Structural and Optical Properties of Bi12NiO19 Sillenite Crystals: Application for the Removal of Basic Blue 41 from Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of the Sillenite Bi12NiO19
2.3. Characterization
2.4. Photocatalysis Test
3. Results
3.1. Characterization of the Sillenite Bi12NiO19
3.1.1. Phase Identification and Structural Investigation
3.1.2. Morphology Investigation
3.1.3. Optical Study
3.2. Photocatalytic Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baaloudj, O.; Nasrallah, N.; Kebir, M.; Khezami, L.; Amrane, A.; Assadi, A.A. A comparative study of ceramic nanoparticles synthesized for antibiotic removal: Catalysis characterization and photocatalytic performance modeling. Environ. Sci. Pollut. Res. 2020, 28, 13900–13912. [Google Scholar] [CrossRef] [PubMed]
- Achour, S.; Amokrane, S.; Chegrouche, S.; Nibou, D.; Baaloudj, O. Artificial neural network modeling of the hexavalent uranium sorption onto chemically activated bentonite. Res. Chem. Intermed. 2021, 24, 1–8. [Google Scholar] [CrossRef]
- Asadi-Ghalhari, M.; Mostafaloo, R.; Ghafouri, N.; Kishipour, A.; Usei, S.; Baaloudj, O. Removal of Cefixime from aqueous solutions via proxy electrocoagulation: Modeling and optimization by response surface methodology. React. Kinet. Mech. Catal. 2021, 27, 1–13. [Google Scholar] [CrossRef]
- Bourkeb, K.; Baaloudj, O. Facile electrodeposition of ZnO on graphitic substrate for photocatalytic application: Degradation of antibiotic in a continuous stirred-tank reactor. J. Solid State Electrochem. 2021, 6, 1–8. [Google Scholar] [CrossRef]
- Benrighi, Y.; Nasrallah, N.; Chaabane, T.; Sivasankar, V.; Darchen, A.; Baaloudj, O. Photocatalytic performances of ZnCr2O4 nanoparticles for cephalosporins removal: Structural, optical and electrochemical properties. Opt. Mater. 2021, 115, 111035. [Google Scholar] [CrossRef]
- Brahimi, B.; Mekatel, E.; Mellal, M.; Trari, M. Synthesis of the hexaferrite semiconductor SrFe12O19 and its application in the photodegradation of Basic Red 46. J. Mater. Sci. Mater. Electron. 2021, 32, 11780–11790. [Google Scholar] [CrossRef]
- Thi Mai Tho, N.; The Huy, B.; Nha Khanh, D.N.; Quoc Thang, N.; Thi Phuong Dieu, N.; Dai Duong, B.; Thi Kim Phuong, N. Mechanism of Visible-Light Photocatalytic Mineralization of Indigo Carmine Using ZnBi2O4-Bi2S3 Composites. ChemistrySelect 2018, 3, 9986–9994. [Google Scholar] [CrossRef]
- Mahmoodi, N.M. Magnetic ferrite nanoparticle-alginate composite: Synthesis, characterization and binary system dye removal. J. Taiwan Inst. Chem. Eng. 2013, 44, 322–330. [Google Scholar] [CrossRef]
- Mahmoodi, N.M. Surface modification of magnetic nanoparticle and dye removal from ternary systems. J. Ind. Eng. Chem. 2015, 162, 251–259. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Abdi, J.; Oveisi, M.; Alinia Asli, M.; Vossoughi, M. Metal-organic framework (MIL-100 (Fe)): Synthesis, detailed photocatalytic dye degradation ability in colored textile wastewater and recycling. Mater. Res. Bull. 2018, 100, 357–366. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Keshavarzi, S.; Ghezelbash, M. Synthesis of nanoparticle and modelling of its photocatalytic dye degradation ability from colored wastewater. J. Environ. Chem. Eng. 2017, 5, 3684–3689. [Google Scholar] [CrossRef]
- Kenfoud, H.; Nasrallah, N.; Baaloudj, O.; Meziani, D.; Chaabane, T.; Trari, M. Photocatalytic reduction of Cr(VI) onto the spinel CaFe2O4 nanoparticles. Optik 2020, 223, 165610. [Google Scholar] [CrossRef]
- Baaloudj, O.; Nasrallah, N.; Kebir, M.; Guedioura, B.; Amrane, A.; Nguyen-Tri, P.; Nanda, S.; Assadi, A.A. Artificial neural network modeling of cefixime photodegradation by synthesized CoBi2O4 nanoparticles. Environ. Sci. Pollut. Res. 2020, 28, 15436–15452. [Google Scholar] [CrossRef] [PubMed]
- Baaloudj, O.; Assadi, I.; Nasrallah, N.; El, A.; Khezami, L. Simultaneous removal of antibiotics and inactivation of antibiotic-resistant bacteria by photocatalysis: A review. J. Water Process Eng. 2021, 42, 102089. [Google Scholar] [CrossRef]
- Oliveira, O.G.; Mincache, A.J.; Dias, G.S.; Santos, I.A.; Guo, R.; Bhalla, A.S.; Cótica, L.F. Study of the crystal and electronic structures of (Bi1−xNdx)FeO3 compositions using Rietveld refinements and the maximum entropy method. Ferroelectrics 2019, 545, 167–174. [Google Scholar] [CrossRef]
- Im, W.B.; Page, K.; Denbaars, S.P.; Seshadri, R. Probing local structure in the yellow phosphor LaSr2 AlO5:Ce3+, by the maximum entropy method and pair distribution function analysis. J. Mater. Chem. 2009, 19, 8761–8766. [Google Scholar] [CrossRef]
- Wu, X.; Li, M.; Li, J.; Zhang, G.; Yin, S. A sillenite-type Bi12MnO20 photocatalyst: UV, visible and infrared lights responsive photocatalytic properties induced by the hybridization of Mn 3d and O 2p orbitals. Appl. Catal. B Environ. 2017, 219, 132–141. [Google Scholar] [CrossRef]
- Lin, X.; Huang, F.; Wang, W.; Xia, Y.; Wang, Y.; Liu, M.; Shi, J. Photocatalytic activity of a sillenite-type material Bi25GaO39. Catal. Commun. 2008, 9, 572–576. [Google Scholar] [CrossRef]
- Zhang, H.; Lü, M.; Liu, S.; Xiu, Z.; Zhou, G.; Zhou, Y.; Qiu, Z.; Zhang, A.; Ma, Q. Preparation and photocatalytic properties of sillenite Bi12TiO20 films. Surf. Coat. Technol. 2008, 202, 4930–4934. [Google Scholar] [CrossRef]
- Lima, A.F.; Lalic, M.V. First-principles study of the BiMO4 antisite defect in the Bi12MO20 (M = Si, Ge, Ti) sillenite compounds. J. Phys. Condens. Matter. 2013, 25, 495505. [Google Scholar] [CrossRef]
- Hou, D.; Hu, X.; Wen, Y.; Shan, B.; Hu, P.; Xiong, X.; Qiao, Y.; Huang, Y. Electrospun sillenite Bi12MO20 (M = Ti, Ge, Si) nanofibers: General synthesis, band structure, and photocatalytic activity. Phys. Chem. Chem. Phys. 2013, 15, 20698–20705. [Google Scholar] [CrossRef]
- Yao, W.F.; Wang, H.; Xu, X.H.; Zhou, J.T.; Yang, X.N.; Zhang, Y.; Shang, S.X.; Wang, M. Sillenites materials as novel photocatalysts for methyl orange decomposition. Chem. Phys. Lett. 2003, 377, 501–506. [Google Scholar] [CrossRef]
- Yao, W.F.; Xu, X.H.; Zhou, J.T.; Yang, X.N.; Zhang, Y.; Shang, S.X.; Wang, H.; Huang, B.B. Photocatalytic property of sillenite Bi24AlO39 crystals. J. Mol. Catal. A Chem. 2004, 212, 323–328. [Google Scholar] [CrossRef]
- Valant, M.; Suvorov, D. Processing and Dielectric Properties of Sillenite Compounds Bi12MO20-δ (M: Si, Ge, Ti, Pb, Mn, B1/2P1/2). ChemInform 2010, 33, 2900–2904. [Google Scholar] [CrossRef]
- Noh, T.H.; Hwang, S.W.; Kim, J.U.; Yu, H.K.; Seo, H.; Ahn, B.; Kim, D.W.; Cho, I.S. Optical properties and visible light-induced photocatalytic activity of bismuth sillenites (Bi12XO20, X = Si, Ge, Ti). Ceram. Int. 2017, 43, 12102–12108. [Google Scholar] [CrossRef]
- Kenfoud, H.; Baaloudj, O.; Nasrallah, N.; Bagtache, R.; Assadi, A.A.; Trari, M. Structural and electrochemical characterizations of Bi12CoO20 sillenite crystals: Degradation and reduction of organic and inorganic pollutants. J. Mater. Sci. Mater. Electron. 2021, 32, 16411–16420. [Google Scholar] [CrossRef]
- Vavilapalli, D.S.; Melvin, A.A.; Bellarmine, F.; Mannam, R.; Velaga, S.; Poswal, H.K.; Dixit, A.; Ramachandra Rao, M.S.; Singh, S. Growth of sillenite Bi+FeO+ single crystals: Structural, thermal, optical, photocatalytic features and first principle calculations. Sci. Rep. 2020, 10, 22052. [Google Scholar] [CrossRef] [PubMed]
- Baaloudj, O.; Nasrallah, N.; Assadi, A.A. Facile synthesis, structural and optical characterizations of Bi12ZnO20 sillenite crystals: Application for Cefuroxime removal from wastewater. Mater. Lett. 2021, 304, 130658. [Google Scholar] [CrossRef]
- Zhoua, P.; Xiaoa, F.; Jia, L. Bi12NiO19 micro-sheets grown on graphene oxide: Temperature-dependent facile synthesis and excellent electrochemical behavior for supercapacitor electrode. J. Electroanal. Chem. 2021, 884, 115075. [Google Scholar] [CrossRef]
- Pei, L.Z.; Wei, T.; Lin, N.; Zhang, H. Synthesis of bismuth nickelate nanorods and electrochemical detection of tartaric acid using nanorods modified electrode. J. Alloys Compd. 2016, 663, 677–685. [Google Scholar] [CrossRef]
- Rajamoorthy, M.; Geetha, D.; Sathiya Priya, A. Synthesis of Cobalt-Doped Bi12NiO19: Structural, Morphological, Dielectric and Magnetic Properties. Arab. J. Sci. Eng. 2021, 46, 737–744. [Google Scholar] [CrossRef]
- Giannopoulou, I.; Saïs, F.; Thomopoulos, R. Handbook-of-pharmaceutical-excipients-6th-edition. Rev. Nouv. Technol. Inf. 2015, E28, 257–262. [Google Scholar]
- Ma, Y.; Qiu, F.L.; Wei, T.; Lin, F.F.; Yan, L.; Wu, H.; Zhang, Y.; Pei, L.Z.; Fan, C.G. Facile Synthesis of Polyaniline/Bismuth Nickelate Nanorod Composites for Sensitive Tartaric Acid Detection. Surf. Eng. Appl. Electrochem. 2019, 55, 335–341. [Google Scholar] [CrossRef]
- Yé, Z.G.; Crottaz, O.; Vaudano, F.; Kubel, F.; Tissot, P.; Schmid, H. Single crystal growth, structure refinement, ferroelastic domains and phase transitions of the hausmannite CuCr2O4. Ferroelectrics 2011, 162, 103–118. [Google Scholar] [CrossRef] [Green Version]
- Dollase, W.A.; O’Neill, H.S.C. The spinels CuCr2O4 and CuRh2O4. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1997, 53, 657–659. [Google Scholar] [CrossRef]
- Karuppasamy, P.; Senthil Pandian, M.; Ramasamy, P.; Verma, S. Crystal growth, structural, optical, thermal, mechanical, laser damage threshold and electrical properties of triphenylphosphine oxide 4-nitrophenol (TP4N) single crystals for nonlinear optical applications. Opt. Mater. 2018, 79, 152–171. [Google Scholar] [CrossRef]
- Kenfoud, H.; Nasrallah, N.; Baaloudj, O.; Derridj, F.; Trari, M. Enhanced photocatalytic reduction of Cr(VI) by the novel hetero-system BaFe2O4/SnO2. J. Phys. Chem. Solids 2022, 160, 110315. [Google Scholar] [CrossRef]
- Tripathy, S.; Saini, D.S.; Bhattacharya, D. Synthesis and fabrication of MgAl2O4 ceramic foam via a simple, low-cost and eco-friendly method. J. Asian Ceram. Soc. 2016, 4, 149–154. [Google Scholar] [CrossRef] [Green Version]
- Makuła, P.; Pacia, M.; Macyk, W. How to Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef] [Green Version]
- Serpone, N. Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J. Phys. Chem. B 2006, 110, 24287–24293. [Google Scholar] [CrossRef]
- Miki-yoshida, M. Optical Band Gap Estimation of ZnO Nanorods a E = B^E − Eg h. Mat. Res. 2016, 19, 33–38. [Google Scholar] [CrossRef]
- Baaloudj, O.; Assadi, A.A.; Azizi, M.; Kenfoud, H.; Trari, M.; Amrane, A.; Assadi, A.A.; Nasrallah, N. Synthesis and Characterization of ZnBi2O4 Nanoparticles: Photocatalytic Performance for Antibiotic Removal under Different Light Sources. Appl. Sci. 2021, 11, 3975. [Google Scholar] [CrossRef]
- Kenfoud, H.; Nasrallah, N.; Meziani, D.; Trari, M. Photoelectrochemical study of the spinel CaFe2O4 nanostructure: Application to Basic Blue 41 oxidation under solar light. J. Solid State Electrochem. 2021, 25, 1815–1823. [Google Scholar] [CrossRef]
Phase | Bi12NiO19 | ||||
---|---|---|---|---|---|
Groupe Space | I 2 3 | ||||
a (Å) | 10.244759 | ||||
Atoms | Atom | x | y | z | Biso |
Ni1 | 0.000000 | 0.000000 | 0.000000 | 0.077 | |
Ni2 | 0.8216535 | 0.68130636 | 0.9814812 | 0.077 | |
Bi1 | 0.000000 | 0.000000 | 0.000000 | 0.923 | |
Bi2 | 0.9814812 | 0.68130636 | 0.8216535 | 0.923 | |
O1 | 0.83216524 | 0.6798176 | 0.459461 | 1 | |
O2 | 0.729963 | 0.729963 | 0.729963 | 1 | |
O3 | 0.123646714 | 0.123646714 | 0.123646714 | 0.75 | |
V (Å3) | 1083.4283 | ||||
D (nm) | 59.46 | ||||
R Factors | Rb | 9.5436 | |||
Rexp | 4.0007 | ||||
Rwp | 14.3421 | ||||
Sig | 3.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brahimi, B.; Kenfoud, H.; Benrighi, Y.; Baaloudj, O. Structural and Optical Properties of Bi12NiO19 Sillenite Crystals: Application for the Removal of Basic Blue 41 from Wastewater. Photochem 2021, 1, 319-329. https://doi.org/10.3390/photochem1030020
Brahimi B, Kenfoud H, Benrighi Y, Baaloudj O. Structural and Optical Properties of Bi12NiO19 Sillenite Crystals: Application for the Removal of Basic Blue 41 from Wastewater. Photochem. 2021; 1(3):319-329. https://doi.org/10.3390/photochem1030020
Chicago/Turabian StyleBrahimi, Billal, Hamza Kenfoud, Yasmine Benrighi, and Oussama Baaloudj. 2021. "Structural and Optical Properties of Bi12NiO19 Sillenite Crystals: Application for the Removal of Basic Blue 41 from Wastewater" Photochem 1, no. 3: 319-329. https://doi.org/10.3390/photochem1030020
APA StyleBrahimi, B., Kenfoud, H., Benrighi, Y., & Baaloudj, O. (2021). Structural and Optical Properties of Bi12NiO19 Sillenite Crystals: Application for the Removal of Basic Blue 41 from Wastewater. Photochem, 1(3), 319-329. https://doi.org/10.3390/photochem1030020