scale (MAS) [34]. The MAS was assessed once before the intervention series, once after the final session, and once daily before each of the eight PBM sessions, resulting in a total of ten assessments per participant.
2.7.2. Secondary Outcomes
- Change from baseline to 8 weeks in the passive range of motion (ROM) of the right ankle measured with a goniometer. The ankle joint range of motion (ROM) was assessed to evaluate passive dorsiflexion. All measurements were performed by the PI with the participant positioned supine on a firm examination table. The lower limb was stabilized with the hip in a neutral position and the knee maintained in full extension to specifically assess the length of the gastrocnemius muscle. A standard plastic goniometer was used for all measurements. The goniometer was aligned according to established international protocols: the fulcrum was placed inferior to the lateral malleolus, the stationary arm was aligned parallel to the longitudinal axis of the fibula (referencing the fibular head), and the movement arm was aligned parallel to the lateral aspect of the fifth metatarsal. Passive dorsiflexion was performed slowly to minimize the elicitation of velocity-dependent spasticity. The measurement was taken at the end of the available range of motion, determined by a firm end-feel or initial heel lift.
- Change from baseline to 8 weeks in functional abilities and limitations evaluated using the Gross Motor Function Classification System (GMFCS) [35].
- Occurrence of adverse events and pain during PBM intervention
2.7.3. Other Exploratory Outcomes
- Change from baseline to 8 weeks in the Pediatric Evaluation of Disability Inventory (PEDI).
- Age;
- Gender;
- Brain injury etiology and paralysis type;
- Time since injury and duration of physiotherapy treatment;
- Medications in use;
- Comorbidities and surgical history;
- Assistive technology used (walking aid or orthosis).
2.8. Statistical Analyses
2.9. Safety/Harms
2.10. Ethics and Dissemination Plan
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disability Language/Terminology Positionality Statement
Abbreviations
| ATP | Adenosine TriPhosphate |
| CP | Cerebral Palsy |
| GEE | Generalized Estimating Equations |
| GMFCS | Gross Motor Function Classification System |
| ICF | Informed Consent Form |
| J | Joules |
| KS | Kolmgorov-Smirnov |
| LED | Light Emitting Diode |
| MAS | Modified Ashworth Scale |
| nm | Nanometers |
| η2 | Eta-squared |
| PEDI | Pediatric Evaluation of Disability Inventory |
| PI | Principal investigator |
| PBM | Photobiomodulation |
| QIC | Independence Model Criterion |
| ROM | Range of motion |
| ROS | Reactive oxygen species |
| s.d. | Standard deviation |
| W | Watt |
| mW | MilliWatt |
| WALT | World Association of Laser Therapy |
References
- Rosenbloom, L. Definition, Classification, and the Clinician. Dev. Med. Child Neurol. 2007, 49, 43. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, P.L.; Paneth, N.; Leviton, A.; Goldstein, M.; Bax, M. The Definition and Classification of Cerebral Palsy. Dev. Med. Child Neurol. 2007, 49, 1–44. [Google Scholar] [CrossRef]
- Trompetto, C.; Marinelli, L.; Mori, L.; Pelosin, E.; Currà, A.; Molfetta, L.; Abbruzzese, G. Pathophysiology of Spasticity: Implications for Neurorehabilitation. Biomed. Res. Int. 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Sáinz Pelayo, M.P.; Albu, S.; Murillo, N.; Benito Penalva, J. Espasticidad En La Patología Neurológica. Actualización Sobre Mecanismos Fisiopatológicos, Avances En El Diagnóstico y Tratamiento. Rev. Neurol. 2020, 70, 453. [Google Scholar] [CrossRef]
- Lieber, R.L.; Steinman, S.; Barash, I.A.; Chambers, H. Structural and Functional Changes in Spastic Skeletal Muscle. Muscle Nerve 2004, 29, 615–627. [Google Scholar] [CrossRef]
- Sussman, M.D. Book Review: J. R. Gage, M.H. Schwartz, S.E. Koop, T.F. Novacheck (Eds): The Identification and Treatment of Gait Problems in Cerebral Palsy. J. Child Orthop. 2010, 4, 177–178. [Google Scholar] [CrossRef]
- Rethlefsen, S.A. Causes of Intoeing Gait in Children with Cerebral Palsy. J. Bone Jt. Surg. 2006, 88, 2175. [Google Scholar]
- Satkunam, L.E. Rehabilitation Medicine: 3. Management of Adult Spasticity. CMAJ 2003, 169, 1173–1179. [Google Scholar]
- Rekand, T. Clinical Assessment and Management of Spasticity: A Review. Acta Neurol. Scand. 2010, 122, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Rosales, R.L.; Dressler, D. On Muscle Spindles, Dystonia and Botulinum Toxin. Eur. J. Neurol. 2010, 17, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Gracies, J.-M.; Bayle, N.; Goldberg, S.; Simpson, D.M. Botulinum Toxin Type B in the Spastic Arm: A Randomized, Double-Blind, Placebo-Controlled, Preliminary Study. Arch. Phys. Med. Rehabil. 2014, 95, 1303–1311. [Google Scholar] [CrossRef] [PubMed]
- Graham, L.A. Management of Spasticity Revisited. Age Ageing 2013, 42, 435–441. [Google Scholar] [CrossRef]
- Dompe, C.; Moncrieff, L.; Matys, J.; Grzech-Leśniak, K.; Kocherova, I.; Bryja, A.; Bruska, M.; Dominiak, M.; Mozdziak, P.; Skiba, T.; et al. Photobiomodulation—Underlying Mechanism and Clinical Applications. J. Clin. Med. 2020, 9, 1724. [Google Scholar] [CrossRef] [PubMed]
- Karu, T. Primary and Secondary Mechanisms of Action of Visible to Near-IR Radiation on Cells. J. Photochem. Photobiol. B 1999, 49, 1–17. [Google Scholar] [CrossRef]
- Karu, T.I. Cellular and Molecular Mechanisms of Photobiomodulation (Low-Power Laser Therapy). IEEE J. Sel. Top. Quantum Electron. 2014, 20, 143–148. [Google Scholar] [CrossRef]
- Frankowski, D.W.; Ferrucci, L.; Arany, P.R.; Bowers, D.; Eells, J.T.; Gonzalez-Lima, F.; Lohr, N.L.; Quirk, B.J.; Whelan, H.T.; Lakatta, E.G. Light Buckets and Laser Beams: Mechanisms and Applications of Photobiomodulation (PBM) Therapy. Geroscience 2025, 47, 2777–2789. [Google Scholar] [CrossRef]
- Clijsen, R.; Brunner, A.; Barbero, M.; Clarys, P.; Taeymans, J. Effects of Low-Level Laser Therapy on Pain in Patients with Musculoskeletal Disorders: A Systematic Review and Meta-Analysis. Eur. J. Phys. Rehabil. Med. 2017, 53, 603–610. [Google Scholar] [CrossRef]
- Stamborowski, S.F.; Lima, F.P.S.; Leonardo, P.S.; Lima, M.O. A Comprehensive Review on the Effects of Laser Photobiomodulation on Skeletal Muscle Fatigue in Spastic Patients. Int. J. Photoenergy 2021, 2021, 5519709. [Google Scholar] [CrossRef]
- Ferraresi, C.; Huang, Y.; Hamblin, M.R. Photobiomodulation in Human Muscle Tissue: An Advantage in Sports Performance? J. Biophotonics 2016, 9, 1273–1299. [Google Scholar] [CrossRef] [PubMed]
- Glass, G.E. Photobiomodulation: A Review of the Molecular Evidence for Low Level Light Therapy. J. Plast. Reconstr. Aesthetic Surg. 2021, 74, 1050–1060. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, A.; Carrick, F.R.; Hoffman, N.; Jemni, M. The Impact of Low-Level Laser Therapy on Spasticity in Children with Spastic Cerebral Palsy: A Systematic Review. Brain Sci. 2024, 14, 1179. [Google Scholar] [CrossRef]
- Eldridge, S.M.; Chan, C.L.; Campbell, M.J.; Bond, C.M.; Hopewell, S.; Thabane, L.; Lancaster, G.A.; PAFS consensus group. CONSORT 2010 Statement: Extension to Randomised Pilot and Feasibility Trials. Pilot Feasibility Stud. 2016, 2, 64. [Google Scholar] [CrossRef]
- Chen, C.-L.; Chen, C.-Y.; Chen, H.-C.; Wu, C.-Y.; Lin, K.-C.; Hsieh, Y.-W.; Shen, I.-H. Responsiveness and Minimal Clinically Important Difference of Modified Ashworth Scale in Patients with Stroke. Eur. J. Phys. Rehabil. Med. 2019, 55, 754–760. [Google Scholar] [CrossRef]
- Mutlu, A.; Livanelioglu, A.; Gunel, M.K. Reliability of Ashworth and Modified Ashworth Scales in Children with Spastic Cerebral Palsy. BMC Musculoskelet Disord. 2008, 9, 44. [Google Scholar] [CrossRef]
- Lieber, R.L.; Fridén, J. Functional and Clinical Significance of Skeletal Muscle Architecture. Muscle Nerve 2000, 23, 1647–1666. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.A.; Polgar, J.; Weightman, D.; Appleton, D. Data on the Distribution of Fibre Types in Thirty-Six Human Muscles. J. Neurol. Sci. 1973, 18, 111–129. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.T.B.R.; Nascimento, K.S.; Carazzato, S.; Barros, A.O.; Mendes, F.M.; Diniz, M.B. Efficacy of Photobiomodulation Therapy on Masseter Thickness and Oral Health-Related Quality of Life in Children with Spastic Cerebral Palsy. Lasers Med. Sci. 2017, 32, 1279–1288. [Google Scholar] [CrossRef]
- Santos, M.T.B.R.; Diniz, M.B.; Gouw-Soares, S.C.; Lopes-Martins, R.A.B.; Frigo, L.; Baeder, F.M. Evaluation of Low-Level Laser Therapy in the Treatment of Masticatory Muscles Spasticity in Children with Cerebral Palsy. J. Biomed. Opt. 2016, 21, 028001. [Google Scholar] [CrossRef]
- World Association Laser Therapy (WALT) Recommended Treatment Doses for Low Level Laser Therapy 780-860 Nm Wavelength: World Association for Laser Therapy, 2010. Available online: https://waltpbm.org/wp-content/uploads/2021/08/Dose_table_780-860nm_for_Low_Level_Laser_Therapy_WALT-2010.pdf (accessed on 18 May 2025).
- Hamblin, M.R. Mechanisms and Applications of the Anti-Inflammatory Effects of Photobiomodulation. AIMS Biophys 2017, 4, 337–361. [Google Scholar] [CrossRef]
- Huang, Y.-Y.; Sharma, S.K.; Carroll, J.; Hamblin, M.R. Biphasic Dose Response in Low Level Light Therapy—An Update. Dose-Response 2011, 9. [Google Scholar] [CrossRef]
- Merletti, R.; Cerone, G.L. Tutorial. Surface EMG Detection, Conditioning and Pre-Processing: Best Practices. J. Electromyogr. Kinesiol. 2020, 54, 102440. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of Recommendations for SEMG Sensors and Sensor Placement Procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Nourizadeh, M.; Shadgan, B.; Abbasidezfouli, S.; Juricic, M.; Mulpuri, K. Methods of Muscle Spasticity Assessment in Children with Cerebral Palsy: A Scoping Review. J. Orthop. Surg. Res. 2024, 19, 401. [Google Scholar] [CrossRef] [PubMed]
- Palisano, R.; Rosenbaum, P.; Walter, S.; Russell, D.; Wood, E.; Galuppi, B. Development and Reliability of a System to Classify Gross Motor Function in Children with Cerebral Palsy. Dev. Med. Child Neurol. 1997, 39, 214–223. [Google Scholar] [CrossRef]
- LIANG, K.-Y.; ZEGER, S.L. Longitudinal Data Analysis Using Generalized Linear Models. Biometrika 1986, 73, 13–22. [Google Scholar] [CrossRef]
- de Melo, M.B.; Daldegan-Bueno, D.; Menezes Oliveira, M.G.; de Souza, A.L. Beyond ANOVA and MANOVA for Repeated Measures: Advantages of Generalized Estimated Equations and Generalized Linear Mixed Models and Its Use in Neuroscience Research. Eur. J. Neurosci. 2022, 56, 6089–6098. [Google Scholar] [CrossRef] [PubMed]
- Cui, J. QIC Program and Model Selection in GEE Analyses. Stata J. Promot. Commun. Stat. Stata 2007, 7, 209–220. [Google Scholar] [CrossRef]
- Covatti, C.; Mizobuti, D.S.; da Rocha, G.L.; da Silva, H.N.M.; Minatel, E. Photobiomodulation Therapy Effects at Different Stages of the Dystrophic Phenotype: A Histomorphometric Study. J. Manipulative Physiol. Ther. 2024, 47, 142–154. [Google Scholar] [CrossRef]
- Chen, J.; Hu, Q.; Hu, J.; Liu, S.; Yin, L. Differences in the Effectiveness of Different Physical Therapy Modalities in the Treatment of Delayed-Onset Muscle Soreness: A Systematic Review and Bayesian Network Meta-Analysis. J. Pain Res. 2025, 18, 2993–3008. [Google Scholar] [CrossRef]
- Assis, L.; Moretti, A.I.S.; Abrahão, T.B.; Cury, V.; Souza, H.P.; Hamblin, M.R.; Parizotto, N.A. Low-level Laser Therapy (808 Nm) Reduces Inflammatory Response and Oxidative Stress in Rat Tibialis Anterior Muscle after Cryolesion. Lasers Surg. Med. 2012, 44, 726–735. [Google Scholar] [CrossRef]
- Liu, H.; Cheema, U.; Player, D.J. Photobiomodulation Therapy (PBMT) in Skeletal Muscle Regeneration: A Comprehensive Review of Mechanisms, Clinical Applications, and Future Directions. Photodiagnosis Photodyn. Ther. 2025, 53, 104634. [Google Scholar] [CrossRef]
- Walker, J.B. Temporary Suppression of Clonus in Humans by Brief Photostimulation. Brain Res. 1985, 340, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Asagai, Y.; Ueno, R.; Miura, Y.; Ohshiro, T. Application of low reactive-level laser therapy (lllt) in patients with cerebral palsy of the adult tension athetosis type. Laser Ther. 1995, 7, 113–118. [Google Scholar] [CrossRef]
- Tsuchiya, K.; Harada, T.; Ushigome, N.; Ohkuni, I.; Ohshiro, T.; Musya, Y.; Mizutani, K.; Maruyama, Y.; Suguro, T. Low level laser therapy (lllt) for cerebral palsy. Laser Ther. 2008, 17, 29–33. [Google Scholar] [CrossRef]
- Putri, D.E.; Srilestari, A.; Abdurrohim, K.; Mangunatmadja, I.; Wahyuni, L.K. The Effect of Laser Acupuncture on Spasticity in Children with Spastic Cerebral Palsy. J. Acupunct. Meridian Stud. 2020, 13, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Dabbous, O.A.; Mostafa, Y.M.; El Noamany, H.A.; El Shennawy, S.A.; El Bagoury, M.A. Laser Acupuncture as an Adjunctive Therapy for Spastic Cerebral Palsy in Children. Lasers Med. Sci. 2016, 31, 1061–1067. [Google Scholar] [CrossRef]
- Santos, M.T.B.R.; Pinto, M.d.S.; do Nascimento, K.S.; Maciel, S.C. Photobiomodulation Effect on the Masseter Muscle in Children with Cerebral Palsy: A Case Report. Acta Fisiátrica 2015, 22. [Google Scholar] [CrossRef]
- Abdelhalim, S.M.; Shoukry, K.E.; Alsharnoubi, J. Effect of Low-Level Laser Therapy on Quadriceps and Foot Muscle Fatigue in Children with Spastic Diplegia: A Randomized Controlled Study. Lasers Med. Sci. 2023, 38, 182. [Google Scholar] [CrossRef]
- Liguori, S.; Young, V.M.; Arienti, C.; Pollini, E.; Patrini, M.; Gimigliano, F.; Negrini, S.; Kiekens, C. Overview of Cochrane Systematic Reviews for Rehabilitation Interventions in Individuals with Cerebral Palsy: A Mapping Synthesis. Dev. Med. Child Neurol. 2023, 65, 1280–1291. [Google Scholar] [CrossRef]
- Shilesh, K.; Karthikbabu, S.; Rao, P.T. The Impact of Functional Strength Training on Muscle Strength and Mobility in Children with Spastic Cerebral Palsy—A Systematic Review and Meta-Analysis. Dev. Neurorehabil. 2023, 26, 262–277. [Google Scholar] [CrossRef]
- Peacock, J.L.; Lo, J.; Rees, J.R.; Sauzet, O. Minimal Clinically Important Difference in Means in Vulnerable Populations: Challenges and Solutions. BMJ Open 2021, 11, e052338. [Google Scholar] [CrossRef]
- Gal, O.; Baude, M.; Deltombe, T.; Esquenazi, A.; Gracies, J.; Hoskovcova, M.; Rodriguez-Blazquez, C.; Rosales, R.; Satkunam, L.; Wissel, J.; et al. Clinical Outcome Assessments for Spasticity: Review, Critique, and Recommendations. Mov. Disord. 2025, 40, 22–43. [Google Scholar] [CrossRef]
- Pandyan, A.D.; Johnson, G.R.; Price, C.I.M.; Curless, R.H.; Barnes, M.P.; Rodgers, H. A Review of the Properties and Limitations of the Ashworth and Modified Ashworth Scales as Measures of Spasticity. Clin. Rehabil. 1999, 13, 373–383. [Google Scholar] [CrossRef]
- Aviram, R.; Kima, I.; Parmet, Y.; Bassan, H.; Willigenburg, T.; Riemer, R.; Bar-Haim, S. Haemodynamics and Oxygenation in the Lower-limb Muscles of Young Ambulatory Adults with Cerebral Palsy. Dev. Med. Child Neurol. 2023, 65, 978–987. [Google Scholar] [CrossRef]
- Martín-Sierra, P.; Sanchez, C.; Urendes, E.; Raya, R. Assessment of Upper Limb Motor Control: Establishing Normative Benchmarks for Clinical Applications. PeerJ 2025, 13, e19859. [Google Scholar] [CrossRef]
- das Neves, M.F.; Pinto, A.P.; Maegima, L.T.; Lima, F.P.S.; Lopes-Martins, R.Á.B.; Lo Schiavo Arisawa, E.A.; Lima, M.O. Effects of Photobiomodulation on Pain, Lactate and Muscle Performance (ROM, Torque, and EMG Parameters) of Paretic Upper Limb in Patients with Post-Stroke Spastic Hemiparesis—A Randomized Controlled Clinical Trial. Lasers Med. Sci. 2024, 39, 88. [Google Scholar] [CrossRef] [PubMed]
- Nourizadeh, M.; Saremi, Y.; Pirhadi Rad, A.P.; Mortezanezhad, S.; Tehrani, I.A.; Bégin, J.; Juricic, M.; Mulpuri, K.; Shadgan, B. Evaluating the Intensity of Muscle Contraction by Near-Infrared Spectroscopy, a Potential Application for Scaling Muscle Spasm. J. Biophotonics 2025, 18, e70020. [Google Scholar] [CrossRef]
- Cheung, J.; Rancourt, A.; Di Poce, S.; Levine, A.; Hoang, J.; Ismail, F.; Boulias, C.; Phadke, C.P. Patient-Identified Factors That Influence Spasticity in People with Stroke and Multiple Sclerosis Receiving Botulinum Toxin Injection Treatments. Physiother. Can. 2015, 67, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Phadke, C.P.; Balasubramanian, C.K.; Ismail, F.; Boulias, C. Revisiting Physiologic and Psychologic Triggers That Increase Spasticity. Am. J. Phys. Med. Rehabil. 2013, 92, 357–369. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, P. Muscle Physiology in Spasticity and Muscle Stiffness. Toxicon 2025, 259, 108350. [Google Scholar] [CrossRef] [PubMed]
- Sayed, R.K.A.; Hibbert, J.E.; Jorgenson, K.W.; Hornberger, T.A. The Structural Adaptations That Mediate Disuse-Induced Atrophy of Skeletal Muscle. Cells 2023, 12, 2811. [Google Scholar] [CrossRef]
- Yeo, D. Muscle Disuse Atrophy. In The Skeletal Muscle: Plasticity, Degeneration and Epigenetics; Ji, L.L., Ed.; Springer: Berlin/Heidelberg, Germany, 2025; pp. 157–183. [Google Scholar]
- Reggiani, C.; Marcucci, L. Breaking the Link between Sarcoplasmic Reticulum Calcium Leakage and Mitochondria to Counteract Unloading-Induced Muscle Atrophy. Pflugers Arch. 2025, 477, 1241–1243. [Google Scholar] [CrossRef]
- Delfinis, L.J.; Khajehzadehshoushtar, S.; Perry, C.G.R. Perspectives on the Interpretation of Mitochondrial Responses during Skeletal Muscle Disuse-induced Atrophy. J. Physiol. 2025, 603, 3679–3699. [Google Scholar] [CrossRef]
- Oates, B.R.; Glover, E.I.; West, D.W.; Fry, J.L.; Tarnopolsky, M.A.; Phillips, S.M. Low-volume Resistance Exercise Attenuates the Decline in Strength and Muscle Mass Associated with Immobilization. Muscle Nerve 2010, 42, 539–546. [Google Scholar] [CrossRef]
- Thot, G.K.; Berwanger, C.; Mulder, E.; Lee, J.K.; Lichterfeld, Y.; Ganse, B.; Giakoumaki, I.; Degens, H.; Duran, I.; Schönau, E.; et al. Effects of Long-term Immobilisation on Endomysium of the Soleus Muscle in Humans. Exp. Physiol. 2021, 106, 2038–2045. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, L.; Gruber, M. Neuromuscular Mechanisms for the Fast Decline in Rate of Force Development with Muscle Disuse—A Narrative Review. J. Physiol. 2024. [Google Scholar] [CrossRef]



| Device | Laserpulse (Ibramed TM) |
|---|---|
| Wavelength (nm) | LED 850 |
| Emission Mode | Continuous |
| Application Technique | Perpendicular contact point |
| Power (mW) | 100 |
| Beam area on target (cm2) | 0.5 |
| Energy (J)/point | 1.5 |
| Fluence (J/cm2) | 3 |
| Time (s)/point | 15 |
| Total energy/session (J) | 3 |
| Points | 1 point in each gastrocnemius muscle (lateral and medial, total 2 points in total) |
| Group | Gender | Age (Years) | Previous BoNT-A Injections | Previous Surgery | AFO | GMFCS | Baseline MAS |
|---|---|---|---|---|---|---|---|
| PBM | M | 12 | No | Hip flexor muscle stretching 2 years ago | Rigid bilateral calcaneal orthosis, wheelchair | IV | 3 |
| P | F | 12 | No | Tonsillectomy and adenoidectomy | Rigid bilateral calcaneal orthosis, wheelchair | IV | 2 |
| PBM | M | 12 | No | No | Rigid bilateral calcaneal orthosis, wheelchair | V | 3 |
| PBM | F | 7 | No | No | Rigid bilateral calcaneal orthosis, wheelchair | V | 2 |
| P | M | 7 | No | Valve placement for ventriculo peritoneal shunt, bilateral triceps surae tendon stretching in April 2023, umbilical hernia correction 1 year ago, bilateral orchidopexy and phimosis correction more than 1 year ago | Rigid bilateral calcaneal orthosis, a pair of crutches | IV | 2 |
| P | M | 13 | Once, bilateral triceps sural more than 6 months ago | Bilateral hip flexor stretching, orchidopexy more than 1 year ago | Rigid bilateral calcaneal orthosis, wheelchair | IV | 2 |
| PBM | F | 13 | No | Valve placement for ventriculo peritoneal shunt at 2 years old, and at 9 months years old | Wheelchair | V | 1 |
| P | F | 14 | Once, left wrist flexors, May 2022 | Left cavus foot correction with calcaneus and medial foot osteotomy and anterior and posterior tibial tendon stretching, right cavovarus foot correction, all in August 2022 | Rigid bilateral calcaneal orthosis, wheelchair | V | 2 |
| PBM | F | 7 | No | Placement of gastrostomy and gastric antireflux valve surgery | Rigid bilateral calcaneal orthosis, wheelchair | V | 1 |
| PBM | M | 16 | No | Surgery to correct bilateral hip dislocation 5 years ago and gastrostomy 4 months ago | A pair of crutches | V | 2 |
| P | M | 16 | Once, left wrist flexors, 2012 | Hip flexor stretches, knee flexor stretches and bilateral triceps surae streches, more than 1 year ago | Rigid bilateral calcaneal orthosis, wheelchair | IV | 3 |
| PBM | F | 13 | No | No | Wheelchair | IV | 3 |
| Group | Mean | s.d. | N | |
|---|---|---|---|---|
| MAS_baseline | PBM | 2.14 | 0.900 | 7 |
| Placebo | 2.20 | 0.447 | 5 | |
| MAS_final | PBM | 0.86 | 0.378 | 7 |
| Placebo | 1.60 | 0.548 | 5 |
| Source | Type III SS | F | Sig. | Partial η2 |
|---|---|---|---|---|
| Moment | Linear | 15.647 | 0.003 | 0.610 |
| Moment/Group | Linear | 2.069 | 0.181 | 0.171 |
| Source | Type III | ||
|---|---|---|---|
| Wald Chi Square | df | p | |
| (Intercept) | 88.731 | 1 | 0.000 |
| Group | 0.001 | 1 | 0.973 |
| Moment | 6.202 | 2 | 0.045 |
| Group Moment/Intervention | 1.843 | 2 | 0.398 |
| Moment Intervention | Mean Difference | Std. Error | df | p (Bonferroni) | 95% Wald Confidence Interval for Difference | ||
|---|---|---|---|---|---|---|---|
| Lower | Upper | ||||||
| 1 | 2 | 0.45 | 0.199 | 1 | 0.073 | −0.03 | 0.92 |
| 3 | 0.49 | 0.230 | 1 | 0.100 | −0.06 | 1.04 | |
| 2 | 3 | 0.04 | 0.185 | 1 | >0.999 | −0.40 | 0.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zöll, A.C.; Amorim, A.C.F.G.; Shimozato, I.A.D.; de Moraes, F.L.B.; Rodrigues, M.F.S.D.; Mesquita-Ferrari, R.A.; Cecatto, R.B. Photobiomodulation in the Treatment of Spasticity in Children and Adolescents with Cerebral Palsy: A Controlled, Single-Blinded, Pilot Randomized Trial. Disabilities 2025, 5, 112. https://doi.org/10.3390/disabilities5040112
Zöll AC, Amorim ACFG, Shimozato IAD, de Moraes FLB, Rodrigues MFSD, Mesquita-Ferrari RA, Cecatto RB. Photobiomodulation in the Treatment of Spasticity in Children and Adolescents with Cerebral Palsy: A Controlled, Single-Blinded, Pilot Randomized Trial. Disabilities. 2025; 5(4):112. https://doi.org/10.3390/disabilities5040112
Chicago/Turabian StyleZöll, Ariane Cristina, Ana Cristina Ferreira Garcia Amorim, Illora Aswinkumar Darbar Shimozato, Fabia Lopes Borelli de Moraes, Maria Fernanda Setúbal Destro Rodrigues, Raquel Agnelli Mesquita-Ferrari, and Rebeca Boltes Cecatto. 2025. "Photobiomodulation in the Treatment of Spasticity in Children and Adolescents with Cerebral Palsy: A Controlled, Single-Blinded, Pilot Randomized Trial" Disabilities 5, no. 4: 112. https://doi.org/10.3390/disabilities5040112
APA StyleZöll, A. C., Amorim, A. C. F. G., Shimozato, I. A. D., de Moraes, F. L. B., Rodrigues, M. F. S. D., Mesquita-Ferrari, R. A., & Cecatto, R. B. (2025). Photobiomodulation in the Treatment of Spasticity in Children and Adolescents with Cerebral Palsy: A Controlled, Single-Blinded, Pilot Randomized Trial. Disabilities, 5(4), 112. https://doi.org/10.3390/disabilities5040112

