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Abstract: This paper analyzes how special relativity changes the equation for the many-body-
induced current density starting from the Foldy–Wouthuysen diagonalization of the Dirac–Coulomb
Hamiltonian. This current density differs from that obtained with the Gordon decomposition due to
the presence of a spin-orbit coupling contribution not considered before for many-body molecular
systems. This contribution diverges on atomic nuclei due to the nature of the point charges considered
in the nonrelativistic approach, demonstrating that conventionally used nonrelativistic methods are
not suitable for dealing with spin effects such as spin-orbit coupling or effects smaller than α2, with α

the fine structure constant, and that a fully relativistic approach with a finite charge should be used.
Despite the singularity, the spin-orbit coupling current becomes an important contribution to the total
current in open-shell systems with high-spin multiplicity and a high atomic number in the nuclear
proximity. On long ranges, this contribution is overcome by the Coulomb potential and the derived
electric field which decays very quickly for small distances from nuclear charges. An evaluation
of this spin-orbit current has been performed in the linear response approach at the HF/DFT level
of theory.

Keywords: magnetically induced current density vector; relativistic effects

1. Introduction

A magnetic field induces current distributions in the electron cloud of a molecule.
Some of these current distributions can be derived starting from the continuity equation by
using the Schrödinger equation, but contributions that arise from electron spin cannot be ob-
tained in this way, and a different procedure has been proposed [1–6]. Of these procedures,
we recall in particular the Gordon decomposition of the Dirac four-current [1,7–9] that
introduces a magnetization current starting from a correct, relativistic spin 1

2 theory. This de-
composition, however, does not allow one to obtain the spin-orbit coupling current derived
by Hodge and coworkers for the hydrogen atom [6] by adopting the Landau approach [2].
The interest in the study of induced current densities comes from the fact that these kind of
properties can be useful tools to rationalize the behavior of the matter caused by a perturb-
ing electromagnetic field and as a consequence to explain chemical concepts like magnetic
aromaticity [10–13], NMR chemical shifts and magnetizabilities [14–19], specific optical
activities [20], electric polarizabilities [21], dynamic electric toroidizabilities [22], and other
phenomena linked to the electron dynamics. The aim of this paper is to generalize the
Landau approach to many-body systems and derive the total current density vector field,
with the corresponding continuity equation, starting from the Foldy–Wouthuysen diagonal-
ization of the Dirac Hamiltonian, in order to understand how the total relativistic current
density can be decomposed starting with the nonrelativistic Schrödinger counterpart. The
reason for this comes from the fact that Dirac’s equation not only accounted for the spin
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of the electron and its observed magnetic moment, but also correctly explained the fine
structure of the hydrogen atom to the order Dirac had calculated it. Furthermore, starting
from the Foldy–Wouthuysen diagonalization of the Dirac Hamiltonian two questions arise:

• To what extent is it possible to treat scalar relativity effects as a small correction to the
nonrelativistic calculations?

• What kind of scalar corrections should be included?

To derive the total current density vector field and to answer these question, this
paper is organized as follows. An outline of notation is presented in Section 2 and a short
description of theoretical methods employed to derive the total current density vector field
is provided in Sections 3 and 4. In Section 5, the implementation of the spin-orbit coupling
current is presented for open-shell systems, and in Section 6 the computational details of
the calculations are highlighted. Concluding remarks are made in Section 7.

2. Outline of Notation and Theoretical Methods

Within the Born–Oppenheimer (BO) approximation [23], for a molecule with n elec-
trons and N clamped nuclei, charge, mass, position, canonical and angular momentum
of the k-th electron are indicated, in the configuration space, by −e, me, rk, p̂k = −ih̄∇k,
l̂k = rk × p̂k, k = 1, 2 . . . n, using boldface letters for electronic vector operators. Analogous
quantities for nuclei are Zae, Ma, Ra, etc. for a = 1, 2 . . . N. Throughout this work, SI
units are used and standard tensor formalism is employed, e.g., the Einstein convention of
implicit summation over two repeated Greek indices is applied. The third-rank Levi–Civita
skew-tensor is indicated by εαβγ. The imaginary unit is represented by a Roman i. Let us
introduce the general definition of n-electron density functions

γ
(
x1; x′1

)
= n

∫
Ψ(x1, X1)Ψ∗

(
x′1, X1

)
dX1 (1)

of electronic space-spin coordinates xk = rk ⊗ ηk, k = 1, 2, . . . , n, where

X1 ≡ {x2, . . . , xn}, dX1 ≡ {dx2, . . . , dxn}. (2)

By integrating over the spin variable η, a spatial density matrix is obtained

γ(r) ≡ γ(r; r′) =
∫

η′=η
γ
(
x1; x′1

)
dη (3)

for the reference state Ψa of the molecule. Similarly, the spin-density matrix is defined as

Qα(r) ≡ Qα(r; r′) =
∫

η′=η
Ŝαγ

(
x1; x′1

)
dη. (4)

.
For the reference state Ψa the probability and charge density became

γ(r) = n
∫

Ψa(r, X1)Ψ∗a(r, X1)dX1 (5)

ρ(r) = −eγ(r). (6)

By using previous relations for any type of one-electron operators, the relation〈
n

∑
k=1

ĥ(k)

〉
=
∫

h(1)γ(r)dr (7)

is verified and will be used throughout the paper.
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3. Many-Particle Relativistic Reduced Hamiltonian

To handle in the correct phenomenological way spin effects, our starting point is the
Dirac Hamiltonian for an electron in a nonvanishing electromagnetic field:

Ĥ = cα · (p̂ + eA) + βmec2 − eΦ (8)

in which the operators αv and β are represented by 4×4 matrices

β→
(

I 0
0 −I

)
, αv →

(
0 σv

σv 0

)
(v = 1, 2, 3). (9)

Here I is a 2× 2 unit matrix and the σv are the Pauli spin matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (10)

Starting from this Hamiltonian, a practical procedure to derive the wave equation
for the positive energy wave function of the Dirac equation is represented by the Foldy–
Wouthuysen diagonalization [24], which requires us to put Ĥ into block diagonal form:

ĤFW =

(
ĥ1 0
0 ĥ2

)
. (11)

By using this procedure and considering that for Coulomb-like potentials, or static
magnetic field ∇ × E = 0, the relativistic reduced Hamiltonian for an electron in an
electromagnetic field can be approximated at first order considering that π̂ = p̂ + eA as

Ĥ ≈ mec2︸︷︷︸
rest energy

+
π̂2

2me
− p̂4

8m3
ec2︸ ︷︷ ︸

mass velocity

+
gµβ

h̄
Ŝ · (∇× A)︸ ︷︷ ︸

Zeeman term

+
eh̄2

8m2
ec2 ∇ · Ê︸ ︷︷ ︸

Darwin term

−eΦ

− e
2m2

ec2 Ŝ · (Ê× π̂)︸ ︷︷ ︸
spin-orbit

(12)

where Ŝ is the representation of the spin operator on the basis of Sz eigenstates, which can
be written as the 2× 2 matrix

Ŝ =
h̄
2

[
ẑ x̂− iŷ

x̂ + iŷ −ẑ

]
(13)

where g is the electron g-factor, and µB is the Bohr magneton. All terms contained in
Equation (12) are one-electron operators, so the generalization of this Hamiltonian to
many-body particle is straightforward in the Born–Oppenheimer (BO) approximation

Ĥ =∑
k

π̂2(k)
2me

−∑
k

p̂4(k)
8m3

ec2
+ ∑

k

gµβ

h̄
Ŝ(k) · B̂(k) + ∑

k,a

π

2m2
ec2 Zaδ(rka)−∑

k
eΦ̂(k)

−∑
k,a

e
2m2

ec2 Ŝ(k) ·
[
Êa

k × π̂(k)
]
+

1
2 ∑

k,j

′ e2

4πε0rkj
−∑

a,k

Zae2

4πε0rak
+

1
2 ∑

a,a′

′ ZaZa′

4πε0Raa′

(14)

where the electric field operator is defined as

Êa
k =

Za e
4πε0

rk − Ra

|rk − Ra|3
. (15)

Note that in this Hamiltonian we have removed the electron rest mass energy, so that
the zero of our energy axis agrees with the conventional nonrelativistic one. The Darwin
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term is easily dealt with, indeed it can be added to the potential energy term. A different
situation comes from the spin-orbit coupling and the Zeeman terms that can be neglected
in a linear response approach at first insight.

4. Many-Body Current Density

In this section, we will derive the quantum expression for the many-body current
density by adopting the Landau approach starting from different one-electron Hamiltonians
and by using the relation

δĤc = −
∫

J(r) · δA(r) dr (16)

where Ĥc = 〈Ψ|Ĥ|Ψ〉 is the expectation value of the quantum Hamiltonian. The next step is
to calculate the variation δĤc, rewriting Ĥc with an infinitesimally different vector potential

A(r) + δA(r) (17)

and then to obtain the difference of these two expressions, evaluated to the first order in
the infinitesimal δA(r). It is clear by using this procedure that only terms depending on
the potential vector A(r) contribute to the total current density vector field, so the Darwin
terms cancel out, just as the potential energy terms and the rest energy does. They have no
effect on the result for the probability current density. The results here proposed account
only for the presence of a static magnetic field, so dynamic currents [25] are not considered.
The one-electron Hamiltonians considered here to derive the current in spite of the previous
discussion are:

• the classical kinetic energy Hamiltonian;
• the Zeeman Hamiltonian for the interaction of an electron spin with the applied

magnetic field; and
• the spin-orbit coupling Hamiltonian.

4.1. Nonrelativistic Current Density

By using the relation (7), the single particle operator is

ĥ(1) =
π̂2

2me
(18)

where
π̂2 = (−ih̄∇+ eA)2 = −h̄2∇2 − ih̄e(A ·∇+∇ · A) + e2 A2 (19)

we can write

Ĥc + δĤc =
n

2me

∫
Ψ∗(r, X1)π

2 Ψ(r, X1)dX1 dr +

ne
2me

∫
Ψ∗(r, X1)[δA · p̂ + p̂ · δA + 2eA · δA]Ψ(r, X1)dX1 dr

(20)

because
(A + δA)2 = A · A + δA · δA + 2A · δA (21)

and a second order variation is not considered. From the previous equations, it follows that

δĤc =
ne

2me

∫
Ψ∗(r, X1)[δA · p̂ + p̂ · δA + 2eA · δA]Ψ(r, X1)dX1 dr. (22)

Now we can use the vector identity

Ψ∗∇ · (δAΨ) = ∇ · (Ψ∗δAΨ)−∇Ψ∗ · δAΨ. (23)
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By using the divergence theorem, the volume integral of the first term of this equation
converts to a surface integral at infinity and consequently vanishes, so

δĤc = −n
ieh̄
2me

∫
Ψ∗(r, X1)δA ·∇Ψ(r, X1) dX1 dr

+n
ieh̄
2me

∫
∇Ψ∗(r, X1) · δAΨ(r, X1) dX1 dr

+n
e2

me

∫
Ψ∗(r, X1)A · δAΨ(r, X1) dX1 dr

(24)

from which, by using Equation (16), it follows that

J(r) = n
ieh̄
2me

∫
{Ψ∗(r, X1)∇Ψ(r, X1)−Ψ(r, X1)∇Ψ∗(r, X1)} dX1 −

e2

me
Aγ(r) (25)

which is conventionally rewritten as

J(r) = − e
me
<
[
π̂γ
(
r; r′
)]

r′=r . (26)

4.2. Zeeman Current Density

With the same procedure adopted before from Equation (7), we can write for this
contribution

ĥ(1) =
gµβ

h̄
Ŝ · (∇× A). (27)

It follows that
Hc =

gµβ

h̄

∫
Ŝ · (∇× A) γ(r) dr. (28)

Now substituting A(r) with Equation (17), we obtain

Ĥc + δĤc =
ngµβ

h̄

∫
Ψ(r, X1) Ŝ · (∇× A)Ψ∗(r, X1)dX1 dr

+
ngµβ

h̄

∫
Ψ∗(r, X1)

[
(∇× δA) · Ŝ

]
Ψ(r, X1)dX1 dr

(29)

from which we obtain

δĤc =
ngµβ

h̄

∫
Ψ∗(r, X1)

[
(∇× δA) · Ŝ

]
Ψ(r, X1)dX1 dr. (30)

Now considering the vector identity

∇× δA ·Ψ∗ŜΨ =∇ · (δA×Ψ∗ŜΨ) + δA ·∇×Ψ∗ŜΨ (31)

and that the volume integral of the divergence term is zero, we obtain

δĤc =
ngµβ

h̄

∫ {
∇×

[
Ψ∗(r, X1)ŜΨ(r, X1) dX1

] }
· δA dr. (32)

Now by using Equations (4) and (16), we obtain

J(r) = −
gµβ

h̄
∇×Q(r). (33)

4.3. Spin-Orbit Coupling Current Density

By using the relation (7), being for this contribution

ĥ(1) = − e
2m2

ec2 Ŝ · (Êa
k × π̂), (34)
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it follows that
Ĥc = −

e
2m2

ec2

∫
(Êa

k × π̂) γ(r) dr. (35)

Now substituting A(r) with Equation (17) and considering that

π̂ = −ih̄∇+ eA (36)

we obtain

Ĥc + δĤc = −
ne

2m2
ec2

∫
Ψ(r, X1) Ŝ · (Êa

k × π̂)Ψ∗(r, X1)dX1 dr

− ne
2m2

ec2

∫
Ψ∗(r, X1)

[
Ŝ · (Êa

k × eδA)
]

Ψ(r, X1)dX1 dr
(37)

from which we obtain

δĤc = −
ne

2m2
ec2

∫
Ψ∗(r, X1)

[
Ŝ · (Êa

k × eδA)
]

Ψ(r, X1)dX1 dr. (38)

By using the vector identity

Ŝ · (Êa
k × δA) = Êa

k · (δA× Ŝ) = δA · (Ŝ× Êa
k) (39)

we obtain

δĤc = −
ne2

2m2
ec2

∫ {
Ψ∗(r, X1)

[
Ŝ× Êa

k
]

Ψ(r, X1)
}

dX1 · δA dr. (40)

Now by using Equation (16), the contribution to the total current density is for an atom

J(r) =
e2

2m2
ec2 Q(r)× Êa. (41)

4.4. Total Electron Current Density

By summarizing the individual terms of the many-body current density obtained, it
follows that the total current density is defined for an open-shell system, as

J(r) =− e
me
<
[
π̂γ
(
r; r′
)]

r′=r −
gµβ

h̄
∇×Q(r)

+ ∑
a

e2

2m2
ec2 Q(r)× Êa

(42)

which in tensorial notation can be rewritten as

Jα(r) =−
e

me
<
[
π̂αγ

(
r; r′
)]

r′=r −
gµβ

h̄
εαβγ∇βQγ(r)

+ ∑
a

e2

2m2
ec2 εαβγQβ(r)Ea

γ

(43)

The continuity equation associated with this current that is verified is:

∇α Jα(r) = ∑
a

e2

2m2
ec2 εαβγ∇α

[
Qβ(r)Ea

γ

]
(44)

because the magnetization current has no divergence due to the nature of the curl and the
nonrelativistic current can be obtained also with an approach that adopts the Coulomb
gauge, which ensures that its divergence is zero for an exact calculation. For an open-shell
molecule, as we can see from the previous equations, we have many spin-orbit coupling
current densities as the number of atoms contained, but due to the presence of 1

c2 these
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currents are negligible except for very heavy atoms where spin-orbit coupling plays a
fundamental role or in systems with high-spin multiplicity in the nuclear proximity. The
Equation (43) for a closed-shell system reduces to

Jα(r) = −
e

me
<
[
π̂αγ

(
r; r′
)]

r′=r (45)

because the spin density matrices are equal and in accordance with the Wigner–Eckart
theorem, the spin densities are all the same except for a proportionality constant [3], being
Qz(r) = 0. The current defined in Equation (42) or (43) is by definition gauge-invariant only
for an exact calculation or in the limit of a complete basis set. This gauge dependence come
from the nonrelativistic part of the current density [26]. The spin contributions to the total
current are independent from the gauge choice also for an approximate calculation, due to
the independence of spin density and the electron field operator of a point charge, from the
origin of the coordinate system. If we consider the spin-orbit coupling current, a divergence
should be expected in the proximity of atomic coordinates, due to the dependence of
the electron field of a point charge on its origin [6]. Equation (43) does not define the
total current density vector induced in a molecule by a static magnetic field because other
terms in the Hamiltonian should be considered, like the Zeeman Hamiltonian of nuclei
and the hyperfine interactions, but these contribution can be derived only from quantum
electrodynamics, and it is not our purpose to discuss them in this paper. Moreover, these
terms can be neglected at first approximation in a non-fully relativistic approach.

5. Implementation

In this section we show how it is possible to evaluate the spin-orbit coupling current for
an open-shell system in the linear response approach in a Hartree–Fock or DFT calculation.
In the absence of orbital degeneracy, the first term on the rhs of Equation (43) describes the
system response to an external applied magnetic field. In this context, the spinless charge
density can be expanded to first order in the magnetic field as

γ(r) = γ(0)(r) + γ(1)(r) (46)

and an explicit expression for the first term on the rhs of (43) can be provided according to
the well-known equations for the first order-induced current density [5,26]

J(1)α (r) =
e

me
Aα(r)γ(0)(r− e

me
<
[

pαγ(1)(r, r′
)]

r′=r
(47)

where Aα is the vector potential linked to the external magnetic field. For the Zeeman
current, with the understanding that the reference frame is always chosen so that the
quantization axis coincides with the direction of applied magnetic field, we can define [5]

J(0)α (r) = F
Sγ
α (r)Sγ, F

Sγ
α (r) = − e

m
εαβγ∇βQ(r). (48)

Similarly, for the spin-orbit coupling current we have

J(0)α (r) = F
Sβ
α (r)Sβ, F

Sβ
α (r) = ∑

a

e2

2mec2 εαβγQ(r)Eγ (49)

with
Eγ = ∑

a
Ea

γ. (50)
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As we pointed out before, we are interested only in the spin-orbit coupling current
for which the tensor can be implemented, from a practical point of view, in atomic units,
adopting the Szabo and Ostlund notation [27] as

F
Sβ
α (r) =

1
2c2 εαβγQ(r)Eγ (51)

with
Q(r) = ∑

µ
∑
v

[
Pα

µvφµ(r)φ∗v(r)− Pβ
µvφµ(r)φ∗v(r)

]
(52)

Pα
µv =

Nα

∑
a

Cα
µa(C

α
va)
∗ (53)

Pβ
µv =

Nβ

∑
a

Cβ
µa(C

β
va)
∗ (54)

in accordance with the Wigner–Eckart theorem. We have seen that it is possible to define
a spin-orbit coupling current density tensor for all the atoms contained in an open-shell
system according to

F
Sβ
α (r) =

1
2c2 εαβγQ(r)Ea

γ. (55)

Orbital coefficients can be obtained from a Gaussian [28] calculation or generated by
the SYSMOIC suite of programs. The full procedure for the calculation of total spin-orbit
coupling-induced current density vector has been implemented in the freely available
SYSMOIC [26] program package.

6. Computational Details

Due to the nature of the spin-orbit coupling current we have considered, as a system
where it is possible to evaluate this current consistently, the Co3+ atom with a spin multi-
plicity 2S + 1 = 13 according to the d6 high-spin electronic configuration. Owing to their
small size, very accurate computations have been carried out by using the BHandHLYP
functional [29], recently shown to provide good linear response properties [30], adopting
the ATZP-ZORA basis set [31] of contracted functions which include terms of high angular
momentum taken from BSE. The ATZP-ZORA basis set is optimized to deal with scalar
relativistic effects that do not take into account the finite character of the charges, like the
ZORA approach [32]. The Gaussian 16 calculation has been done by using the 6d 10f and
int=dkh0 keywords to account for the 0th scalar relativistic correction to the molecular
orbitals. The computational time load of this kind of calculation is about 1

5 more than a
standard DFT one. The spin orbit coupling current density vector field is shown in Figure 1.

To answer the questions raised above, variational calculations of the energy have
been done with six different Hamiltonians at the Hartree–Fock level of theory for atoms
with atomic number Z that came from 1 to 20 always adopting the ATZP-ZORA basis set
reported in Table 1. These Hamiltonians are

• Hartree–Fock Hamiltonian;
• Hartree–Fock + mass-velocity correction Hamiltionian;
• Hartree–Fock + Darwin correction Hamiltionian;
• Hartree–Fock + Cowan–Griffin Hamiltionian;
• ZORA–Hartree–Fock Hamiltonian; and
• Douglas-Kroll-Hess 0th order–Hartree–Fock Hamiltonian (DKH0)

In particular, variational calculations, by using the mass–velocity and the Darwin Hamil-
tonians, have been done with the SYSMOIC software, whereas the ZORA and the DKH0 [33]
variational calculations have been performed respectively with the NWCHEM [34] and
Gaussian 16 [28] software packages.



Physchem 2022, 2 104

Figure 1. Spin-orbit coupling current density vector field for the Co3+ atom with spin multiplicity
2S + 1 = 13 evaluated on the xy plane for a magnetic field applied in the z direction.

Table 1. Variational energies in hartree, obtained with the Hartree–Fock approximation considering
the different corrections to the Hamiltonian adopting the ATZP-ZORA basis set for atoms with atomic
number Z that comes from 1 to 20.

Z ĤHF ĤHF + Ĥmv ĤHF + ĤD ĤCG
† ĤZORA–HF ĤDKH0–HF

1 −0.4998349 −0.4998654 −0.4998108 −0.4998414 −0.4998397 −0.4998414
2 −2.8600510 −2.8606819 −2.8595187 −2.8601485 −2.8601688 −2.8601489
3 −7.4325401 −7.4365635 −7.4292026 −7.4332179 −7.4334900 −7.4332357
4 −14.5724392 −14.5864548 −14.5610185 −14.5749819 −14.5761416 −14.5750682
5 −24.5313924 −24.5673562 −24.5024754 −24.5382466 −24.5415539 −24.5385003
6 −37.6031027 −37.6808719 −37.5415895 −37.6184484 −37.6259135 −37.6190421
7 −54.2662583 −54.4148121 −54.1503286 −54.2965153 −54.3110495 −54.2976529
8 −74.6878941 −74.9480097 −74.4876582 −74.7423855 −74.7679493 −74.7442872
9 −99.4113158 −99.8382996 −99.0873117 −99.5030571 −99.5446113 −99.5057889

10 −128.5403294 −129.2067277 −128.0423645 −128.6868450 −128.7504059 −128.6902223
11 −161.8555837 −162.8809592 −161.1150303 −162.0850392 −162.1763073 −162.0861610
12 −199.6093894 −201.1108985 −198.5534342 −199.9522346 −200.0808438 −199.9496258
13 −241.8755714 −244.0007369 −240.4133585 −242.3707987 −242.5472230 −242.3611725
14 −288.7915490 −291.7774552 −286.8062253 −289.4995377 −289.7226844 −289.4677093
15 −340.6230735 −344.7063641 −337.9978788 −341.6065231 −341.8838353 −341.5418821
16 −397.4177135 −402.9519933 −394.0123219 −398.7692641 −399.0904920 −398.6425879
17 −459.4748556 −466.9018681 −455.1179965 −461.3146422 −461.6559244 −461.0787814
18 −526.7933904 −536.3524027 −521.3228706 −529.1837898 −529.5926655 −528.8544347
19 −599.1249582 −610.8545625 −591.9593826 −602.2234465 −602.6919184 −601.7288041
20 −676.7001014 −691.7429057 −667.8721764 −680.7377085 −681.1717600 −679.9732201

† CG stands for Cowan–Griffin Hamiltonian that include both the mass–velocity and the Darwin corrections.

For the mass–velocity corrections, a good agreement is found in the literature [35].
From the table 1, it seems that a variational calculation with the Cowan–Griffin Hamiltonian,
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where it is possible, is closer to the DKH0 calculation than the ZORA approach for the basis
set here adopted.

7. Conclusions

A different way to derive and calculate the total induced relativistic current density has
been presented, and is focused on the different contributions that come from a relativistic
picture, not presented before, if compared with standard relativistic [7,16,18,19,36] or non-
relativistic ones [5,14,17,26]. Of these contributions, the spin-orbit coupling current can be
neglected at first approach to deal with open-shell systems without high-spin multiplicity
containing atoms of low atomic number due to the nature of the 1

c2 multiplicative factor.
For closed-shell systems, the equations are the same obtained from a nonrelativistic picture,
but molecular orbitals can be different for systems with atoms of high atomic number near
nuclei if we consider scalar relativistic corrections. Based on the discussion done until
now, it is clear that the quantitative description of many-body systems requires a complete
relativistic treatment for systems containing atoms with atomic number Z greater than 12.
Indeed a partial introduction of corrective terms, such as the mass–velocity term or the
Darwin term only, leads to a greater error than that obtainable by using a non-relativistic
approach, as can be seen in the picture 2. This last approach is usable with atoms until
Z = 4 with an error estimation of '1.7 kcal/mol if we consider only scalar relativistic
effects. The Cowan–Griffin Hamiltonian [37] is not very useful for Z greater than 20 because
it becomes unbounded from below [38,39], indeed it converges only for p̂2 < m2c2, whereas
the spectrum of operator p̂2 is (0,+∞) [40]. The leading relativistic corrections are futile
because it is well-known that the expectation values 〈p̂n〉, n ≥ 5, diverge for S states
of the hydrogen atom and, in general, for the ground state of any atomic or molecular
system [41–43].
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Figure 2. Absolute deviations in a.u. from Douglas-Kroll-Hess 0th order–Hartree–Fock Hamiltonian.

Without relativistic effects it is not possible to obtain a correct description of molecular
properties. This applies, in particular, for the induced current density that contains contri-
butions arising from electron spin and that are not negligible for open-shell systems [5,44].
For closed-shell systems, only small differences in detail were found in the magnetically
induced currents maps obtained at the different levels of calculations [36,45].
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