Low-Temperature Metallomesogen Model Structures and Mixtures as Potential Materials for Application in Commercial Liquid Crystal Devices
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Binary HL2 Ligand and L2Pd-Acac Mixtures
3.2. Tertiary Eutectic HL2/L2Pd-Acac and L5Pd-Acac Mixtures
3.3. Tertiary Eutectic HL2/L2Pd-Acac and L6*Pd-Acac Mixtures
3.4. Tertiary Eutectic HL2/L2Pd-Acac and Commercial Liquid Crystal Mixtures
4. Discussion
- According to Table 1, the rod-like HL2 ligand and L2Pd-acac MOM structures based on Pd alkyl/alkoxy-azobenzene complexes with the same terminal groups exhibited low transition temperatures with accessible nematic stability ranges of 33.3 °C and 55.1 °C, respectively. Namely, the presence of the Pd metal complex in L2Pd-acac showed a wider nematic range (−12 °C/+43.1 °C) than that of the HL2 ligand (+14.8 °C/+48.1 °C).
- With reference to Table 1, the nematic stability of L5Pd-acac was approximately 15 °C (+23.8 °C/39.1 °C), and the chiral nematic stability of L*6Pd-acac was approximately 30 °C (+33.8 °C/63.6 °C). Such a difference between the transition temperatures and mesophase stabilities of the two MOMs arises from their different terminal groups and the larger R’ flexibility of L*6Pd-acac than that of L5Pd-acac (see Figure 1).
- According to Figure 3, the tertiary phase diagram of the eutectic HL2/L2Pd-acac and L5Pd-acac mixtures exhibited a complete mesogenic miscibility due to the linear trend of their TIN transitions. However, the TNC transitions of the HL2/L2Pd-acac/L5Pd-acac phase diagram did not exhibit a eutectic point but rather showed a large nematic stability of 70–81 °C range within 0–50 % L5Pd-acac concentrations. At this composition range, such a ligand/MOM/MOM model system will also be interesting for further evaluation for application in commercial nematic liquid crystal materials.
- With reference to Figure 4, the tertiary phase diagram of the eutectic HL2/L2Pd-acac and L6*Pd-acac mixtures also exhibited a complete mesogenic miscibility due to the linear trend of their TIN* transitions. Also, the HL2/L2Pd-acac/L*6Pd-acac phase diagram did not exhibit a eutectic point but showed a large chiral nematic stability range of 79–81 °C within 0–20% L6*Pd-acac concentration range. At this composition range, such a ligand/MOM/MOM model system could also be considered as chiral nematic materials for application in commercial liquid crystal devices.
- It should be pointed out that the difference between the phase transitions in the two tertiary ligand/MOM/MOM mixtures were due to differences in the terminal groups and crystalline structures in the L5Pd-acac and L*6Pd-acac structures. Regardless of the lack of eutectic behavior in such ligand/MOM/MOM model mixtures, their wide and accessible mesogenic stabilities will justify such model materials for application upon future investigations on structural properties of metal complexation in MOMs.
- Subsequently, we also studied the phase diagrams of the tertiary mixtures of eutectic HL2/L2Pd-acac with low-temperature E43 and high-temperature TN10427 commercial nematic materials. In Table 1, we also tabulated the transition temperature and nematic stabilities of the commercial E43 and TN10427 nematic mixtures.
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Friedel, G. Les Éats Mésomorphes de la Matière. Ann. Phys. 1922, 9, 273–474. [Google Scholar] [CrossRef]
- Serrano, J.L. Metallomesogens: Synthesis, Properties and Applications; Wiley VCH: New York, NY, USA, 1996. [Google Scholar]
- Donnio, B.; Bruce, D.W. Liquid Crystals II Metallomesogens; Mingos, D.M.P., Ed.; Springer: Berlin/Heidelberg, Germany, 1999; Volume 95. [Google Scholar]
- Donnio, B.; Guillon, D.; Deschenaux, R.; Bruce, D.W. Comprehensive Coordination Chemistry II; McCleverty, J.A., Meyer, T.J., Eds.; Elsevier: Oxford, UK, 2003; Volume 6. [Google Scholar]
- Date, R.W.; Iglesias, E.F.; Rowe, K.E.; Elliott, J.M.; Bruce, D.W. Metallomesogens by ligand design. Dalton Trans. 2003, 10, 1914–1931. [Google Scholar] [CrossRef]
- Bruce, D.W.; Deschenaux, R.; Donnio, B.; Guillon, D. Comprehensive Organometallic Chemistry III; Crabtree, R.H., Mingos, D.M.P., Eds.; Elsevier: Oxford, UK, 2006; p. 195. [Google Scholar]
- Bruce, D.W. Cyanobiphenyls and metallomesogens—Where it started and where it went. Liq. Cryst. 2024, 51, 1311–1321. [Google Scholar] [CrossRef]
- Porta, B.; Khamsi, J.; Noveron, J.C. Metallomesogens: Supramolecular design via alkane-rich metal complexes. Curr. Org. Chem. 2008, 12, 1298–1321. [Google Scholar] [CrossRef]
- Paez, E.B.A.; Curcio, S.; Neme, N.P.; Matos MJ, S.; Correa, R.S.; Pereira, F.J.; Hilário, F.F.; Cazati, T.; Taylor, J.G. Synthesis, photophysical and electrochemical properties of novel and highly fluorescent difluoroboron flavanone β-diketonate complexes. N. J. Chem. 2020, 44, 14615–14631. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, J.; Chen, J.; Zhu, W.; Baranoff, E. Recent progress in luminescent liquid crystal materials: Design, properties and application for linearly polarised emission. J. Mater. Chem. C 2015, 3, 7993–8005. [Google Scholar]
- Wang, Y.; Fan, J.; Shi, J.; Qi, H.; Baranoff, E.; Xie, G.; Li, Q.; Tan, H.; Liu, Y.; Zhu, W. Influence of integrated alkyl-chain length on the mesogenic and photophysical properties of platinum-based metallomesogens and their application for polarized white OLEDs. Dye. Pigment. 2016, 133, 238–247. [Google Scholar] [CrossRef]
- Krikorian, M.; Liu, S.; Swager, T.M. Columnar liquid crystallinity and mechanochromism in cationic platinum (II) complexes. J. Am. Chem. Soc. 2014, 136, 2952–2955. [Google Scholar] [CrossRef]
- Cuerva, C.; Cano, M.; Lodeiro, C. Advanced functional luminescent metallomesogens: The key role of the metal center. Chem. Rev. 2021, 121, 12966–13010. [Google Scholar] [CrossRef]
- Geng, H.; Luo, K.; Cheng, H.; Zhang, S.; Ni, H.; Wang, H.; Yu, W.; Li, Q. Novel columnar metallomesogens based on cationic platinum(ii) complexes without long peripheral chains. RSC Adv. 2017, 7, 11389–11393. [Google Scholar] [CrossRef]
- Cuerva de Alaíz, C. Luminescent Pt(II) metallomesogens in hollow nanoparticles for applications in biomedicine. Ph.D. Thesis, University of Madrid, Madrid, Spain, 2018. [Google Scholar]
- Diana, R.; Panunzi, B.; Tuzi, A.; Piotto, S.; Concilio, S.; Caruso, U. An amphiphilic pyridinoyl-hydrazone probe for colorimetric and fluorescence pH sensing. Molecules 2019, 24, 3833. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yu, C.; Yang, M.; Wen, S.; Zhang, J. Characterization of a Hg2+-selective fluorescent probe based on rhodamine B and its imaging in living cells. Molecules 2021, 26, 3385. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-H.; Lin, M.-S.; Chen, L.-Y.; Hong, Y.-H.; Tsai, C.-H.; Wu, C.-C.; Poloek, A.; Chi, Y.; Chen, C.-A.; Chen, S.H.; et al. Polarized phosphorescent organic light-emitting devices adopting mesogenic host–guest systems. Org. Electron. 2011, 12, 15–21. [Google Scholar] [CrossRef]
- Yang, X.; Wu, X.; Zhou, D.; Yu, J.; Xie, G.; Bruce, D.W.; Wang, Y. Platinum-based metallomesogens bearing a Pt (4, 6-dfppy)(acac) skeleton: Synthesis, photophysical properties and polarised phosphorescence application. Dalton Trans. 2018, 47, 13368–13377. [Google Scholar] [CrossRef]
- Marcos, M.; Romero, P.; Serrano, J.-L. Nematic liquid crystal materials containing nickel(II) or copper(II) atoms. Two different kinds of magnetic behaviour. J. Chem. Soc. Chem. Commun. 1989, 21, 1641–1643. [Google Scholar] [CrossRef]
- Akiyoshi, R.; Zenno, H.; Sekine, Y.; Nakaya, M.; Akita, M.; Kosumi, D.; Lindoy, L.F.; Hayami, S.A. A ferroelectric metallomesogen exhibiting field induced slow magnetic relaxation. Chem. Eur. J. 2021, 28, 1–7. [Google Scholar] [CrossRef]
- Seredyuk, M.; Muñoz, M.C.; Ksenofontov, V.; Gütlich, P.; Galyametdinov, Y.; Real, J.A. Spin Crossover Star-Shaped Metallomesogens of Iron(II). J. Inorg. Chem. 2014, 53, 8442–8454. [Google Scholar] [CrossRef]
- Fitzpatrick, A.J.; Martinho, P.N.; Gildea, B.J.; Holbrey, J.D.; Morgan, G.G. Robust Room Temperature Hysteresis in an FeIII Spin Crossover Metallomesogen. Eur. J. Inorg. Chem. 2016, 2016, 2025–2029. [Google Scholar] [CrossRef]
- Ionescu, A.; Godbert, N.; Crispini, A.; Termine, R.; Golemme, A.; Ghedini, M. Photoconductive Nile red cyclopalladated metallomesogens. J. Mater. Chem. 2012, 22, 23617–23626. [Google Scholar] [CrossRef]
- Wang, T.J.; Chaung, C.K.; Li, W.J.; Chen, T.J.; Chen, B.Y. Electrically tunable liquid-crystal-core optical channel waveguide. J. Light. Technol. 2013, 31, 3570–3574. [Google Scholar] [CrossRef]
- Su, P.Y.S.; Tseng, J.C.W.; Lee, K.-M.; Wang, J.-C.; Lin, I.J.B. Tetranuclear silver (I) clusters showing high ionic conductivity in a bicontinuous cubic mesophase. Inorg. Chem. 2014, 53, 5902–5910. [Google Scholar] [CrossRef] [PubMed]
- Su, P.Y.S.; Hsu, S.J.; Tseng, J.C.W.; Hsu, H.-F.; Wang, W.-J.; Lin, I.J.B. Polynuclear Silver(I) Triazole Complexes: Ion Conduction and Nanowire Formation in the Mesophase. Eur. Chem. J. 2016, 22, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wu, S.-T. Advanced liquid crystal displays with supreme image qualities. Liq. Cryst. Today 2019, 28, 4–11. [Google Scholar] [CrossRef]
- Ma, X.; Liu, L.; Wang, J.; Hao, Y.; Xu, X.; Shang, X. The Role of Hydrazine in Colorimetric Probes Based on Ferrocene Derivative. Helv. Chim. Acta 2022, 105, e202200037. [Google Scholar] [CrossRef]
- Huitorel, B.; Benito, Q.; Fargues, A.; Garcia, A.; Gacoin, T.; Boilot, J.-P.; Perruchas, S.; Camerel, F. Mechanochromic luminescence and liquid crystallinity of molecular copper clusters. Chem. Mater. 2016, 28, 8190–8200. [Google Scholar] [CrossRef]
- Geng, H.; Luo, K.; Zou, G.; Wang, H.; Ni, H.; Yu, W.; Li, Q.; Wang, Y. New phosphorescent platinum (II) complexes: Lamellar mesophase and mechanochromism. New J. Chem. 2016, 40, 10371–10377. [Google Scholar] [CrossRef]
- Cuerva, C.; Campo, J.A.; Cano, M.; Lodeiro, C. Multi-stimuli-responsive properties of aggregation-enhanced emission-active unsymmetrical PtII metallomesogens through self-assembly. Chem. Eur. J. 2019, 25, 12046–12051. [Google Scholar] [CrossRef]
- Ginord-Godquin, M.; Maitlis, P.M. Metallomesogens: Metal complexes in organized fluid phases. Angew. Chem. Int. Engl. 1991, 30, 375–402. [Google Scholar] [CrossRef]
- Bruce, D.W. Metal-Containing Liquid Crystals in Inorganic Materials, 1st ed.; Bruce, D.W., O’Hare, D., Eds.; Wiley & Sons Ltd.: Hoboken, NJ, USA, 1997. [Google Scholar]
- Ros, M.B. Metallomesogens—Synthesis, Properties & Applications; Serrano, J.L., Ed.; VCH: Weinheim, Germany; New York, NY, USA; Basel, Switzerland; Cambridge, UK; Tokyo, Japan, 1996; Chapter 11. [Google Scholar]
- Binnemans, K. Metal-Containing Liquid Crystals in Inorganic Materials, 2nd ed.; Bruce, D.W., O’Hare, D., Waton, R.I., Eds.; Wiley: Hoboken, NJ, USA, 2010; pp. 61–133. [Google Scholar]
- Gimenez, R.; Lydon, D.P.; Serrano, J.L. Metallomesogens: A promise or a fact? Curr. Opin. Solid State Mater. Sci. 2002, 6, 527–535. [Google Scholar] [CrossRef]
- Liao, C.-T.; Wang, Y.-J.; Huang, C.-S.; Sheu, H.-S.; Lee, G.-H.; Lai, C.K. New metallomesogens derived from unsymmetric 1, 3, 4-thiodiazoles: Synthesis, single crystal structure, mesomorphism, and optical properties. Tetrahedron 2007, 63, 12437–12445. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Kang, D.-G.; Lee, M.-H.; Kim, J.-S.; Lee, C.-R.; Jeong, K.-U. A photo-responsive metallomesogen for an optically and electrically tunable polarized light modulator. Chem. Commun. 2016, 52, 12821–12824. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Yu, R.; Ma, Z.; Gong, Y.; Zhao, B.; Lv, Q.; Tan, Z.A. Recent advances of organometallic complexes in emerging photovoltaics. J. Polym. Sci. 2021, 60, 865–916. [Google Scholar] [CrossRef]
- Roviello, A.; Sirigu, A.; Hakemi, H.; Panunzi, B.; Ghedini, M. 19th International Liquid Crystal Conference 2002 Edinburgh, UK 30 June–5 July 2002. Mol. Cryst. Liq. Cryst. 2004, 409, 7. [Google Scholar] [CrossRef]
- Hakemi, H. Eutectic Metallomesogens based on Alkyl/Alkoxy Azobenzene Pd-Complexes as Potential Materials for Guest-Host Electro-Optical Devices. J. Mater. Polym. Sci. 2022, 2, 1–6. [Google Scholar]
- Hakemi, H. Phase Behavior of Low-Temperature Metallomesogen and Commercial Liquid Crystal Mixtures. Mater. Sci. 2024, 6, 30. [Google Scholar]
- Hakemi, H. On Potential Application of Metallomesogen Materials in Liquid Crystal Displays. J. Nanotechnol. Adv. Mater. 2023, 6, 1–5. [Google Scholar]
- Hakemi, H. Metallomesogens as potential materials for improvement of electro-optical properties of commercial liquid crystals. Mat. Sci. Eng. Int. J. 2023, 7, 108–111. [Google Scholar]
- Ghedini, M.; Pucci, D.; Neve, F. Mesogenic cyclopentadienyl cyclopalladated azobenzene complexes. Chemical Communications. Chem. Commun. 1996, 137–138. [Google Scholar] [CrossRef]
- Ghedini, M.; Pucci, D.; Viñuales, A. Cyclopalladated azo-and azoxybenzene mononuclear complexes. Mol. Cryst. Liq. Cryst. 2007, 465, 59–70. [Google Scholar] [CrossRef]
Compound | Transition Temperature (°C) | Mesophase | |||
---|---|---|---|---|---|
Heating | Cooling | ||||
Tcm | Tmi | Tim | Tmc | ||
HL2 | 41.7 | 51.1 | 48.1 | 14.8 | Enantiotropic Nematic |
L2Pd-acac | 66.2 | - | 43.1 | −12 | Monotropic Nematic |
L5Pd-acac | 69.1 | - | 39.1 | 23.8 | Monotropic Nematic |
L6*Pd-acac | 52.2 | 68.6 | 63.6 | 33.8 | Enantiotropic Chiral Nematic |
E43 | n.a. | 78 | 77.8 | −30 | Enantiotropic Nematic |
TN10427 | n.a. | 114.5 | 114 | −40 | Enantiotropic Nematic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hakemi, H. Low-Temperature Metallomesogen Model Structures and Mixtures as Potential Materials for Application in Commercial Liquid Crystal Devices. Physchem 2024, 4, 447-457. https://doi.org/10.3390/physchem4040031
Hakemi H. Low-Temperature Metallomesogen Model Structures and Mixtures as Potential Materials for Application in Commercial Liquid Crystal Devices. Physchem. 2024; 4(4):447-457. https://doi.org/10.3390/physchem4040031
Chicago/Turabian StyleHakemi, Hassanali. 2024. "Low-Temperature Metallomesogen Model Structures and Mixtures as Potential Materials for Application in Commercial Liquid Crystal Devices" Physchem 4, no. 4: 447-457. https://doi.org/10.3390/physchem4040031
APA StyleHakemi, H. (2024). Low-Temperature Metallomesogen Model Structures and Mixtures as Potential Materials for Application in Commercial Liquid Crystal Devices. Physchem, 4(4), 447-457. https://doi.org/10.3390/physchem4040031