Many Body Current Density from Foldy–Wouthuysen Transformation of the Dirac–Coulomb Hamiltonian
Abstract
:1. Introduction
- To what extent is it possible to treat scalar relativity effects as a small correction to the nonrelativistic calculations?
- What kind of scalar corrections should be included?
2. Outline of Notation and Theoretical Methods
3. Many-Particle Relativistic Reduced Hamiltonian
4. Many-Body Current Density
- the classical kinetic energy Hamiltonian;
- the Zeeman Hamiltonian for the interaction of an electron spin with the applied magnetic field; and
- the spin-orbit coupling Hamiltonian.
4.1. Nonrelativistic Current Density
4.2. Zeeman Current Density
4.3. Spin-Orbit Coupling Current Density
4.4. Total Electron Current Density
5. Implementation
6. Computational Details
- Hartree–Fock Hamiltonian;
- Hartree–Fock + mass-velocity correction Hamiltionian;
- Hartree–Fock + Darwin correction Hamiltionian;
- Hartree–Fock + Cowan–Griffin Hamiltionian;
- ZORA–Hartree–Fock Hamiltonian; and
- Douglas-Kroll-Hess 0th order–Hartree–Fock Hamiltonian (DKH0)
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gordon, W. Der Strom der Diracschen Elektronentheorie. Z. Physik 1928, 50, 630–632. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifšic, E.M.; Landau, L.D. Course of theoretical physics. In Quantum Mechanics: Non-Relativistic Theory, 3rd ed.; Landau, L.D., Lifshit, E.M., Eds.; Elsevier: Singapore, 2007; Volume 3. [Google Scholar]
- McWeeny, R. Methods of Molecular Quantum Mechanics, 2nd ed.; Theoretical Chemistry; Academic Press: London, UK, 1992. [Google Scholar]
- Lazzeretti, P. Gauge invariance of the nuclear spin/electron orbit interaction and NMR spectral parameters. J. Chem. Phys. 2012, 137, 074108. [Google Scholar] [CrossRef]
- Soncini, A. Charge and Spin Currents in Open-Shell Molecules: A Unified Description of NMR and EPR Observables. J. Chem. Theory Comput. 2007, 3, 2243–2257. [Google Scholar] [CrossRef] [PubMed]
- Hodge, W.B.; Migirditch, S.V.; Kerr, W.C. Electron spin and probability current density in quantum mechanics. Am. J. Phys. 2014, 82, 681–690. [Google Scholar] [CrossRef] [Green Version]
- Bast, R.; Jusélius, J.; Saue, T. 4-Component relativistic calculation of the magnetically induced current density in the group 15 heteroaromatic compounds. Chem. Phys. 2009, 356, 187–194. [Google Scholar] [CrossRef]
- Engel, E.; Dreizler, R.M. Density Functional Theory: An Advanced Course; Theoretical and Mathematical Physics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2011. [Google Scholar]
- Sundholm, D.; Dimitrova, M.; Berger, R.J.F. Current density and molecular magnetic properties. Chem. Commun. 2021, 57, 12362–12378. [Google Scholar] [CrossRef]
- Feixas, F.; Matito, E.; Poater, J.; Solà, M. On the performance of some aromaticity indices: A critical assessment using a test set. J. Comput. Chem. 2008, 29, 1543–1554. [Google Scholar] [CrossRef]
- Carion, R.; Champagne, B.; Monaco, G.; Zanasi, R.; Pelloni, S.; Lazzeretti, P. Ring Current Model and Anisotropic Magnetic Response of Cyclopropane. J. Chem. Theory Comput. 2010, 6, 2002–2018. [Google Scholar] [CrossRef]
- Gershoni-Poranne, R.; Stanger, A. Magnetic criteria of aromaticity. Chem. Soc. Rev. 2015, 44, 6597–6615. [Google Scholar] [CrossRef]
- Landi, A.; Summa, F.F.; Monaco, G. Magnetic Aromaticity of Cycloporphyrin Nanorings. Chemistry 2021, 3, 991–1004. [Google Scholar] [CrossRef]
- Lazzeretti, P. Ring currents. Prog. Nucl. Magn. Reson. Spectrosc. 2000, 36, 1–88. [Google Scholar] [CrossRef]
- Helgaker, T.; Coriani, S.; Jørgensen, P.; Kristensen, K.; Olsen, J.; Ruud, K. Recent Advances in Wave Function-Based Methods of Molecular-Property Calculations. Chem. Rev. 2012, 112, 543–631. [Google Scholar] [CrossRef] [PubMed]
- Komorovsky, S.; Repisky, M.; Ruud, K.; Malkina, O.L.; Malkin, V.G. Four-Component Relativistic Density Functional Theory Calculations of NMR Shielding Tensors for Paramagnetic Systems. J. Phys. Chem. A 2013, 117, 14209–14219. [Google Scholar] [CrossRef]
- Sundholm, D.; Fliegl, H.; Berger, R.J. Calculations of magnetically induced current densities: Theory and applications. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2016, 6, 639–678. [Google Scholar] [CrossRef]
- Gillhuber, S.; Franzke, Y.J.; Weigend, F. Paramagnetic NMR Shielding Tensors and Ring Currents: Efficient Implementation and Application to Heavy Element Compounds. J. Phys. Chem. A 2021, 125, 9707–9723. [Google Scholar] [CrossRef] [PubMed]
- Franzke, Y.J.; Mack, F.; Weigend, F. NMR Indirect Spin–Spin Coupling Constants in a Modern Quasi-Relativistic Density Functional Framework. J. Chem. Theory Comput. 2021, 17, 3974–3994. [Google Scholar] [CrossRef] [PubMed]
- Summa, F.F.; Monaco, G.; Zanasi, R.; Pelloni, S.; Lazzeretti, P. Electronic Currents Induced by Optical Fields and Rotatory Power Density in Chiral Molecules. Molecules 2021, 26, 4195. [Google Scholar] [CrossRef] [PubMed]
- Summa, F.F.; Monaco, G.; Lazzeretti, P.; Zanasi, R. Origin-Independent Densities of Static and Dynamic Molecular Polarizabilities. J. Phys. Chem. Lett. 2021, 12, 8855–8864. [Google Scholar] [CrossRef]
- Summa, F.F.; Monaco, G.; Zanasi, R.; Lazzeretti, P. Dynamic toroidizability as ubiquitous property of atoms and molecules in optical electric fields. J. Chem. Phys. 2022, 156, 054106. [Google Scholar] [CrossRef]
- Born, M.; Oppenheimer, R. Zur Quantentheorie der Molekeln. Annalen der Physik 1927, 389, 457–484. [Google Scholar] [CrossRef]
- Foldy, L.L.; Wouthuysen, S.A. On the Dirac Theory of Spin 1/2 Particles and Its Non-Relativistic Limit. Phys. Rev. 1950, 78, 29–36. [Google Scholar] [CrossRef]
- Lazzeretti, P. Gauge invariance and origin independence of electronic charge density and current density induced by optical fields. J. Chem. Phys. 2018, 149, 154106. [Google Scholar] [CrossRef] [PubMed]
- Monaco, G.; Summa, F.F.; Zanasi, R. Program Package for the Calculation of Origin-Independent Electron Current Density and Derived Magnetic Properties in Molecular Systems. J. Chem. Inf. Model. 2021, 61, 270–283. [Google Scholar] [CrossRef]
- Szabo, A.; Ostlund, N.S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory; Dover Publications: Mineola, NY, USA, 1996. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Revision C; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Summa, F.F.; Monaco, G.; Lazzeretti, P.; Zanasi, R. Assessment of the Performance of DFT Functionals in the Fulfillment of Off-Diagonal Hypervirial Relationships. Phys. Chem. Chem. Phys. 2021, 23, 15268–15274. [Google Scholar] [CrossRef] [PubMed]
- Canal Neto, A.; Ferreira, I.; Jorge, F.; de Oliveira, A. All-electron triple zeta basis sets for ZORA calculations: Application in studies of atoms and molecules. Chem. Phys. Lett. 2021, 771, 138548. [Google Scholar] [CrossRef]
- van Lenthe, E.; Snijders, J.G.; Baerends, E.J. The zero-order regular approximation for relativistic effects: The effect of spin–orbit coupling in closed shell molecules. J. Chem. Phys. 1996, 105, 6505–6516. [Google Scholar] [CrossRef] [Green Version]
- de Jong, W.A.; Harrison, R.J.; Dixon, D.A. Parallel Douglas–Kroll energy and gradients in NWChem: Estimating scalar relativistic effects using Douglas–Kroll contracted basis sets. J. Chem. Phys. 2001, 114, 48. [Google Scholar] [CrossRef]
- Aprà, E.; Bylaska, E.J.; de Jong, W.A.; Govind, N.; Kowalski, K.; Straatsma, T.P.; Valiev, M.; van Dam, H.J.J.; Alexeev, Y.; Anchell, J.; et al. NWChem: Past, present, and future. J. Chem. Phys. 2020, 152, 184102. [Google Scholar] [CrossRef]
- Farazdel, A.; Westgate, W.M.; Simas, A.M.; Sagar, R.P.; Smith, V.H. Validity of the mass-velocity term in the Breit-Pauli hamiltonian. Int. J. Quantum Chem. 2009, 28, 61–68. [Google Scholar] [CrossRef]
- Havenith, R.W.A.; De Proft, F.; Jenneskens, L.W.; Fowler, P.W. Relativistic ring currents in metallabenzenes: An analysis in terms of contributions of localised orbitals. Phys. Chem. Chem. Phys. 2012, 14, 9897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowan, R.D.; Griffin, D.C. Approximate relativistic corrections to atomic radial wave functions. J. Opt. Soc. Am. 1976, 66, 1010. [Google Scholar] [CrossRef]
- Farazdel, A.; Smith, V.H. Invalidity of the ubiquitous mass-velocity operator in quasirelativistic theories. Int. J. Quantum Chem. 1986, 29, 311–314. [Google Scholar] [CrossRef]
- Thaller, B. Normal forms of an abstract Dirac operator and applications to scattering theory. J. Math. Phys. 1988, 29, 249–257. [Google Scholar] [CrossRef]
- Almlöf, J.; Fægri, K.; Grelland, H. A variational approach to relativistic effects in LCAO calculations. Chem. Phys. Lett. 1985, 114, 53–57. [Google Scholar] [CrossRef]
- Bethe, H.A.; Salpeter, E.E. Quantum Mechanics of One- and Two-Electron Atoms; Springer: Berlin/Heidelberg, Germany, 1957. [Google Scholar] [CrossRef]
- Thakkar, A.J. Relativistic kinetic energies and mass–velocity corrections in diatomic molecules. J. Chem. Phys. 1986, 85, 4509–4514. [Google Scholar] [CrossRef]
- Ketley, I.; Moss, R. On the expectation values of relativistic corrections to the Hamiltonian. Mol. Phys. 1983, 49, 1289–1295. [Google Scholar] [CrossRef]
- Lazzeretti, P. Electronic Current Densities Induced by Magnetic Fields and Nuclear Magnetic Dipoles. In Science and Technology of Atomic, Molecular, Condensed Matter & Biological Systems; Elsevier: New York, NY, USA, 2013; Volume 3, pp. 209–243. [Google Scholar] [CrossRef]
- Sulzer, D.; Olejniczak, M.; Bast, R.; Saue, T. 4-Component relativistic magnetically induced current density using London atomic orbitals. Phys. Chem. Chem. Phys. 2011, 13, 20682. [Google Scholar] [CrossRef]
Z | † | ZORA–HF | DKH0–HF | |||
---|---|---|---|---|---|---|
1 | −0.4998349 | −0.4998654 | −0.4998108 | −0.4998414 | −0.4998397 | −0.4998414 |
2 | −2.8600510 | −2.8606819 | −2.8595187 | −2.8601485 | −2.8601688 | −2.8601489 |
3 | −7.4325401 | −7.4365635 | −7.4292026 | −7.4332179 | −7.4334900 | −7.4332357 |
4 | −14.5724392 | −14.5864548 | −14.5610185 | −14.5749819 | −14.5761416 | −14.5750682 |
5 | −24.5313924 | −24.5673562 | −24.5024754 | −24.5382466 | −24.5415539 | −24.5385003 |
6 | −37.6031027 | −37.6808719 | −37.5415895 | −37.6184484 | −37.6259135 | −37.6190421 |
7 | −54.2662583 | −54.4148121 | −54.1503286 | −54.2965153 | −54.3110495 | −54.2976529 |
8 | −74.6878941 | −74.9480097 | −74.4876582 | −74.7423855 | −74.7679493 | −74.7442872 |
9 | −99.4113158 | −99.8382996 | −99.0873117 | −99.5030571 | −99.5446113 | −99.5057889 |
10 | −128.5403294 | −129.2067277 | −128.0423645 | −128.6868450 | −128.7504059 | −128.6902223 |
11 | −161.8555837 | −162.8809592 | −161.1150303 | −162.0850392 | −162.1763073 | −162.0861610 |
12 | −199.6093894 | −201.1108985 | −198.5534342 | −199.9522346 | −200.0808438 | −199.9496258 |
13 | −241.8755714 | −244.0007369 | −240.4133585 | −242.3707987 | −242.5472230 | −242.3611725 |
14 | −288.7915490 | −291.7774552 | −286.8062253 | −289.4995377 | −289.7226844 | −289.4677093 |
15 | −340.6230735 | −344.7063641 | −337.9978788 | −341.6065231 | −341.8838353 | −341.5418821 |
16 | −397.4177135 | −402.9519933 | −394.0123219 | −398.7692641 | −399.0904920 | −398.6425879 |
17 | −459.4748556 | −466.9018681 | −455.1179965 | −461.3146422 | −461.6559244 | −461.0787814 |
18 | −526.7933904 | −536.3524027 | −521.3228706 | −529.1837898 | −529.5926655 | −528.8544347 |
19 | −599.1249582 | −610.8545625 | −591.9593826 | −602.2234465 | −602.6919184 | −601.7288041 |
20 | −676.7001014 | −691.7429057 | −667.8721764 | −680.7377085 | −681.1717600 | −679.9732201 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Summa, F.F.; Citro, R. Many Body Current Density from Foldy–Wouthuysen Transformation of the Dirac–Coulomb Hamiltonian. Physchem 2022, 2, 96-107. https://doi.org/10.3390/physchem2020007
Summa FF, Citro R. Many Body Current Density from Foldy–Wouthuysen Transformation of the Dirac–Coulomb Hamiltonian. Physchem. 2022; 2(2):96-107. https://doi.org/10.3390/physchem2020007
Chicago/Turabian StyleSumma, Francesco Ferdinando, and Roberta Citro. 2022. "Many Body Current Density from Foldy–Wouthuysen Transformation of the Dirac–Coulomb Hamiltonian" Physchem 2, no. 2: 96-107. https://doi.org/10.3390/physchem2020007
APA StyleSumma, F. F., & Citro, R. (2022). Many Body Current Density from Foldy–Wouthuysen Transformation of the Dirac–Coulomb Hamiltonian. Physchem, 2(2), 96-107. https://doi.org/10.3390/physchem2020007