Steep Population Declines in Insectivorous Passerines, Irrespective of Their Migratory Strategies
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Species
2.3. Data Analysis
3. Results
3.1. Long-Distance Migrants
3.2. Short-Distance Migrants
3.3. Resident Species
3.4. Population Trends
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Year | Period | Number of Ringing Days | Number of Nets Used |
|---|---|---|---|
| 1997 | 29/07 to 07/10 | 72 | 9 |
| 1998 | 27/07 to 30/09 | 65 | 9 |
| 1999 | 29/07 to 07/10 | 64 | 9 |
| 2000 | 03/08 to 01/10 | 53 | 9 |
| 2001 | 30/07 to 01/10 | 65 | 9 |
| 2002 | 01/08 to 04/10 | 60 | 9 |
| 2003 | 29/07 to 06/10 | 70 | 9 |
| 2004 | 28/07 to 05/10 | 71 | 9 |
| 2005 | 31/07 to 10/10 | 69 | 9 |
| 2006 | 31/07 to 09/10 | 70 | 9 |
| 2007 | 27/07 to 13/10 | 77 | 9 |
| 2008 | 30/07 to 05/10 | 64 | 9 |
| 2009 | 01/08 to 01/10 | 62 | 9 |
| 2010 | 31/07 to 01/10 | 62 | 9 |
| 2011 | 25/07 to 30/09 | 66 | 9 |
| 2012 | 30/07 to 02/10 | 61 | 8 |
| 2013 | 05/08 to 14/10 | 67 | 8 |
| 2014 | 02/08 to 14/10 | 71 | 6 |
| 2015 | 02/08 to 15/10 | 67 | 9 |
| 2016 | 03/08 to 14/10 | 68 | 6 |
| 2017 | 02/08 to 15/10 | 69 | 7 |
| 2018 | 01/08 to 13/10 | 70 | 6 |
| 2019 | 01/08 to 12/10 | 72 | 6 |
| 2020 | 20/07 to 15/10 | 87 | 6 |
| 2021 | 26/07 to 15/10 | 75 | 6 |
| 2022 | 21/07 to 12/10 | 76 | 6 |
| 2023 | 25/07 to 12/10 | 70 | 6 |
| 2024 | 27/07 to 05/10 | 69 | 6 |
References
- Morelli, F.; Benedetti, Y.; Callaghan, C.T. Ecological specialization and population trends in European breeding birds. Glob. Ecol. Conserv. 2020, 22, e00996. [Google Scholar] [CrossRef]
- Jiguet, F.; Gregory, R.D.; Devictor, V.; Green, R.E.; Vorisek, P.; Van Strien, A.; Couvet, D. Population trends of European common birds are predicted by characteristics of their climatic niche. Glob. Change Biol. 2010, 16, 497–505. [Google Scholar] [CrossRef]
- Howard, C.; Stephens, P.A.; Pearce-Higgins, J.W.; Gregory, R.D.; Butchart, S.H.; Willis, S.G. Disentangling the relative roles of climate and land cover change in driving the long-term population trends of European migratory birds. Divers. Distrib. 2020, 26, 1442–1455. [Google Scholar] [CrossRef]
- Reif, J.; Vermouzek, Z.; Voříšek, P.; Šťastný, K.; Bejček, V.; Flousek, J. Population changes in Czech passerines are predicted by their life-history and ecological traits. Ibis 2010, 152, 610–621. [Google Scholar] [CrossRef]
- Both, C. Flexibility of timing of avian migration to climate change masked by environmental constraints en route. Curr. Biol. 2010, 20, 243–248. [Google Scholar] [CrossRef]
- Møller, A.; Rubolini, D.; Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl. Acad. Sci. USA 2008, 105, 16195–16200. [Google Scholar] [CrossRef]
- Hallmann, C.; Foppen, R.; van Turnhout, C.; de Kroon, H.; Jongejans, E. Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature 2014, 511, 341–343. [Google Scholar] [CrossRef]
- Sánchez-Bayo, F.; Wyckhuys, K. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 2019, 232, 8–27. [Google Scholar] [CrossRef]
- Bowler, D.E.; Heldbjerg, H.; Fox, A.D.; de Jong, M.; Bohning-Gaese, K. Long-term declines of European insectivorous bird populations and potential causes. Conserv. Biol. 2019, 33, 1120–1130. [Google Scholar] [CrossRef]
- Clavel, J.; Julliard, R.; Devictor, V. Worldwide decline of specialist species: Toward a global functional homogenization? Front. Ecol. Environ. 2011, 9, 222–228. [Google Scholar] [CrossRef]
- Tottrup, A.P.; Rainio, K.; Coppack, T.; Lehikoinen, E.; Rahbek, C.; Thorup, K. Local temperature fine-tunes the timing of spring migration in birds. Integr. Comp. Biol. 2010, 50, 293–304. [Google Scholar] [CrossRef]
- Both, C.; Bouwhuis, S.; Lessells, C.M.; Visser, M.E. Climate change and population declines in a longdistance migratory bird. Nature 2006, 441, 81–83. [Google Scholar] [CrossRef]
- Norris, D.R.; Marra, P.P. Seasonal interactions, habitat quality, and population dynamics in migratory birds. Condor 2007, 109, 535–547. [Google Scholar] [CrossRef]
- Lehikoinen, A.; Lindström, Å.; Santangeli, A.; Sirkiä, P.; Brotons, L.; Devictor, V.; Elts, J.; Foppen, R.; Heldbjerg, H.; Herrando, S.; et al. Wintering bird communities are tracking climate change faster than breeding communities. J. Anim. Ecol. 2021, 90, 1085–1095. [Google Scholar] [CrossRef] [PubMed]
- Runge, C.A.; Watson, J.E.M.; Butchart, S.H.; Hanson, J.O.; Possingham, H.P.; Fuller, R.A. Protected areas and global conservation of migratory birds. Science 2015, 350, 1255–1258. [Google Scholar] [CrossRef] [PubMed]
- Studds, C.E.; Kendall, B.E.; Murray, N.J.; Wilson, H.B.; Rogers, D.I.; Clemens, R.S.; Gosbell, K.; Hassell, C.J.; Jessop, R.; Melville, D.S.; et al. Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites. Nat. Commun. 2017, 8, 14895. [Google Scholar] [CrossRef] [PubMed]
- Wilcove, D.S.; Wikelski, M. Going, going, gone: Is animal migration disappearing? PLoS Biol. 2008, 6, e188. [Google Scholar] [CrossRef]
- Gilroy, J.J.; Gill, J.A.; Butchart, S.H.; Jones, V.R.; Franco, A.M. Migratory diversity predicts population declines in birds. Ecol. Lett. 2016, 19, 308–317. [Google Scholar] [CrossRef]
- Koleček, J.; Procházka, P.; Iernonymidou, C.; Burfield, Y.J.; Reif, J. Non-breeding range size predicts the magnitude of population trends in trans-Saharan migratory passerine birds. Oikos 2018, 127, 599–606. [Google Scholar] [CrossRef]
- Stephens, P.A.; Mason, L.R.; Green, R.E.; Gregory, R.D.; Sauer, J.R.; Alison, J.; Aunins, A.; Brotons, L.; Butchart, S.H.M.; Campedelli, T.; et al. Consistent response of bird populations to climate change on two continents. Science 2016, 352, 84–87. [Google Scholar] [CrossRef]
- Storch, D.; Koleček, J.; Keil, P.; Vermouzek, Z.; Voříšek, P.; Reif, J. Decomposing trends in bird populations: Climate, life histories and habitat affect different aspects of population change. Divers. Distrib. 2023, 29, 572–585. [Google Scholar] [CrossRef]
- Bauer, S.; Hoye, B.J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 2014, 344, 1242552. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, F.J.; Donald, P.F.; Pain, D.J.; Burfield, I.J.; van Bommel, F.P. Long-term population declines in Afro-Palearctic migrant birds. Biol. Conserv. 2006, 131, 93–105. [Google Scholar] [CrossRef]
- Curley, S.R.; Manne, L.L.; Veit, R.R. Differential winter and breeding range shifts: Implications for avian migration distances. Divers. Distrib. 2020, 26, 415–425. [Google Scholar] [CrossRef]
- Silveira, M.; Encarnacao, P.; Vidal, A.M.; Cancela da Fonseca, L. Aves aquáticas e gestão da Lagoa de Santo André. Rev. Gest. Costeira Integr.-J. Integr. Coast. Zone Manag. 2009, 9, 55–70. [Google Scholar] [CrossRef]
- Newton, I. The Migration Ecology of Birds; Elsevier: London, UK; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Gregory, R.D.; Skorpilova, J.; Vorisek, P.; Butler, S. An analysis of trends, uncertainty and species selection shows contrasting trends of widespread forest and farmland birds in Europe. Ecol. Indic. 2009, 103, 676–687. [Google Scholar] [CrossRef]
- Correia, M.J.; Costa, J.L.; Chainho, P.; Félix, P.M.; Chaves, M.L.; Medeiros, J.P.; Silva, G.; Azeda, C.; Tavares, P.; Costa, A.; et al. Inter-annual variations of macrobenthic communities over three decades in a land-locked coastal lagoon (Santo André, SW Portugal). Estuar. Coast. Shelf Sci. 2012, 110, 168–175. [Google Scholar] [CrossRef]
- Correia, M.J.; Domingos, I.; De Leo, G.A.; Costa, J.L. A comparative analysis of European eel’s somatic growth in the coastal lagoon Santo André (Portugal) with growth in other estuaries and freshwater habitats. Environ. Biol. Fishes 2021, 104, 837–850. [Google Scholar] [CrossRef]
- CEZH/RNLSAS. Reserva Natural das Lagoas de St.º André e Sancha, Uma Contribuição Para o Plano de Gestão; Instituto da Conservação da Natureza/Centro de Zonas Húmidas: Lisbon, Portugal, 2004; 118p. [Google Scholar]
- Beja, P.; Gordinho, L.; Porto, M.; Machado, J.; Santana, J.; Simões, H.; Carvalho, C.R.; Borralho, R.; Silva, L.N. Plano de Ordenamento da Reserva Natural das Lagoas de Santo André e da Sancha; Technical Report; Instituto da Conservação da Natureza e das Florestas: Lisbon, Portugal, 2005. [Google Scholar]
- Pinto, M.J. Guia das Plantas e dos Ecossistemas da RNLSAS; ICNF: Lisbon, Portugal, 2014. [Google Scholar]
- Catry, P.X. A Avifauna da Lagoa de Santo André—Caracterização, Impacto e Propostas de Gestão. Bachelor’s Thesis, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal, 1993; 189p. [Google Scholar]
- Alambiaga, I.; Carrasco, M.; Ruiz, C.; Mesquita-Joanes, F.; Monrós, J.S. Population trends and habitat selection of threatened marsh passerines in a protected Mediterranean wetland. Avian Conserv. Ecol. 2021, 16, 23. [Google Scholar] [CrossRef]
- Petras, T.; Vrezec, A.l. Long-Term Ringing Data on Migrating Passerines Reveal Overall Avian Decline in Europe. Diversity 2022, 14, 905. [Google Scholar] [CrossRef]
- Møller, A. Quantifying rapidly declining abundance of insects in Europe using a paired experimental design. Ecol. Evol. 2020, 10, 2446–2451. [Google Scholar] [CrossRef] [PubMed]
- Nebel, S.; Mills, A.; McCracken, J.D.; Taylor, P.D. Declines of aerial insectivores in North America follow a geographic gradient. Avian Conserv. Ecol. 2010, 5, 1. [Google Scholar] [CrossRef]
- Hanzelka, J.; Telenský, T.; Koleček, J.; Procházka, P.; Robinson, R.; Baltà, O.; Cepák, J.; Gargallo, G.; Henry, P.; Henshaw, I.; et al. Climatic Predictors of Long-Distance Migratory Birds Breeding Productivity Across Europe. Glob. Ecol. Biogeogr. 2024, 33, e13901. [Google Scholar] [CrossRef]
- Border, J.; Pearce-Higgins, J.; Hewson, C.; Howard, C.; Stephens, P.; Willis, S.; Fuller, R.; Hanson, J.; Sierdsema, H.; Foppen, R.; et al. Expanding protected area coverage for migratory birds could improve long-term population trends. Nat. Commun. 2025, 16, 1813. [Google Scholar] [CrossRef]
- Both, C.; Van Turnhout, C.A.M.; Bijlsma, R.G.; Siepel, H.; Strien, A.J.V.; Foppen, R.P. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proc. R. Soc. B Biol. Sci. 2010, 277, 1259–1266. [Google Scholar] [CrossRef]
- Rigal, S.; Dakos, H.V.; Alonso, A.; Auniņš, Z.; Benkő, L.; Brotons, T.; Chodkiewicz, P.; Chylarecki, E.; de Carli, J.C.; del Moral, C.; et al. Farmland practices are driving bird population decline across Europe. Proc. Natl. Acad. Sci. USA 2023, 120, e2216573120. [Google Scholar] [CrossRef]
- Burns, F.; Eaton, M.A.; Burfield, I.J.; Klvaňová, A.; Šilarová, E.; Staneva, A.; Gregory, R. Abundance decline in the avifauna of the European Union reveals cross-continental similarities in biodiversity change. Ecol. Evol. 2021, 11, 16647–16660. [Google Scholar] [CrossRef]
- Saino, N.; Ambrosini, R.; Rubolini, D.; Hardenberg, J.; Provenzale, A.; Hüppop, K.; Hüppop, O.; Lehikoinen, A.; Lehikoinen, E.; Rainio, K.; et al. Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proc. R. Soc. B Biol. Sci. 2010, 278, 835–842. [Google Scholar] [CrossRef]
- Jiménez, J.; Hernández, J.; Feliu, J.; Carrasco, M.; Moreno-Opo, R. Breeding in a Dry Wetland. Demographic Response to Drought in the Common Reed-Warbler Acrocephalus scirpaceus. Ardeola 2018, 65, 247–259. [Google Scholar] [CrossRef]
- Lehikoinen, A.; Virkkala, R. Population Trends and Conservation Status of Forest Birds. In Book Ecology and Conservation of Forest Birds; Cambridge University Press: Cambridge, UK, 2018; Chapter 11; pp. 389–416. [Google Scholar]
- Newson, S.; Ockendon, N.; Joys, A.; Noble, D.; Baillie, S. Comparison of habitat-specific trends in the abundance of breeding birds in the UK. Bird Study 2009, 56, 233–243. [Google Scholar] [CrossRef]
- Fontanilles, P.; de la Hera, I.; Sourdrille, K.; Lacoste, F.; Kerbiriou, C. Stopover ecology of autumn-migrating Bluethroats (Luscinia svecica) in a highly anthropogenic river basin. J. Ornithol. 2019, 161, 89–101. [Google Scholar] [CrossRef]
- Arizaga, J.; Gordo, O. Long-Term Dynamics of Stopover Use by the Bluethroat Luscinia svecica. Ardeola 2024, 71, 291–306. [Google Scholar] [CrossRef]
- Martay, B.; Pearce-Higgins, J.W.; Harris, S.J.; Gillings, S. Breeding ground temperature rises, more than habitat change, are associated with spatially variable population trends in two species of migratory bird. Ibis 2023, 165, 34–54. [Google Scholar] [CrossRef]
- Lindström, Å.; Svensson, S.; Green, M.; Ottvall, R. Distribution and population changes of two subspecies of Chiffchaff Phylloscopus collybita in Sweden. Ornis Svec. 2007, 17, 137–147. [Google Scholar] [CrossRef]
- Ożarowska, A.; Meissner, W. Increasing body condition of autumn migrating Eurasian blackcaps Sylvia atricapilla over four decades. Eur. Zool. J. 2024, 91, 151–161. [Google Scholar] [CrossRef]
- Ramos-Elvira, E.; Banda, E.; Arizaga, J.; Martín, D.; Aguirre, J.I. Long-Term Population Trends of House Sparrow and Eurasian Tree Sparrow in Spain. Birds 2023, 4, 159–170. [Google Scholar] [CrossRef]
- Moreno Mosquera, E.; Drechsler, R.; Monrós, J. The effect of vegetation structure on seasonal density of Sylvia warblers in the eastern Iberian Peninsula. Bird Study 2021, 68, 112–121. [Google Scholar] [CrossRef]




| Type of Migrant | Studied Species | Population Tendency | Diet |
|---|---|---|---|
| long-distance | sedge warbler | decrease | insectivorous |
| long-distance | savi’s warbler | decrease | insectivorous |
| long-distance | grasshopper warbler | decrease | insectivorous |
| long-distance | willow warbler | decrease | insectivorous |
| long-distance | European reed warbler | decrease | insectivorous |
| short-distance | bluethroat | decrease | insectivorous |
| short-distance | chiffchaff | increase | insectivorous |
| short-distance | blackcap | increase | frugivorous |
| resident | tree sparrow | decrease | omnivorous |
| resident | sardinian warbler | decrease | omnivorous |
| resident | robin | increase | omnivorous |
| resident | blackbird | increase | omnivorous |
| resident | cetti’s warbler | stable | insectivorous |
| resident | greenfinch | stable | granivorous |
| resident | blue tit | stable | omnivorous |
| resident | great tit | stable | omnivorous |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Almeida, A.P.; Araújo, M.; Encarnação, V.; Ramos, J.A. Steep Population Declines in Insectivorous Passerines, Irrespective of Their Migratory Strategies. Conservation 2026, 6, 19. https://doi.org/10.3390/conservation6010019
Almeida AP, Araújo M, Encarnação V, Ramos JA. Steep Population Declines in Insectivorous Passerines, Irrespective of Their Migratory Strategies. Conservation. 2026; 6(1):19. https://doi.org/10.3390/conservation6010019
Chicago/Turabian StyleAlmeida, Ana Patrícia, Miguel Araújo, Vitor Encarnação, and Jaime A. Ramos. 2026. "Steep Population Declines in Insectivorous Passerines, Irrespective of Their Migratory Strategies" Conservation 6, no. 1: 19. https://doi.org/10.3390/conservation6010019
APA StyleAlmeida, A. P., Araújo, M., Encarnação, V., & Ramos, J. A. (2026). Steep Population Declines in Insectivorous Passerines, Irrespective of Their Migratory Strategies. Conservation, 6(1), 19. https://doi.org/10.3390/conservation6010019

