Panchromatic Copper Complexes for Visible Light Photopolymerization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Compounds
2.1.1. Compounds Used as Photoinitiators
2.1.2. Other Chemical Compounds
2.2. UV-Visible Absorption Spectroscopy
2.3. Steady-State Fluorescence
2.4. Photopolymerization Kinetics (FTIR)
3. Results and Discussion
3.1. Copper Complexes Structures Inspired by Copper Complex G1
3.1.1. Light Absorption Properties of the Studied Photoinitiators
3.1.2. Luminescence Experiments and Reaction Pathway
3.1.3. Experimental Approach for the Concomitant Initiation of the Free Radical and Cationic Polymerization
Free Radical Polymerization
Cationic Polymerization
Interpenetrated Polymer Networks Synthesis
Toward Longer Wavelengths
Effect of the Concentration of Photoinitiators
3.2. Copper Complexes with a Ferrocene Derivative Ligand
3.3. Structure/Efficiency Relationship: Role of the Ferrocene Moiety
3.3.1. Effect on the Panchromatic Behavior
3.3.2. Effect on the Polymerization Initiating Ability
Radical Polymerization
Cationic Polymerization
IPN Synthesis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kirschner, J.; Szillat, F.; Bouzrati-Zerelli, M.; Becht, J.-M.; Klee, J.E.; Lalevée, J. Iodonium Sulfonates as High-Performance Coinitiators and Additives for CQ-Based Systems: Toward Aromatic Amine-Free Photoinitiating Systems. J. Polym. Sci. Part A Polym. Chem. 2019, 57, 1664–1669. [Google Scholar] [CrossRef]
- Lalevée, J.; Fouassier, J.P.; Graff, B.; Zhang, J.; Xiao, P. Chapter 6: How to Design Novel Photoinitiators for Blue Light. In Photopolymerisation Initiating Systems; The Royal Society of Chemistry: London, UK, 2018; pp. 179–199. [Google Scholar]
- Mokbel, H.; Anderson, D.; Plenderleith, R.; Dietlin, C.; Morlet-Savary, F.; Dumur, F.; Gigmes, D.; Fouassier, J.-P.; Lalevée, J. Copper Photoredox Catalyst “G1”: A New High Performance Photoinitiator for near-UV and Visible LEDs. Polym. Chem. 2017, 8, 5580–5592. [Google Scholar] [CrossRef]
- Ligon, S.C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017, 117, 10212–10290. [Google Scholar] [CrossRef] [Green Version]
- Mendes-Felipe, C.; Oliveira, J.; Etxebarria, I.; Vilas-Vilela, J.L.; Lanceros-Mendez, S. State-of-the-Art and Future Challenges of UV Curable Polymer-Based Smart Materials for Printing Technologies. Adv. Mater. Technol. 2019, 4, 1800618. [Google Scholar] [CrossRef] [Green Version]
- Lalevée, J.; Blanchard, N.; Tehfe, M.-A.; Peter, M.; Morlet-Savary, F.; Gigmes, D.; Fouassier, J.P. Efficient Dual Radical/Cationic Photoinitiator under Visible Light: A New Concept. Polym. Chem. 2011, 2, 1986–1991. [Google Scholar] [CrossRef]
- Telitel, S.; Lalevée, J.; Blanchard, N.; Kavalli, T.; Tehfe, M.-A.; Schweizer, S.; Morlet-Savary, F.; Graff, B.; Fouassier, J.-P. Photopolymerization of Cationic Monomers and Acrylate/Divinylether Blends under Visible Light Using Pyrromethene Dyes. Macromolecules 2012, 45, 6864–6868. [Google Scholar] [CrossRef]
- Tehfe, M.-A.; Dumur, F.; Xiao, P.; Delgove, M.; Graff, B.; Fouassier, J.-P.; Gigmes, D.; Lalevée, J. Chalcone Derivatives as Highly Versatile Photoinitiators for Radical, Cationic, Thiol–Ene and IPN Polymerization Reactions upon Exposure to Visible Light. Polym. Chem. 2013, 5, 382–390. [Google Scholar] [CrossRef]
- Xiao, P.; Dumur, F.; Zhang, J.; Fouassier, J.P.; Gigmes, D.; Lalevée, J. Copper Complexes in Radical Photoinitiating Systems: Applications to Free Radical and Cationic Polymerization upon Visible LEDs. Macromolecules 2014, 47, 3837–3844. [Google Scholar] [CrossRef]
- Mau, A.; Dietlin, C.; Dumur, F.; Lalevée, J. Concomitant Initiation of Radical and Cationic Polymerisations Using New Copper Complexes as Photoinitiators: Synthesis and Characterisation of Acrylate/Epoxy Interpenetrated Polymer Networks. Eur. Polym. J. 2021, 152, 110457. [Google Scholar] [CrossRef]
- Noirbent, G.; Dumur, F. Recent advances on copper complexes as visible light photoinitiators and (photo)redox initiators of polymerization. Catalysts 2020, 10, 953. [Google Scholar] [CrossRef]
- Xiao, P.; Dumur, F.; Zhang, J.; Gigmes, D.; Fouassier, J.-P.; Lalevée, J. Copper complexes: The effect of ligands on their photoinitiation efficiencies in radical polymerization reactions under visible light. Polym. Chem. 2014, 5, 6350–6357. [Google Scholar] [CrossRef]
- Bonardi, A.H.; Dumur, F.; Grant, T.M.; Noirbent, G.; Gigmes, D.; Lessard, B.H.; Fouassier, J.-P.; Lalevée, J. High Performance Near-Infrared (NIR) Photoinitiating Systems Operating under Low Light Intensity and in the Presence of Oxygen. Macromolecules 2018, 51, 1314–1324. [Google Scholar] [CrossRef]
- Garra, P.; Dietlin, C.; Morlet-Savary, F.; Dumur, F.; Gigmes, D.; Fouassier, J.-P.; Lalevée, J. Photopolymerization Processes of Thick Films and in Shadow Areas: A Review for the Access to Composites. Polym. Chem. 2017, 8, 7088–7101. [Google Scholar] [CrossRef]
- Armaroli, N.; Accorsi, G.; Bergamini, G.; Ceroni, P.; Holler, M.; Moudam, O.; Duhayon, C.; Delavaux-Nicot, B.; Nierengarten, J.-F. Heteroleptic Cu(I) Complexes Containing Phenanthroline-Type and 1,1′-Bis(Diphenylphosphino)Ferrocene Ligands: Structure and Electronic Properties. Inorg. Chim. Acta 2007, 360, 1032–1042. [Google Scholar] [CrossRef]
- Minozzi, C.; Caron, A.; Grenier-Petel, J.-C.; Santandrea, J.; Collins, S.K. Heteroleptic Copper(I)-Based Complexes for Photocatalysis: Combinatorial Assembly, Discovery, and Optimization. Angew. Chem. Int. Ed. 2018, 57, 5477–5481. [Google Scholar] [CrossRef] [PubMed]
- Listorti, A.; Accorsi, G.; Rio, Y.; Armaroli, N.; Moudam, O.; Gégout, A.; Delavaux-Nicot, B.; Holler, M.; Nierengarten, J.-F. Heteroleptic Copper(I) Complexes Coupled with Methano[60]Fullerene: Synthesis, Electrochemistry, and Photophysics. Inorg. Chem. 2008, 47, 6254–6261. [Google Scholar] [CrossRef]
- Lin, J.-T.; Liu, H.-W.; Chen, K.-T.; Cheng, D.-C. Modeling the Kinetics, Curing Depth, and Efficacy of Radical-Mediated Photopolymerization: The Role of Oxygen Inhibition, Viscosity, and Dynamic Light Intensity. Front. Chem. 2019. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.-T.; Lalevee, J.; Cheng, D.-C. Kinetics Analysis of Copper Complex Photoredox Catalyst: Roles of Oxygen, Thickness, and Optimal Concentration for Radical/Cationic Hybrid Photopolymerization. Preprints 2021, 2021050597. Available online: https://www.preprints.org/manuscript/202105.0597/v1 (accessed on 10 June 2021).
- Hu, M.-Y.; He, Q.; Fan, S.-J.; Wang, Z.-C.; Liu, L.-Y.; Mu, Y.-J.; Peng, Q.; Zhu, S.-F. Ligands with 1,10-Phenanthroline Scaffold for Highly Regioselective Iron-Catalyzed Alkene Hydrosilylation. Nat. Commun. 2018, 9, 221. [Google Scholar] [CrossRef]
- Yang, W.; Nakano, T. Synthesis of Poly(1,10-Phenanthroline-5,6-Diyl)s Having a π-Stacked, Helical Conformation. Chem. Commun. 2015, 51, 17269–17272. [Google Scholar] [CrossRef]
- Hebbe-Viton, V.; Desvergnes, V.; Jodry, J.J.; Dietrich-Buchecker, C.; Sauvage, J.-P.; Lacour, J. Chiral Spiro Cu(I) Complexes. Supramolecular Stereocontrol and Isomerisation Dynamics by the Use of TRISPHAT Anions. Dalton Trans. 2006, 2058–2065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietlin, C.; Schweizer, S.; Xiao, P.; Zhang, J.; Morlet-Savary, F.; Graff, B.; Fouassier, J.-P.; Lalevée, J. Photopolymerization upon LEDs: New Photoinitiating Systems and Strategies. Polym. Chem. 2015, 6, 3895–3912. [Google Scholar] [CrossRef]
- Knorn, M.; Rawner, T.; Czerwieniec, R.; Reiser, O. [Copper(Phenanthroline)(Bisisonitrile)]+-Complexes for the Visible-Light-Mediated Atom Transfer Radical Addition and Allylation Reactions. ACS Catal. 2015, 5, 5186–5193. [Google Scholar] [CrossRef]
- Bouzrati-Zerelli, M.; Guillaume, N.; Goubard, F.; Bui, T.-T.; Villotte, S.; Dietlin, C.; Morlet-Savary, F.; Gigmes, D.; Fouassier, J.P.; Dumur, F.; et al. A Novel Class of Photoinitiators with a Thermally Activated Delayed Fluorescence (TADF) Property. New J. Chem. 2018, 42, 8261–8270. [Google Scholar] [CrossRef] [Green Version]
- Garra, P.; Graff, B.; Morlet-Savary, F.; Dietlin, C.; Becht, J.-M.; Fouassier, J.-P.; Lalevée, J. Charge Transfer Complexes as Pan-Scaled Photoinitiating Systems: From 50 Μm 3D Printed Polymers at 405 Nm to Extremely Deep Photopolymerization (31 Cm). Macromolecules 2018, 51, 57–70. [Google Scholar] [CrossRef]
- Wang, D.; Arar, A.; Garra, P.; Graff, B.; Lalevée, J. Charge Transfer Complexes Based on Various Amines as Dual Thermal and Photochemical Polymerization Initiators: A Powerful Tool for the Access to Composites. J. Polym. Sci. 2020, 58, 811–823. [Google Scholar] [CrossRef]
Compound | λmax (nm) | ελmax (L mol−1 cm−1) | ε405nm (L mol−1 cm−1) | ε455nm (L mol−1 cm−1) | ε530nm (L mol−1 cm−1) |
---|---|---|---|---|---|
Cu1BF4 | 438 | 1.3 × 103 | 1.0 × 103 | 1.2 × 103 | 6.9 × 102 |
Cu1PF6 | 438 | 1.4 × 103 | 1.1 × 103 | 1.3 × 103 | 7.4 × 102 |
Cu2BF4 | 438 | 1.3 × 103 | 1.1 × 103 | 1.2 × 103 | 6.6 × 102 |
Cu2PF6 | 438 | 1.4 × 103 | 1.2 × 103 | 1.3 × 103 | 7.3 × 102 |
G1 | 380 | 2.8 × 103 | 1.9 × 103 | 7.4 × 101 | 7.0 × 100 |
Photoinitiating System: Cu/Iod (2 w%)/EDB (2 w%) | TMPTA | EPOX |
---|---|---|
Cu1BF4 (0.73 w%) | % | % |
Cu1BF4 (0.073 w%) | % | % |
Cu1PF6 (0.70 w%) | % | % |
Cu1PF6 (0.069 w%) | % | % |
Cu2BF4 (0.64 w%) | % | % |
Cu2BF4 (0.063 w%) | % | % |
Cu2PF6 (0.64 w%) | % | % |
Cu2PF6 (0.063 w%) | % | % |
(reference) | % | % |
Compound | λmax (nm) | ελmax (L mol−1 cm−1) | ε405nm (L mol−1 cm−1) |
---|---|---|---|
Cu3BF4 | 380 | 1.6 × 103 | 1.3 × 103 |
Cu3PF6 | 380 | 2.1 × 103 | 1.8 × 103 |
Cu4BF4 | 380 | 1.8 × 103 | 1.8 × 103 |
Cu4PF6 | 380 | 1.6 × 103 | 1.5 × 103 |
Cu5BF4 | 440 | 1.6 × 103 | 1.2 × 103 |
Cu5PF6 | 440 | 1.5 × 103 | 1.2 × 103 |
Cu6BF4 | 380 | 1.4 × 103 | 1.0 × 103 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mau, A.; Noirbent, G.; Dietlin, C.; Graff, B.; Gigmes, D.; Dumur, F.; Lalevée, J. Panchromatic Copper Complexes for Visible Light Photopolymerization. Photochem 2021, 1, 167-189. https://doi.org/10.3390/photochem1020010
Mau A, Noirbent G, Dietlin C, Graff B, Gigmes D, Dumur F, Lalevée J. Panchromatic Copper Complexes for Visible Light Photopolymerization. Photochem. 2021; 1(2):167-189. https://doi.org/10.3390/photochem1020010
Chicago/Turabian StyleMau, Alexandre, Guillaume Noirbent, Céline Dietlin, Bernadette Graff, Didier Gigmes, Frédéric Dumur, and Jacques Lalevée. 2021. "Panchromatic Copper Complexes for Visible Light Photopolymerization" Photochem 1, no. 2: 167-189. https://doi.org/10.3390/photochem1020010
APA StyleMau, A., Noirbent, G., Dietlin, C., Graff, B., Gigmes, D., Dumur, F., & Lalevée, J. (2021). Panchromatic Copper Complexes for Visible Light Photopolymerization. Photochem, 1(2), 167-189. https://doi.org/10.3390/photochem1020010