Magnetron-Sputtered Amorphous Carbon Films for Aluminium Proton-Exchange-Membrane Fuel Cell Bipolar Plates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coating Preparation
2.2. Characterisation
2.3. Corrosion Testing
2.4. Fuel Cell Testing
3. Results
3.1. Performance of Uncoated and Coated Non-Polished Aluminium Substrate
3.2. Performance of Coating on Polished Aluminium Substrate
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Steele, B.C.H.; Heinzel, A. Materials for fuel cell technologies. Nature 2001, 414, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Leng, Y.; Ming, P.; Yang, D.; Zhang, C. Stainless steel bipolar plates for proton exchange membrane fuel cells: Materials, flow channel design and forming processes. J. Power Sources 2020, 451, 227783. [Google Scholar] [CrossRef]
- DOE Technical Targets for Polymer Electrolyte Membrane Fuel Cell Components. Available online: https://www.energy.gov/eere/fuelcells/doe-technical-targets-polymer-electrolyte-membrane-fuel-cell-components (accessed on 26 March 2025).
- Hung, Y.; Tawfik, H.; Mahajan, D. Durability and characterization studies of chromium carbide coated aluminium fuel cell stack. Int. J. Hydrogen Energy 2016, 41, 12273–12284. [Google Scholar] [CrossRef]
- Narasimharaju, S.; Rao, B.P.C.; Annamalai, K. Advancements and Characterisation of Nitride Coating Materials on Aluminium Alloy-Based Bipolar Plates for PEMFC’s Applications. MATEC Web Conf. 2024, 393, 01010. [Google Scholar] [CrossRef]
- Barranco, J.; Barreras, F.; Lozano, A.; Maza, M. Influence of CrN-coating thickness on the corrosion resistance behaviour of aluminium-based bipolar plates. J. Power Sources 2011, 196, 4283–4289. [Google Scholar] [CrossRef]
- González Gutiérrez, A.G.; Sebastian, P.J.; Magallón Cacho, L.; Borja Arco, E.; Campos, J.; Baron, A. Surface Modification of Aluminium Alloy 6061 for Bipolar Plate Application: Adhesion Characteristics and Corrosion Resistance. Int. J. Electrochem. Sci. 2018, 13, 3958–3969. [Google Scholar] [CrossRef]
- González Gutiérrez, A.G.; Pech-Canul, M.A.; Chan-Rosado, G.; Sebastian, P.J. Studies on the physical and electrochemical properties of Ni-P coating on commercial aluminium as bipolar plate in PEMFC. Fuel 2019, 235, 1361–1367. [Google Scholar] [CrossRef]
- Abo El-Enin, S.A.; Abdel-Salam, O.E.; El-Abd, H.; Amin, A.M. New electroplated aluminium bipolar plate for PEM fuel cell. J. Power. Sources 2008, 177, 131–136. [Google Scholar] [CrossRef]
- Fetohi, A.E.; Abdel Hamed, R.M.; El-Khatib, K.M.; Souaya, E.R. Ni–P and Ni–Co–P coated aluminium alloy 5251 substrates as metallic bipolar plates for PEM fuel cell applications. Int. J. Hydrogen Energy 2012, 37, 7677–7688. [Google Scholar] [CrossRef]
- Madadi, F.; Rezaeian, A.; Edris, H.; Zhiani, M. Improving performance in PEMFC by applying different coatings to metallic bipolar plates. Meter. Chem. Phys. 2019, 238, 121911. [Google Scholar] [CrossRef]
- Lee, C.-H.; Lee, Y.-B.; Kim, K.-M.; Jeong, M.-G.; Lim, D.-S. Electrically conductive polymer composite coating on aluminium for PEM fuel cells bipolar plate. Renew. Energy 2013, 54, 46–50. [Google Scholar] [CrossRef]
- Madwsley, J.R.; Carter, J.D.; Wang, X.; Niyogi, S.; Fan, C.Q.; Koc, R.; Osterhout, G. Composite-coated aluminium bipolar plates for PEM fuel cells. J. Power Sources 2013, 231, 106–112. [Google Scholar] [CrossRef]
- Lee, S.-J.; Huang, C.-H.; Chen, Y.-P. Investigation of PVD coating on corrosion resistance of metallic bipolar plates in PEM fuel cell. J. Mater. Process. Technol. 2003, 140, 688–693. [Google Scholar] [CrossRef]
- Mirzaee Sisan, M.; Abdolahi Sereshki, M.; Khorsand, H.; Siadati, M.H. Carbon coatings for corrosion protection of SS-316L and AA-6061 as bipolar plates for PEM fuel cells. J. Alloys Compd. 2014, 63, 288–291. [Google Scholar] [CrossRef]
- Navabpour, P.; Cooper, L.; Yang, S.; Yin, J.; Zhang, K.; El-Kharouf, A.; Sun, H. PVD coatings for lightweight bipolar plates. Surfaces 2024, 7, 812–823. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, J.; Tao, Y.; Cao, R.; Kou, X.; Tian, X. Investigation of corrosion properties with Ni-P/TiNO coating on aluminium alloy bipolar plates in proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2022, 47, 22165–22179. [Google Scholar] [CrossRef]
- Narasimharaju, S.; Rao, B.P.C.; Annamalai, K. Advancements in Multilayer Coatings on Aluminium Alloy-Based Bipolar Plates for PEMFC Application. Int. Res. J. Adv. Eng. Hub 2024, 2, 190–204. [Google Scholar] [CrossRef]
- Feng, K.; Shen, Y.; Sun, H.; Liu, D.; An, Q.; Cai, X.; Chu, P.K. Conductive amorphous carbon-coated 316L stainless steel as bipolar plates in polymer electrolyte membrane fuel cells. Int. J. Hydrogen Energy 2009, 34, 6771–6777. [Google Scholar] [CrossRef]
- Pukha, V.E.; Glukhov, A.A.; Belmesov, A.A.; Kabachov, E.N.; Khodos, I.I.; Khadem, M.; Kim, D.-E.; Karaseov, P.A. Corrosion-resistant nanostructured carbon-based coatings for applications in fuel cells based on bipolar plates. Vacuum 2023, 218, 112643. [Google Scholar] [CrossRef]
- Liu, R.; Jia, Q.; Zhang, B.; Lai, Z.; Chen, L. Protective coatings for metal bipolar plates of fuel cells: A review. Int. J. Hydrogen Energy 2022, 47, 22915–22937. [Google Scholar] [CrossRef]
- 6082 (AlSi1MgMn, 3.2315, H30, A96082) Aluminium. Available online: https://www.makeitfrom.com/material-properties/6082-AlSi1MgMn-3.2315-H30-A96082-Aluminum/ (accessed on 26 March 2025).
- Li, Z.; Peng, M.; Wei, H.; Zhang, W.; Lv, Q.; Zhang, F.; Shan, Q. First-principles study on surface corrosion of 6082 aluminium alloy in H+ and Cl−. J. Mol. Struct. 2023, 1294, 136570. [Google Scholar] [CrossRef]
- Yang, L.; Yang, S.; Huang, G. Investigation of electrochemical corrosion behaviours of 6082 aluminium alloy under simulate deicing agent conditions. J. Phys. Conf. Series 2021, 1838, 012004. [Google Scholar] [CrossRef]
- Ravi Sankar, A.; Das, S. Experimental analysis of galvanic corrosion of a thin metal film in a multilayer stack for MEMS application. Mater. Sci. in Semiconduct. Process. 2013, 16, 449–453. [Google Scholar] [CrossRef]
- Galvanic Corrosion vs. Electrode Potential. Available online: https://www.engineeringtoolbox.com/electrode-potential-d_482.html (accessed on 26 March 2025).
- Avoid Long-Term Problems with Our Galvanic Corrosion Chart. Available online: https://industrialmetalservice.com/metal-university/avoid-long-term-problems-with-our-galvanic-corrosion-chart/ (accessed on 26 March 2025).
- Ma, X.; Wang, T.; Gong, B.; Cao, H. Fast and low-cost deposition strategy for constructing amorphous carbon layer toward corrosion protection on aluminium alloy bipolar plates in proton exchange membrane fuel cell environments. J. Power Sources 2024, 623, 235479. [Google Scholar] [CrossRef]
- Srivastava, A.; Kenneth, A.R.; Smith, C.B. Coating developments towards enabling aluminium as a bipolar plate material for PEM fuel cells. J. Power Sources 2024, 582, 233513. [Google Scholar] [CrossRef]
- Glechner, T.; Hahn, R.; Zauner, L.; Risslegger, S.; Polcik, P.; Reidl, H. Structure and mechanical properties of reactive and non-reactive sputter deposited WC based coatings. J. Alloys Compd. 2021, 885, 161129. [Google Scholar] [CrossRef]
- Shaw, B.A.; Fritz, T.L.; Davis, G.D.; Moshier, W.C. The influence of tungsten on the pitting of aluminium films. J. Electrochem. Soc. 1990, 137, 1317–1318. [Google Scholar] [CrossRef]
- Lin, C.-H.; Tsai, S.-Y. An investigation of coated aluminium bipolar plates for PEMFC. Appl. Energy 2012, 100, 87–92. [Google Scholar] [CrossRef]
- Levy, R.B.; Boudart, M. Platinum-like behaviour of tungsten carbide in surface catalysis. Science 1973, 181, 547–549. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, L.; Deng, F.; Giles, S.A.; Prasad, A.K.; Advani, S.G.; Yan, Y.; Vlachos, D.G. Durable and self-hydrating tugsten carbide-based composite polymer electrolyte membrane fuel cells. Nat. Commun. 2017, 8, 418. [Google Scholar] [CrossRef]
- Ham, D.J.; Lee, J.S. Transition metal carbides and nitrides as electrode materials for low temperature fuel cells. Energies 2009, 2, 873–899. [Google Scholar] [CrossRef]
Al | Si | Mg | Fe | Mn | Cr | Zn | Cu | Ti | Residuals |
---|---|---|---|---|---|---|---|---|---|
95.2–98.3% | 0.7–1.3% | 0.6–1.2% | 0.5% max | 0.4–1.0% | 0.25% max | 0.2% max | 0.1% max | 0.1% max | 0.15% max |
Coating | Substrate Bias (V) | Carbon Layer Deposition Time (min) | Total Thickness (µm) |
---|---|---|---|
Cr-C1 | −80 | 60 | 0.8 |
Cr-C2 | −60 | 90 | 1.0 |
Cr-C3 | −70 | 90 | 1.0 |
Cr-C4 | −80 | 90 | 1.0 |
Cr-C5 | −90 | 90 | 1.0 |
Cr-C6 | −80 | 180 | 1.5 |
Sample | Current Density (mA/cm2) | Power Density (mW/cm2) | ||
---|---|---|---|---|
Initial | Final | Initial | Final | |
Uncoated Al6082 | 1708 | 1086 | 1246 | 896 |
Cr-C Al6082 | 2046 | 1256 | 1428 | 1053 |
W-C Al6082 | 2121 | 1425 | 1504 | 1151 |
Samples | R1 (mΩ) | CCPE1 (F) | R2 (mΩ) | CCPE2 (F) | R3 (mΩ) | CCPE3 (F) | R4 (mΩ) | R Total (mΩ) | |
---|---|---|---|---|---|---|---|---|---|
Uncoated Al6082 | 1st | 14.7 | 0.065 | 2.0 | 0.151 | 24.9 | 1.86 | 8.6 | 50.1 |
11th | 19.8 | 0.062 | 1.6 | 0.098 | 29.9 | 5.97 | 3.1 | 54.3 | |
Cr-C | 1st | 8.2 | 0.063 | 3.7 | 0.164 | 27.5 | 1.86 | 8.1 | 47.4 |
11th | 9.0 | 0.062 | 4.8 | 0.120 | 29.5 | 4.07 | 4.0 | 47.4 | |
W-C | 1st | 8.2 | 0.058 | 3.0 | 0.146 | 24.6 | 1.76 | 8.9 | 44.7 |
11th | 8.7 | 0.039 | 4.1 | 0.041 | 26.5 | 2.53 | 2.3 | 41.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navabpour, P.; Zhang, K.; Sanzone, G.; Field, S.; Sun, H. Magnetron-Sputtered Amorphous Carbon Films for Aluminium Proton-Exchange-Membrane Fuel Cell Bipolar Plates. Physchem 2025, 5, 18. https://doi.org/10.3390/physchem5020018
Navabpour P, Zhang K, Sanzone G, Field S, Sun H. Magnetron-Sputtered Amorphous Carbon Films for Aluminium Proton-Exchange-Membrane Fuel Cell Bipolar Plates. Physchem. 2025; 5(2):18. https://doi.org/10.3390/physchem5020018
Chicago/Turabian StyleNavabpour, Parnia, Kun Zhang, Giuseppe Sanzone, Susan Field, and Hailin Sun. 2025. "Magnetron-Sputtered Amorphous Carbon Films for Aluminium Proton-Exchange-Membrane Fuel Cell Bipolar Plates" Physchem 5, no. 2: 18. https://doi.org/10.3390/physchem5020018
APA StyleNavabpour, P., Zhang, K., Sanzone, G., Field, S., & Sun, H. (2025). Magnetron-Sputtered Amorphous Carbon Films for Aluminium Proton-Exchange-Membrane Fuel Cell Bipolar Plates. Physchem, 5(2), 18. https://doi.org/10.3390/physchem5020018