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Abstract: Physical aging deals with slow property changes over time caused by molecular rear-
rangements. This is relevant for non-crystalline materials such as polymers and inorganic glasses,
both in production and during subsequent use. The Narayanaswamy theory from 1971 describes
physical aging—an inherently nonlinear phenomenon—in terms of a linear convolution integral over
the so-called material time ξ. The resulting “Tool–Narayanaswamy (TN) formalism” is generally
recognized to provide an excellent description of physical aging for small, but still highly nonlin-
ear, temperature variations. The simplest version of the TN formalism is single-parameter aging
according to which the clock rate dξ/dt is an exponential function of the property monitored. For
temperature jumps starting from thermal equilibrium, this leads to a first-order differential equation
for property monitored, involving a system-specific function. The present paper shows analytically
that the solution to this equation to first order in the temperature variation has a universal expression
in terms of the zeroth-order solution, R0(t). Numerical data for a binary Lennard–Jones glass former
probing the potential energy confirm that, in the weakly nonlinear limit, the theory predicts aging
correctly from R0(t) (which by the fluctuation–dissipation theorem is the normalized equilibrium
potential-energy time-autocorrelation function).
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1. Introduction

The properties of non-crystalline materials, such as polymers and inorganic glasses,
change slightly over time. In many cases, the aging is so slow that it cannot be observed,
but sometimes it results in unwanted degradation of material properties. When aging is
exclusively due to molecular rearrangements, with no chemical reactions involved, one
speaks about physical aging [1–14]. The present-day understanding of physical aging is
based on the century-old observation [15] that any glass is in an out-of-equilibrium state
and, as a consequence, relaxes continuously toward the equilibrium state.

During physical aging, the system’s volume decreases slightly. This reflects the fact
that the equilibrium metastable liquid is denser than the glass at the same temperature.
Likewise, the enthalpy decreases during aging. Both effects are extremely difficult to
observe because they are minute and take place over a very long time. Defining a glass
as any non-equilibrium state of a liquid resulting from a thermodynamic perturbation,
a good way of studying physical aging is the following: First, equilibrate the glass-forming
liquid at some “annealing” temperature just below the calorimetric glass-transition tem-
perature. Depending on the viscosity of the liquid, this may take long time—experiments
often study liquids at temperatures for which the equilibrium relaxation time is hours
or days [16–21]; if the equilibrium relaxation time is one day, annealing the sample for a
week ensures virtually complete thermal equilibrium. Once the sample has been equili-
brated, the temperature is changed rapidly to a new value and kept there for a time long
enough to allow for monitoring virtually the entire equilibration process. This defines an
“ideal aging experiment” [17,22]. Such an experiment requires the ability to monitor some
quantity accurately and continuously as a function of time, excellent temperature control,
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and the ability to change temperature rapidly [17]. Aging may be probed by measuring
any property that can be monitored precisely, e.g., the electrical capacitance at a partic-
ular frequency [21,23–26]; in conjunction with a Peltier-element-based fast and accurate
temperature control, this is our favorite method in Roskilde [21]. Other quantities that
have been monitored during physical aging include, e.g., density [27,28], enthalpy [29,30],
Young’s modulus [31], gas permeability [32], high-frequency mechanical moduli [16,33],
dc conductivity [2], X-ray photon correlation spectroscopy [34], and nonlinear dielectric
susceptibility [35].

The present paper develops the theory of aging by studying the so-called single-
parameter aging framework, which is the simplest realization of the concept of a material
time that controls aging in the Tool-–Narayanaswamy (TN) formalism [3]. An important
prediction of the TN formalism is that if the aging rate is known as a function of the
property monitored, knowledge of the linear limit of physical aging, e.g., following an
infinitesimal temperature jump, is enough to quantitatively determine the aging that results
from any time-dependent temperature variation. According to the fluctuation–dissipation
(FD) theorem, any linear-response property is determined by thermal-equilibrium fluc-
tuations quantified in terms of a time-autocorrelation function. The prospect for future
experimental investigations is that one can make quantitative predictions about aging from
the knowledge of equilibrium fluctuations.

Single-parameter aging results in a first-order differential equation for the normalized
relaxation function following a temperature jump [18]. This equation involves an a priori
unknown, system-specific function that determines the linear limit of aging. In order to
predict aging, however, it is enough to know the linear-limit relaxation function that, by
the FD theorem, is the relevant equilibrium time-autocorrelation function. This paper
derives an explicit expression for the weakly nonlinear limit of aging based on the relevant
equilibrium time-autocorrelation function. After developing the theory in Section 2, we
provide an example of how to calculate a quantity similar to the fragility of glass science in
Section 3; this section can be skipped in a first reading of the paper. The general first-order
solution to single-parameter aging following a temperature jump is derived in Section 4.
The validity of the formalism is illustrated in Section 5 by results from computer simulations
of a binary Lennard–Jones system; the final section provides a brief discussion.

2. The TN Formalism and Single-Parameter Aging

The quantity probed during aging is denoted by χ(t). Following a temperature jump
at t = 0, χ(t) gradually approaches its equilibrium value χeq at the new temperature T0.
We define the normalized relaxation function R(t) by

R(t) ≡ χ(t)− χeq

χ(0)− χeq
. (1)

By definition, R(t) is unity at t = 0 and approaches zero as t→ ∞. Thus for both tempera-
ture up and down jumps, R(t) is a decreasing function of time. In practice, in experiments
as well as simulations, there is always a rapid initial change of χ(t) immediately after t = 0
deriving from χ’s dependence on the fast, vibrational degrees of freedom and/or one or
more fast relaxation processes decoupled from the main and slowest (α) relaxation. For
this reason, workers in the field often normalize the relaxation function by defining R(t)
to be unity after the initial rapid change of χ(t). That is different from what is done in
Equation (1) and below, which is our preference because it avoids introducing the extra
parameter that comes from estimating the value of the short-time “plateau” of χ(t).

The TN material time is denoted by ξ. This quantity, which may be thought of as the
time measured on a clock with a clock rate γ(t) that changes as the material ages, is related
to the clock rate as follows

dξ = γ(t)dt . (2)
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According to the TN formalism, the material time ξ = ξ(t) controls the physical aging in
such a way that the variation of χ, denoted by

∆χ(ξ) ≡ χ(ξ)− χeq , (3)

is a linear convolution integral over the temperature variation history T(ξ)− T0 in which
T0 is the “reference” temperature [3,29].

Single-parameter aging (SPA) is the simplest version of the TN formalism [18]. SPA
assumes that the clock rate γ(t) is an exponential function of the monitored property, i.e.,

γ(t) = γeq exp
(

∆χ(t)
χ0

)
. (4)

Here, γeq is the equilibrium relaxation rate at T0 and χ0 is a constant with the same
dimension as χ. In conjunction with the TN prediction that physical aging is linear in the
temperature variation when formulated in terms of the material time, SPA may be applied
to any relatively small (continuous or discontinuous) temperature variation around T0,
not just for the discontinuous temperature jumps to which the below discussion is limited.
Since ∆χ(t) = ∆χ(0)R(t) by the definition of R(t), Equation (4) may be rewritten as

γ(t) = γeq exp
(

∆χ(0)
χ0

R(t)
)

. (5)

For temperature jumps the TN fundamental result is that [3,29]

R(t) = Φ(ξ) (6)

in which the function Φ(ξ) is the same for all temperature jumps of a given system. In
view of the nonlinearity of physical aging, this is a highly nontrivial prediction. Keeping in
mind the definition of γ(t) (Equation (2)), Equation (6) implies Ṙ(t) = Φ′(ξ)γ(t). Since,
according to Equation (6), ξ is the same function of R for all jumps, defining F(R) ≡
−Φ′(ξ(R)) leads to the “jump differential equation”

Ṙ(t) = −F(R)γ(t) = −γeq F(R) exp
(

∆χ(0)
χ0

R(t)
)

(7)

in which F(R) is the same function for all jumps of a given system. The negative sign in
the definition of F(R) is introduced in order to make F(R) positive.

Equation (7) has been confirmed in experiments on a silicone oil and several organic
liquids [18,20,21] aged to equilibrium just below their calorimetric glass transition tem-
perature. Even though the largest temperature jumps studied were just a few percent,
this is enough to exhibit a strongly nonlinear response with more than one decade of
relaxation-time variation. One experimental test of Equation (7) involved rewriting it
as [18,20]

− Ṙ(t)
γeq

exp
(
−∆χ(0)

χ0
R(t)

)
= F(R) (8)

and showing that the left-hand side is the same function of R for different jumps. A second
test confirmed the consequence of Equation (7) that the R(t) for an arbitrary jump may be
predicted from data of a single jump [18,20,21].

This paper develops the SPA formalism based on Equation (7) that, for simplicity, is
rewritten by adopting the unit system in which γeq = 1 at the temperature T0:

Ṙ = − F(R) eΛR (9)

with

Λ ≡ ∆χ(0)
χ0

. (10)
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3. Calculation of a Generalized Fragility

Each value of Λ leads to a unique solution denoted by R(t, Λ) of the jump differential
equation, Equation (9), with the initial condition R(0, Λ) = 1. As a first illustration of how
perturbation theory may be applied whenever |Λ| � 1, we determine the Λ dependence
of the average relaxation time defined by

τ(Λ) ≡
∫ ∞

0
R(t, Λ)dt . (11)

From τ(Λ), a fragility-like [36] parameter ma (subscript “a” for aging) may be defined by

ma ≡ −
d

dΛ
ln τ

∣∣∣∣
Λ=0

. (12)

The minus ensures that ma > 0 because Λ > 0 from Equation (9) leads to a faster relaxation.
We proceed to derive the following expression in which R0(t) ≡ R(t, Λ = 0)

ma =

∫ ∞
0 R2

0(t)dt∫ ∞
0 R0(t)dt

. (13)

Note that whenever 0 < R0(t) < 1, which is usually the case [18], one has ma < 1.
Note also that, since γeq(Λ) = exp(Λ) from Equation (9), the equilibrium relaxation time
τeq(Λ) ≡ 1/γeq(Λ) obeys d ln τeq = −dΛ. Using this, one can transform Equation (13)
into an expression for how the relative change of τ(Λ) from its value at T0 depends on the
relative change of the equilibrium relaxation time between the two temperatures involved
in the jump, i.e.,

d ln τ

d ln τeq

∣∣∣∣
T=T0

=

∫ ∞
0 R2

0(t)dt∫ ∞
0 R0(t)dt

= ma . (14)

The fact that ma < 1 is now intuitively obvious, since the graph of R(t) obviously falls
between the equilibrium relaxation function graphs at the two temperatures.

To derive Equation (13), note that Equation (9) implies dt = − exp(−ΛR) dR/F(R).
Thus

τ(Λ) = −
∫ 0

1

R e−ΛR

F(R)
dR =

∫ 1

0

R e−ΛR

F(R)
dR . (15)

From this we get

τ(Λ = 0) =
∫ 1

0

R
F(R)

dR . (16)

and

dτ

dΛ

∣∣∣∣
Λ=0

= −
∫ 1

0

R2

F(R)
dR . (17)

By substituting R = R0 into both integrals and switching back to time as the integration
variable, one finds

ma =

∫ 1
0

R2
0

F(R0)
dR0∫ 1

0
R0

F(R0)
dR0

=

∫ ∞
0 R2

0(t) dt∫ ∞
0 R0(t) dt

. (18)

An alternative proof of Equation (13) makes use of an integral criterion derived in Ref. [18]
(Appendix A).

For the calculation of ma from experimental or computer simulation data on R0(t),
one proceeds as follows. Given a sequence of times (∆t, 2∆t, 3∆t, . . . , n∆t) at which the
equilibrium normalized relaxation function (R0,1, R0,2, R0,3, . . . , R0,n) is known, we have
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ma =
∑n

j=1 R2
0,j

∑n
j=1 R0,j

. (19)

As an example of the above, we consider the case in which the linear-limit relaxation
function is a stretched exponential with exponent β (for simplicity, a dimensionless time is
used below),

R0(t) = e−tβ
. (20)

Defining the function

f (α, β) =
∫ ∞

0
e−αtβ

dt , (21)

we have ma = f (2, β)/ f (1, β). Since

f (2, β) =
∫ ∞

0
e−2tβ

dt = 2−1/β
∫ ∞

0
e−2tβ

d(21/βt) = 2−1/β f (1, β) , (22)

we get

ma = 2−1/β . (23)

If the normalized relaxation function in the experimental time window is described by a
stretched exponential with the short-time plateau C < 1, i.e., by the function C exp(−tβ),
one finds

ma = C 2−1/β . (24)

4. Solving the Jump Differential Equation to First Order in the Temperature
Change ∆T

To find the solution, R(t, Λ), of the jump differential equation in first-order perturba-
tion theory we proceed as follows. A first-order expansion of R(t),

R(t) = R0(t) + ΛR1(t) , (25)

is substituted into Equation (9) where R0(t) is the normalized relaxation function cor-
responding to an infinitesimal jump, i.e., to the linear limit of aging (this function is
discussed below in Section 5.1). To first order in Λ, one has F(R) = F(R0) + F′(R0)ΛR1
and exp(ΛR) = 1 + ΛR = 1 + ΛR0. This results in

Ṙ0 + ΛṘ1 = −
(

F(R0) + F′(R0)ΛR1
)(

1 + ΛR0
)

, (26)

which leads to the following zeroth- and first-order equations:

Ṙ0 = −F(R0) (27)

Ṙ1 = −F(R0)R0 − F′(R0)R1 . (28)

Due to the zero-time normalization of both R(t) and R0(t), the initial condition of R1 is
R1(0) = 0. For t > 0, one has R1(t) < 0 because Λ > 0, as mentioned, implies a faster
relaxation toward equilibrium, i.e., R(t) < R0(t). Consequently, since R1(0) = R1(t →
∞) = 0, the function R1(t) is non-monotonous.

The solution to Equation (28), obeying the initial condition R1(0) = 0, is

R1(t) = Ṙ0(t)
∫ t

0
R0(t′)dt′ . (29)

To derive this, we proceed as follows. First, note that the inverse of R(t, Λ) is given by
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t(R, Λ) = −
∫ R

1
e−ΛR′ dR′

F(R′)
, (30)

which follows by rewriting Equation (9) as dt = − exp(−ΛR) dR/F(R) and integrating.
Next, we note that because R(t, 0) = R0(t), one has

R1(t) =

(
∂R
∂Λ

)
t
= −

(
∂t
∂Λ

)
R(

∂t
∂R

)
Λ

(31)

in which it here and henceforth is understood that all functions are evaluated at Λ = 0,
implying that one should put R = R0 in the final evaluations. Since dR0/F(R0) = −dt,
using Equation (30) the numerator is evaluated as follows(

∂t
∂Λ

)
R
=
∫ R

1
R′

dR′

F(R′)
= −

∫ t

0
R0 dt′ . (32)

For Λ = 0, the denominator of Equation (31) is given by(
∂t
∂R

)
Λ

=
1

Ṙ0(t)
. (33)

Combining these results, one arrives at Equation (29). To confirm that Equation (29) indeed
solves Equation (28), one differentiates:

Ṙ1(t) = R̈0(t)
∫ t

0
R0(t′)dt′ + Ṙ0(t)R0(t) . (34)

Since R̈0 = −F′(R0)Ṙ0 by Equation (27), we see that Ṙ1 = −F′(R0)R1 − F(R0)R0 as
required.

As an illustration, we show how Equation (29) leads to Equation (13). From Equations
(11), (12) and (25) one easily derives

ma = −
∫ ∞

0 R1(t)dt∫ ∞
0 R0(t)dt

. (35)

This is simplified by performing a partial integration:

−
∫ ∞

0
R1(t)dt = −

∫ ∞

0
Ṙ0(t)

(∫ t

0
R0(t′)dt′

)
dt

= −
[

R0(t)
(∫ t

0
R0(t′)dt′

)]∞

0
+
∫ ∞

0
R2

0(t)dt

=
∫ ∞

0
R2

0(t)dt . (36)

We thus arrive at Equation (13).

5. Numerical Results for a Binary Lennard–Jones Model
5.1. The Relevant Fluctuation–Dissipation Theorem

When the externally controlled variable is temperature itself, a slightly modified
derivation of the FD theorem is required [37]. In the end, however, the result looks much
like in the standard FD case: If ∆β(t) is the variation of β ≡ 1/kBT from its equilibrium
value at the reference temperature, δβ(t) ≡ β(t + dt)− β(t), and sharp brackets denote
standard canonical averages, the variation of the potential energy is given [37] by

∆U(t) = −〈(∆U)2〉∆β(t) +
∫ t

−∞
〈∆U(0)∆U(t− t′)〉 δβ(t′) . (37)
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Following a small inverse-temperature jump of magnitude ∆β, ∆U(t)→ −〈(∆U)2〉∆β for
t→ ∞. Since ∆β = −∆T0/kBT2

0 , this leads to the well-known Einstein expression for the
specific heat, c = 〈(∆U)2〉/kBT2

0 .
Equation (37) implies that the response to a jump at t = 0 for t > 0 is given by

∆U(t) =
[
−〈(∆U)2〉+ 〈∆U(0)∆U(t)〉

]
∆β (note that right after the temperature jump one

has ∆U(t) ∼= 0 because of continuity). Therefore, the linear-response normalized relaxation
function, R0(t), is given by

R0(t) =
∆U(t)− ∆U(t = ∞)

∆U(0)− ∆U(t = ∞)
=
〈∆U(0)∆U(t)〉
〈(∆U)2〉 . (38)

5.2. Simulation Results

We simulated the well-known Kob–Andersen binary Lennard–Jones (KA) 80/20 mix-
ture of A and B particles [38] with the standard Nose–Hoover thermostat [39] by means of
the GPU-software RUMD [40]. The pair potentials of the KA system are Lennard–Jones
potentials defined by vij(r) = εij[(σij/r)12 − (σij/r)6] (i, j = A, B) with the following pa-
rameters: σAA = 1, σAB = 0.80, σBB = 0.88, εAA = 1, εAB = 1.5, and εBB = 0.5. All masses
are set to unity. A system of N = 8000 particles was simulated. In the units based on σAA
and εAA, the time step was ∆t = 0.0025, and the thermostat relaxation time was 0.2. The
potentials were cut and shifted at rc = 2.5σij.

The potential-energy time-autocorrelation function appearing in Equation (38) was
calculated at the reference temperature T0 = 0.60 as follows. First, 107 time steps were
taken for equilibration, which was confirmed from two consecutive runs comparing the
self-part of the intermediate scattering function. After that, a run of 5× 106 time steps
was carried out, dumping the potential energy every 32 time steps. The potential-energy
time-autocorrelation function was calculated using Fast Fourier Transform as implemented
in RUMD [41].

In SPA, the constant Λ of Equation (9) is assumed to be proportional to the change
in the monitored property, in casu ∆U. Λ was determined using the integral criterion of
Ref. [18], which considers two jumps to the same temperature: an up and a down jump.
For this we used the jumps from the temperatures 0.55 and 0.65 to T0 = 0.60 [21], leading to

Λ =
∆U

0.0404
. (39)

Here, ∆U is the equilibrium potential energy at the starting temperature minus the corre-
sponding quantity at the final temperature (following the tradition in the field). The Λ of
Equation (39) was used for all predictions.

Temperature-jump simulations were carried out as follows. First, 5× 108 time steps
were taken to ensure equilibration at the starting temperature. A total of 1000 configurations
were generated from a subsequent 5× 108 simulation by dumping configurations every 219

time steps. This ensures that the configurations are statistically independent at the lowest
temperature studied (T = 0.50). For each of the 1000 configurations, an aging simulation
of 106 time steps was performed and the potential energy was dumped every eighth time
step. The curves shown in Figure 1 represent averages over these 1000 aging simulations.
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Figure 1. Results from computer simulations of the Kob–Andersen binary Lennard–Jones model.
The figures show the normalized relaxation function R(t) (Equations (25) and (29)) defined from the
potential energy U after a temperature jump at t = 0 starting from a state of thermal equilibrium (blue
filled circles): (a,b) show results for magnitude 0.10 temperature up and down jumps to the reference
temperature T0 = 0.60; (c,d) show results for magnitude 0.05 temperature up and down jumps to
T0 = 0.60; (e,f) show results for magnitude 0.03 temperature up and down jumps to T0 = 0.60. The
orange filled circles are the first-order predictions of the jump differential equation Equation (9) (given
in Equation (25) in which R0(t) is the normalized equilibrium potential-energy time-autocorrelation
function at T0 = 0.60, R1(t) is given by Equation (29), and Λ is given by Equation (39)). For reference,
in all figures R0(t) is plotted as small black filled circles.

The averages were smoothed using a Gaussian function. Each point represents an average cal-
culated over all the data points using Ravg(t) = ∑t′ R(t′)exp(−(t− t′)2/σ)/∑t′ exp(−(t− t′)2/σ)
in which t′ is the time-step number and σ = 15,000. In order to reduce the number of points
in Figure 1, the data were divided into 24 bins per decade.

Figure 1 shows the simulation results (blue circles) for the normalized relaxation
function of the potential energy for up and down jumps to T0 = 0.60. The orange circles are
the predictions of the first-order theory. In all figures the small black filled circles are the
normalized equilibrium potential-energy time-autocorrelation function at T0 = 0.60, which
is the linear-limit normalized relaxation function R0(t) (Equation (38)). This function is
faster than R(t) for up jumps and slower for down jumps. This is expected since relaxation
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is initially slow for the up jumps to T0 = 0.60 because the fictive temperature [3] in this
case is below 0.60, while the opposite happens for the down jumps to T0 = 0.60.

We see that the theory generally fits the data well, even for the fairly large temperature
jumps of magnitude 0.05. Deviations between prediction and simulations is observed for
larger up jumps, though. A similar pattern has been observed in experiments but there the
observed relaxation function is faster than predicted, not slower [21]. In both cases, these
deviations serve to emphasize that SPA is not accurate for large jumps.

The TN formalism implies that the long-time decay of the normalized relaxation
function for infinitesimal jumps to different temperatures are identical except for an overall
scaling of the time, i.e., it obeys time–temperature superposition (TTS) [42]. In other words,
TTS is a necessary condition for TN to apply and thus, in particular, for SPA to apply. We
test TTS by plotting the normalized potential-energy time-autocorrelation functions R0(t)
at temperatures ranging from 0.50 to 0.70 (Figure 2a) and scaling these on the time axis
(Figure 2b). Except for the short-time signals that are not relevant to aging, we see that TTS
indeed applies to a very good approximation.
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Figure 2. Test of time–temperature superposition for the normalized potential-energy time-
autocorrelation function R0(t) at the temperatures indicated in the legends: (a) shows the simulation
data and (b) shows the same data empirically scaled on the time axis. We conclude that TTS applies
except at the shortest times.

6. Summary and Outlook

We solved the jump differential equation analytically to first order. The solution is
Equation (25) in which R1(t) is given by Equation (29). The solution does not explic-
itly involve the function F(R); indeed R1(t) has a universal expression in terms of the
zeroth-order solution, R0(t). Since the latter, by the fluctuation–dissipation theorem, is
an equilibrium time-autocorrelation function, our results imply that, within the single-
parameter aging scheme, knowledge of equilibrium fluctuations is enough to predict aging.
The expression of R1(t) relevant for the weakly nonlinear limit was confirmed by computer
simulations of the Kob–Andersen binary Lennard–Jones glass former monitoring the aging
of potential energy following temperature jumps of varying magnitudes.

For future development of the TN single-parameter aging formalism, it would be most
interesting to monitor the equilibrium fluctuations in experiments in order to check whether
aging is predicted correctly from these fluctuations. This is experimentally very challenging,
but should not be impossible. It would also be interesting to monitor other quantities in
simulations than the potential energy used here, although it should be mentioned that
many quantities relax in a very similar way for the Kob–Andersen system [43].
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Appendix A

Equation (13) is derived here from the integral criterion of Ref. [18] that considers
two jumps to the same temperature: an up and a down jump. For two small jumps of
same magnitude to the temperature T0, denoted by a and b, one has the two normalized
relaxation functions

Ra = R0 + ΛR1

Rb = R0 − ΛR1 . (A1)

The integral criterion [18] is∫ ∞

0

(
eΛabRa − 1

)
dt +

∫ ∞

0

(
eΛbaRb − 1

)
dt = 0 . (A2)

Here, Λab = −Λba is the difference in the value of Λ jumping from above and below, imply-
ing that Λab = 2Λ and Λba = −2Λ. When Equation (A1) is substituted into Equation (A2),
we get ∫ ∞

0

(
e2Λ(R0+ΛR1) − 1

)
dt +

∫ ∞

0

(
e−2Λ(R0−ΛR1) − 1

)
dt = 0 . (A3)

Expanding to second order in Λ leads to∫ ∞

0

(
2Λ(R0 + ΛR1) + 2Λ2R2

0 + (−2Λ(R0 −ΛR1)) + 2Λ2R2
0

)
dt = 0 . (A4)

This reduces to ∫ ∞

0

(
4Λ2R1 + 4Λ2R2

0

)
dt = 0 , (A5)

which implies Equation (36) and, therefore, Equation (13).
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