Single-Parameter Aging in the Weakly Nonlinear Limit
Abstract
:1. Introduction
2. The TN Formalism and Single-Parameter Aging
3. Calculation of a Generalized Fragility
4. Solving the Jump Differential Equation to First Order in the Temperature Change
5. Numerical Results for a Binary Lennard–Jones Model
5.1. The Relevant Fluctuation–Dissipation Theorem
5.2. Simulation Results
6. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Mazurin, O. Relaxation phenomena in glass. J. Non-Cryst. Solids 1977, 25, 129–169. [Google Scholar] [CrossRef]
- Struik, L.C.E. Physical Aging in Amorphous Polymers and Other Materials; Elsevier: Amsterdam, The Netherland, 1978. [Google Scholar]
- Scherer, G.W. Relaxation in Glass and Composites; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Hodge, I.M. Physical aging in polymer glasses. Science 1995, 267, 1945–1947. [Google Scholar] [CrossRef] [Green Version]
- Chamon, C.; Kennett, M.P.; Castillo, H.E.; Cugliandolo, L.F. Separation of time scales and reparametrization invariance for aging systems. Phys. Rev. Lett. 2002, 89, 217201. [Google Scholar] [CrossRef] [Green Version]
- Priestley, R.D. Physical aging of confined glasses. Soft Matter 2009, 5, 919–926. [Google Scholar] [CrossRef]
- Grassia, L.; Simon, S.L. Modeling volume relaxation of amorphous polymers: Modification of the equation for the relaxation time in the KAHR model. Polymer 2012, 53, 3613–3620. [Google Scholar] [CrossRef]
- Cangialosi, D.; Boucher, V.M.; Alegria, A.; Colmenero, J. Physical aging in polymers and polymer nanocomposites: Recent results and open questions. Soft Matter 2013, 9, 8619–8630. [Google Scholar] [CrossRef]
- Dyre, J.C. Aging of CKN: Modulus versus conductivity analysis. Phys. Rev. Lett. 2013, 110, 245901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micoulaut, M. Relaxation and physical aging in network glasses: A review. Rep. Prog. Phys. 2016, 79, 066504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKenna, G.B.; Simon, S.L. 50th anniversary perspective: Challenges in the dynamics and kinetics of glass-forming polymers. Macromolecules 2017, 50, 6333–6361. [Google Scholar] [CrossRef]
- Roth, C.B. (Ed.) Polymer Glasses; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Ruta, B.; Pineda, E.; Evenson, Z. Relaxation processes and physical aging in metallic glasses. J. Phys. Condens. Mat. 2017, 29, 503002. [Google Scholar] [CrossRef]
- Mauro, J.C. Materials Kinetics: Transport and Rate Phenomena; Elsevier: Amsterdan, The Netherlands, 2021. [Google Scholar]
- Simon, F. Über den Zustand der unterkühlten Flüssigkeiten und Gläser. Z. Anorg. Allg. Chem. 1931, 203, 219–227. [Google Scholar] [CrossRef]
- Olsen, N.B.; Dyre, J.C.; Christensen, T. Structural relaxation monitored by instantaneous shear modulus. Phys. Rev. Lett. 1998, 81, 1031–1033. [Google Scholar] [CrossRef] [Green Version]
- Hecksher, T.; Olsen, N.B.; Niss, K.; Dyre, J.C. Physical aging of molecular glasses studied by a device allowing for rapid thermal equilibration. J. Chem. Phys. 2010, 133, 174514. [Google Scholar] [CrossRef] [PubMed]
- Hecksher, T.; Olsen, N.B.; Dyre, J.C. Communication: Direct tests of single-parameter aging. Chem. Phys. 2015, 142, 241103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hecksher, T.; Olsen, N.B.; Dyre, J.C. Fast contribution to the activation energy of a glass-forming liquid. Proc. Natl. Acad. Sci. USA 2019, 116, 16736–16741. [Google Scholar] [CrossRef] [Green Version]
- Roed, L.A.; Hecksher, T.; Dyre, J.C.; Niss, K. Generalized single-parameter aging tests and their application to glycerol. J. Chem. Phys. 2019, 150, 044501. [Google Scholar] [CrossRef] [Green Version]
- Riechers, B.; Roed, L.A.; Mehri, S.; Ingebrigtsen, T.S.; Hecksher, T.; Dyre, J.C.; Niss, K. Predicting nonlinear physical aging of glasses from equilibrium relaxation via the material time. Sci. Adv. 2022, 8, eabl9809. [Google Scholar] [CrossRef] [PubMed]
- Kolla, S.; Simon, S.L. The t-effective paradox: New measurements towards a resolution. Polymer 2005, 46, 733–739. [Google Scholar] [CrossRef]
- Schlosser, E.; Schönhals, A. Dielectric relaxation during physical aging. Polymer 1991, 32, 2135–2140. [Google Scholar] [CrossRef]
- Leheny, R.L.; Nagel, S.R. Frequency-domain study of physical aging in a simple liquid. Phys. Rev. B 1998, 57, 5154–5162. [Google Scholar] [CrossRef]
- Lunkenheimer, P.; Wehn, R.; Schneider, U.; Loidl, A. Glassy aging dynamics. Phys. Rev. Lett. 2005, 95, 055702. [Google Scholar] [CrossRef]
- Richert, R. Supercooled liquids and glasses by dielectric relaxation spectroscopy. Adv. Chem. Phys. 2015, 156, 101–195. [Google Scholar]
- Kovacs, A.J. Transition vitreuse dans les polymeres amorphes. Etude phenomenologique. Fortschr. Hochpolym.-Forsch. 1963, 3, 394–507. [Google Scholar]
- Spinner, S.; Napolitano, A. Further studies in the annealing of a borosilicate glass. J. Res. NBS 1966, 70, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Narayanaswamy, O.S. A model of structural relaxation in glass. J. Amer. Ceram. Soc. 1971, 54, 491–498. [Google Scholar] [CrossRef]
- Moynihan, C.T.; Easteal, A.J.; DeBolt, M.A.; Tucker, J. Dependence of the fictive temperature of glass on cooling rate. J. Am. Ceram. Soc. 1976, 59, 12–16. [Google Scholar] [CrossRef]
- Chen, H.S. The influence of structural relaxation on the density and Young’s modulus of metallic glasses. J. Appl. Phys. 1978, 49, 3289–3291. [Google Scholar] [CrossRef]
- Huang, Y.; Paul, D.R. Physical aging of thin glassy polymer films monitored by gas permeability. Polymer 2004, 45, 8377–8393. [Google Scholar] [CrossRef]
- Leonardo, R.D.; Scopigno, T.; Ruocco, G.; Buontempo, U. Spectroscopic cell for fast pressure jumps across the glass transition line. Rev. Sci. Instrum. 2004, 75, 2631–2637. [Google Scholar] [CrossRef] [Green Version]
- Ruta, B.; Chushkin, Y.; Monaco, G.; Cipelletti, L.; Pineda, E.; Bruna, P.; Giordano, V.M.; Gonzalez-Silveira, M. Atomic-scale relaxation dynamics and aging in a metallic glass probed by x-ray photon correlation spectroscopy. Phys. Rev. Lett. 2012, 109, 165701. [Google Scholar] [CrossRef] [Green Version]
- Brun, C.; Ladieu, F.; L’Hote, D.; Biroli, G.; Bouchaud, J.-P. Evidence of growing spatial correlations during the aging of glassy glycerol. Phys. Rev. Lett. 2012, 109, 175702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angell, C.A. Formation of glasses from liquids and biopolymers. Science 1995, 267, 1924–1935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, J.K.; Dyre, J.C. Fluctuation-dissipation theorem for frequency-dependent specific heat. Phys. Rev. B 1996, 54, 15754–15761. [Google Scholar] [CrossRef] [PubMed]
- Kob, W.; Andersen, H.C. Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture I: The van Hove correlation function. Phys. Rev. E 1995, 51, 4626–4641. [Google Scholar] [CrossRef] [Green Version]
- Nose, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511. [Google Scholar] [CrossRef] [Green Version]
- Bailey, N.P.; Ingebrigtsen, T.S.; Hansen, J.S.; Veldhorst, A.A.; Bøhling, L.; Lemarchand, C.A.; Olsen, A.E.; Bacher, A.K.; Costigliola, L.; Pedersen, U.R.; et al. RUMD: A general purpose molecular dynamics package optimized to utilize GPU hardware down to a few thousand particles. Scipost Phys. 2017, 3, 38. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.P.; Tildesley, D.J. Computer Simulation of Liquids; Oxford Science Publications: Oxford, UK, 1987. [Google Scholar]
- Olsen, N.B.; Christensen, T.; Dyre, J.C. Time-temperature superposition in viscous liquids. Phys. Rev. Lett. 2001, 86, 1271–1274. [Google Scholar] [CrossRef] [Green Version]
- Mehri, S.; Ingebrigtsen, T.S.; Dyre, J.C. Single-parameter aging in a binary Lennard-Jones system. J. Chem. Phys. 2021, 154, 094504. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehri, S.; Costigliola, L.; Dyre, J.C. Single-Parameter Aging in the Weakly Nonlinear Limit. Thermo 2022, 2, 160-170. https://doi.org/10.3390/thermo2030013
Mehri S, Costigliola L, Dyre JC. Single-Parameter Aging in the Weakly Nonlinear Limit. Thermo. 2022; 2(3):160-170. https://doi.org/10.3390/thermo2030013
Chicago/Turabian StyleMehri, Saeed, Lorenzo Costigliola, and Jeppe C. Dyre. 2022. "Single-Parameter Aging in the Weakly Nonlinear Limit" Thermo 2, no. 3: 160-170. https://doi.org/10.3390/thermo2030013
APA StyleMehri, S., Costigliola, L., & Dyre, J. C. (2022). Single-Parameter Aging in the Weakly Nonlinear Limit. Thermo, 2(3), 160-170. https://doi.org/10.3390/thermo2030013