Barn Owls as a Nature-Based Solution for Pest Control: A Multinational Initiative Around the Mediterranean and Other Regions
Abstract
:1. Introduction: The Pest-Rodents Global Problem and the Barn Owl as a NbS Solution
1.1. Background: Pest Rodents, a Global Problem for Agriculture, Economy, and Biodiversity
1.2. Nature-Based Solutions (NbSs): Facing Future Global Environmental Challenges with Different Strategies and the Importance of NbSs in Agricultural Management
1.3. Barn Owls: A Nature-Based Solution (NbS) Against Pest Rodents in Agriculture
2. State of the Art: Νational Barn Owl Projects in the World and Their Results So Far—International Collaboration
2.1. The Barn Owl Project in Israel
2.2. The Barn Owl Project in Jordan
2.3. The Barn Owl Project in Cyprus
2.4. The Barn Owl Project in Greece
2.5. The Barn Owl Project in Morocco
2.6. The Barn Owl Project in Spain
2.7. The Barn Owl Project in California, USA
2.8. The Barn Owl Project in Malaysia
3. Lessons Learned and Experience Gained: How to Establish a Barn Owl Project for Natural Pest-Rodent Control in Agricultural Ecosystems
3.1. Biological and Ecological Traits That Set Barn Owls as an Effective Pest-Rodent Natural Control
3.1.1. Diet and Rodent Predation
3.1.2. Habitat and Nesting
3.2. Constructing and Installing Barn Owl Nest Boxes: Mechanisms and Parameters
Constructing the Adequate Barn Owl Nest Box
3.3. Scientific Research: Implementing Scientific Protocols A Priori and Posteriori to the Installment of a Barn Owl Nest Box Scheme
3.3.1. Geographical and Spatial Aspects
- (i)
- The total agricultural area recorded to suffer from rodent outbreaks. The land can be mapped through remote sensing and satellite photo interpretation or through UAV ultra-high-resolution images of specific locations and interpretations [80,81,82,83]. Alternatively, given the lack of this technical approach, estimations combining in-situ recordings (on-site measurements and an assessment of habitat, landscape, land uses in vertical and horizontal contexts) and information from municipalities and regional government authorities can function as a data source [84].
- (ii)
- An overlap of that agricultural area suffering from rodent outbreaks with Barn Owl natural breeding sites and foraging areas is important to take place. The overlap is necessary to support the gradual adoption and occupation of the installed nest boxes from the existing natural Barn Owl population pool [85]. In cases where the Barn Owl is totally absent and no overlap occurs, and the nearest natural Barn Owl breeding sites are further than 10 km away, two solutions are suggested. Firstly, the natural colonization of the installed nest boxes could be delayed without any easy estimation of time delay. Secondly, the “soft-release” method of Barn Owl owlets can be applied by transferring and placing young individuals in the nest boxes, using a concrete soft-release protocol for raptors to adopt the nest boxes [86,87].
- (iii)
- The total budget available to be invested in the Barn Owl scheme is also a limiting factor. Funds availability may limit the number of nest boxes that can be constructed and applied in the field. Funds will define the total number of nest boxes constructed, and then an adequate area extension defined at points i and ii will be spatially selected, ensuring it can support the number of constructed boxes. Typically, the area with the largest rodent problem should form part of this pilot area. There is always the option to construct nest boxes with old wood and not marine plywood. Nest boxes will work equally well, but may have a smaller circle of life.
- (iv)
- Number of Barn Owl nest boxes installed per surface unit. There are various suggestions for and approaches to determining the number of Barn Owl nest boxes that should be installed per surface unit. The recommended approach is to install at least two nest boxes as a minimum for every square kilometer of agricultural land. That number can reach up to 6, 8, 10, and even 20 nest boxes per square kilometer.
- (v)
- Finally, even if in an area there are fewer problems with rodents, it is a good strategy to install nest boxes because Barn Owl population requires immigrants to maintain healthy gene flow and promote genetic diversity, which is essential for long-term evolutionary potential. As such, attracting immigrant Barn Owls into new areas creates more robust Barn Owl populations.
3.3.2. Barn Owl Monitoring Program: Nest Boxes Occupation and Breeding Parameters
3.3.3. Barn Owl Monitoring Program: Feeding Ecology and Diet
3.3.4. Barn Owl Monitoring Program: Barn Owl Spatial Use, Foraging, Exploitation of the Agricultural Habitat, and the Prospects of Movement Ecology
3.3.5. Barn Owl Monitoring Program: Combinatory Research Including Biotic and Abiotic Environmental Parameters
3.3.6. Barn Owl Monitoring Program: Side Effects and Disadvantages
3.4. Societal Engagement
3.5. Educative and Awareness Campaigns
4. Discussion
4.1. The Recurring Rodent Problem in Agriculture: The Need for Creating a Different Integrative Model in Pest Management
4.2. National Barn Owl Projects: Different Velocities, Different Needs, Different Goals
4.3. Barn Owl as the Adequate NbS for Pest Rodent Control in Agriculture: Potential and Limitations
4.4. Research and Practical Implementation: A Two-Speed Vehicle That Drives Successful Barn Owl Pest-Rodent Control in Different Agroecosystems of the World
4.5. The International Barn Owl Network and Initiative: Current Status and Future Plans
4.6. No Frontiers for the Peace Ambassadors: Barn Owls as an Ecological Platform for Peace Negotiations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aulicky, R. Rodents in Crop Production Agricultural Systems—Special Issue. Agronomy 2022, 12, 2813. [Google Scholar] [CrossRef]
- Singleton, G.R.; Belmain, S.R.; Brown, P.R.; Hardy, B. (Eds.) Rodent Outbreaks: Ecology and Impacts; International Rice Research Institute: Los Baños, Philippines, 2010; p. 289. [Google Scholar]
- Savary, S.; Ficke, A.; Aubertot, J.-N.; Hollier, C. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur. 2012, 4, 519–537. [Google Scholar] [CrossRef]
- Oerke, E.C.; Dehne, H.W.; Schönbeck, F.; Weber, A. Crop Production and Crop Protection: Estimated Losses in Major Food and Cash Crops; Elsevier: Amsterdam, The Netherlands, 1994; p. 808. [Google Scholar]
- Oerke, E.C. Crop Losses to Pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Witmer, G. Rodents in Agriculture: A Broad Perspective. Agronomy 2022, 12, 1458. [Google Scholar] [CrossRef]
- Govinda, R.G. Rodents. In Pests and Their Management, 1st ed.; Omkar, Ed.; Springer Nature Singapore Pte Ltd.: Singapore, 2018; pp. 973–1014. [Google Scholar]
- Wood, B.J.; Singleton, G.R. Rodents in agriculture and forestry. In Rodent Pests and Their Control, 2nd ed.; Buckle, A.P., Smith, R.H., Eds.; CABI: Wallingford, UK, 2015; p. 432. [Google Scholar]
- FAO. FAO′s Plant Production and Protection Division; FAO: Rome, Italy, 2022; p. 32. [Google Scholar] [CrossRef]
- Stenseth, N.C.; Leirs, H.; Skonhoft, A.; Davis, S.A.; Pech, R.P.; Andreassen, H.P.; Singleton, G.R.; Lima, M.; Machang’u, R.S.; Makundi, R.H.; et al. Mice, Rats, and People: The Bio-Economics of Agricultural Rodent Pests. Front. Ecol. Environ. 2003, 1, 367–375. [Google Scholar] [CrossRef]
- Singleton, G.R. Impacts of Rodents on Rice Production in Asia; IRRI Discussion Paper Series No. 45; International Rice Research Institute: Los Baños, Philippines, 2003; pp. 1–30. [Google Scholar]
- Morand, S.; Jittapalapong, S.; Kosoy, M. Rodents as Hosts of Infectious Diseases: Biological and Ecological Characteristics. Vector-Borne Zoonotic Dis. 2015, 15, 1–2. [Google Scholar] [CrossRef]
- Meerburg, B.G.; Singleton, G.R.; Kijlstra, A. Rodent-borne diseases and their risks for public health. Crit. Rev. Microbiol. 2009, 35, 221–270. [Google Scholar] [CrossRef]
- Haouas, D.; Hufnagel, L. (Eds.) Pests Control and Acarology; IntechOpen: London, UK, 2020; pp. 1–176. [Google Scholar]
- Smith, R.H.; Shore, R.F. Environmental Impacts of Rodenticides. In Rodent Pests and Their Control, 2nd ed.; Buckle, A., Smith, R., Eds.; CABI: Wallingford, UK, 2015; pp. 330–380. [Google Scholar]
- Regnery, J.; Friesen, A.; Geduhn, A.; Göckener, B.; Kotthoff, M.; Parrhysius, P.; Brinke, M. Rating the risks of anticoagulant rodenticides in the aquatic environment: A review. Environ. Chem. Lett. 2019, 17, 215–240. [Google Scholar] [CrossRef]
- van den Brink, N.W.; Elliott, J.E.; Shore, R.F.; Rattner, B.A. (Eds.) Anticoagulant Rodenticides and Wildlife; Springer: Cham, Switzerland, 2018; p. 398. [Google Scholar] [CrossRef]
- Matthews, G.A. Pesticides: Health, Safety and the Environment, 2nd ed.; Wiley: Chichester, UK, 2016; p. 248. [Google Scholar]
- Nakayama, S.M.M.; Ikenaka, Y.; Morita, A.; Mizukawa, H.; Ishizuka, M. A review: Poisoning by anticoagulant rodenticides in non-target animals globally. J. Vet. Med. Sci. 2019, 81, 298–313. [Google Scholar] [CrossRef]
- Erofeeva, E.V.; Surkova, J.E.; Shubkina, A.V. Rodenticides and Wildlife Extermination. Biol. Bull. Rev. 2022, 12, 178–188. [Google Scholar] [CrossRef]
- Treu, G.; Slobodnik, J.; Alygizakis, N.; Badry, A.; Bunke, D.; Cincinelli, A.; Claßen, D.; Dekker, R.W.R.J.; Göckener, B.; Gkotsis, G.; et al. Using environmental monitoring data from apex predators for chemicals management: Towards better use of monitoring data from apex predators in support of prioritisation and risk assessment of chemicals in Europe. Environ. Sci. Eur. 2022, 34, 82. [Google Scholar] [CrossRef]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.J.; Smith, A.; Turner, B. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190120. [Google Scholar] [CrossRef] [PubMed]
- Seddon, N.; Daniels, E.; Davis, R.; Chausson, A.; Harris, R.; Hou-Jones, X.; Huq, S.; Kapos, V.; Mace, G.M.; Rizvi, A.R.; et al. Global recognition of the importance of nature-based solutions to the impacts of climate change. Glob. Sustain. 2020, 3, e8. [Google Scholar] [CrossRef]
- Xie, L.; Bulkeley, H.; Tozer, L. Mainstreaming sustainable innovation: Unlocking the potential of nature-based solutions for climate change and biodiversity. Environ. Sci. Policy 2022, 132, 119–130. [Google Scholar] [CrossRef]
- Fischer, J.; Riechers, M.; Loos, J.; Martin-Lopez, B.; Temperton, V.M. Making the UN Decade on Ecosystem Restoration a Social-Ecological Endeavour. Trends Ecol. Evol. 2021, 36, 20–28. [Google Scholar] [CrossRef]
- Aronson, J.; Goodwin, N.; Orlando, L.; Eisenberg, C.; Cross, A.T. A World of Possibilities: Six Restoration Strategies to Support the United Nation’s Decade on Ecosystem Restoration. Restor. Ecol. 2020, 28, 730–736. [Google Scholar] [CrossRef]
- Abhilash, P.C. Restoring the Unrestored: Strategies for Restoring Global Land during the UN Decade on Ecosystem Restoration (UN-DER). Land 2021, 10, 201. [Google Scholar] [CrossRef]
- Simelton, E.; Carew-Reid, J.; Coulier, M.; Damen, B.; Howell, J.; Pottinger-Glass, C.; Tran, H.V.; Van Der Meiren, M. NBS Framework for Agricultural Landscapes. Front. Environ. Sci. 2021, 9, 678367. [Google Scholar] [CrossRef]
- Iseman, T.; Miralles-Wilhelm, F. Nature-Based Solutions in Agriculture: The Case and Pathway for Adoption. In Food and Agriculture Organization of the United Nations; The Nature Conservancy: Arlington County, VA, USA, 2021; pp. 1–32. [Google Scholar] [CrossRef]
- Pultrone, G. Through and beyond the Poli(s)crisis: Guiding the Eco-Social Transition in UE. UPLanD-J. Urban Plan. Landsc. Environ. Des. 2020, 5, 61–76. [Google Scholar]
- de Luca, C.; Naumann, S.; Davis, M.; Tondelli, S. Nature-Based Solutions and Sustainable Urban Planning in the European Environmental Policy Framework: Analysis of the State of the Art and Recommendations for Future Development. Sustainability 2021, 13, 5021. [Google Scholar] [CrossRef]
- Maes, J.; Jacobs, S. Nature-Based Solutions for Europe’s Sustainable Development. Conserv. Lett. 2017, 10, 121–124. [Google Scholar] [CrossRef]
- Nwaogu, C.; Cherubin, M.R. Integrated Agricultural Systems: The 21st Century Nature-Based Solution for Resolving the Global FEEES Challenges. Adv. Agron. 2024, 185, 1–73. [Google Scholar] [CrossRef]
- Miralles-Wilhelm, F.; Iseman, T. Nature-Based Solutions in Agriculture: Sustainable Management and Conservation of Land, Water, and Biodiversity; FAO: Rome, Italy; The Nature Conservancy: Arlington County, VA, USA, 2021. [Google Scholar] [CrossRef]
- Mrunalini, K.; Behera, B.; Jayaraman, S.; Abhilash, P.C.; Dubey, P.K.; Swamy, G.N.; Prasad, J.V.N.S.; Rao, K.V.; Krishnan, P.; Pratibha, G.; et al. Nature-Based Solutions in Soil Restoration for Improving Agricultural Productivity. Land Degrad. Dev. 2022, 33, 1269–1289. [Google Scholar] [CrossRef]
- Keesstra, S.; Nunes, J.P.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The Superior Effect of Nature-Based Solutions in Land Management for Enhancing Ecosystem Services. Sci. Total Environ. 2018, 610–611, 997–1009. [Google Scholar] [CrossRef]
- Lal, R. Nature-Based Solutions of Soil Management and Agriculture. J. Soil Water Conserv. 2022, 77, 23A–29A. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Kašanin-Grubin, M.; Solomun, M.K.; Sushkova, S.; Minkina, T.; Zhao, W.; Kalantari, Z. Wetlands as Nature-Based Solutions for Water Management in Different Environments. Curr. Opin. Environ. Sci. Health 2023, 33, 100476. [Google Scholar] [CrossRef]
- Barriuso, F.; Urbano, B. Green Roofs and Walls Design Intended to Mitigate Climate Change in Urban Areas across All Continents. Sustainability 2021, 13, 2245. [Google Scholar] [CrossRef]
- van Hespen, R.; Hu, Z.; Borsje, B.; De Dominicis, M.; Friess, D.A.; Jevrejeva, S.; Kleinhans, M.G.; Maza, M.; van Bijsterveldt, C.E.J.; Van der Stocken, T.; et al. Mangrove Forests as a Nature-Based Solution for Coastal Flood Protection: Biophysical and Ecological Considerations. Water Sci. Eng. 2023, 16, 1–13. [Google Scholar] [CrossRef]
- Keesstra, S.; Veraart, J.; Verhagen, J.; Visser, S.; Kragt, M.; Linderhof, V.; Appelman, W.; van den Berg, J.; Deolu-Ajayi, A.; Groot, A. Nature-Based Solutions as Building Blocks for the Transition towards Sustainable Climate-Resilient Food Systems. Sustainability 2023, 15, 4475. [Google Scholar] [CrossRef]
- Faivre, N.; Fritz, M.; Freitas, T.; de Boissezon, B.; Vandewoestijne, S. Nature-Based Solutions in the EU: Innovating with Nature to Address Social, Economic and Environmental Challenges. Environ. Res. 2017, 159, 509–518. [Google Scholar] [CrossRef]
- Stefanakis, A.I.; Calheiros, C.S.C.; Nikolaou, I. Nature-Based Solutions as a Tool in the New Circular Economic Model for Climate Change Adaptation. Circ. Econ. Sustain. 2021, 1, 303–318. [Google Scholar] [CrossRef]
- Kooijman, E.D.; McQuaid, S.; Rhodes, M.-L.; Collier, M.J.; Pilla, F. Innovating with Nature: From Nature-Based Solutions to Nature-Based Enterprises. Sustainability 2021, 13, 1263. [Google Scholar] [CrossRef]
- Kan, I.; Motro, Y.; Horvitz, N.; Kimhi, A.; Leshem, Y.; Yom-Tov, Y.; Nathan, R. Agricultural Rodent Control Using Barn Owls: Is It Profitable? Conservation 2024, 12, 345–362. [Google Scholar] [CrossRef]
- Gómez Martín, E.; Giordano, R.; Pagano, A.; van der Keur, P.; Máñez Costa, M. Using a System Thinking Approach to Assess the Contribution of Nature Based Solutions to Sustainable Development Goals. Sci. Total Environ. 2020, 738, 139693. [Google Scholar] [CrossRef]
- Roulin, A. Barn Owls: Evolution and Ecology; Cambridge University Press: Cambridge, UK, 2020; pp. 1–352. [Google Scholar]
- Janžekovič, F.; Klenovšek, T. The Biogeography of Diet Diversity of Barn Owls on Mediterranean Islands. J. Biogeogr. 2020, 47, 2353–2361. [Google Scholar] [CrossRef]
- Riegert, J.; Šindelář, J.; Zárybnická, M.; Horáček, I. Large-Scale Spatial Patterns of Small-Mammal Communities in the Mediterranean Region Revealed by Barn Owl Diet. Sci. Rep. 2021, 11, 5975. [Google Scholar] [CrossRef]
- Meyrom, K.; Motro, Y.; Leshem, Y.; Aviel, S.; Izhaki, I.; Argyle, F.; Charter, M. Nest-Box Use by the Barn Owl Tyto alba in a Biological Pest Control Program in the Beit She’an Valley, Israel. Ardea 2009, 97, 463–467. [Google Scholar] [CrossRef]
- Peleg, O.; Nir, S.; Leshem, Y.; Meyrom, K.; Aviel, S.; Charter, M.; Roulin, A.; Izhak, I. Three Decades of Satisfied Israeli Farmers: Barn Owls (Tyto alba) as Biological Pest Control of Rodents. In Proceedings of the Vertebrate Pest Conference, Rohnert Park, CA, USA, 26 February–1 March 2018; Volume 28, pp. 208–217. [Google Scholar] [CrossRef]
- Meyrom, K.; Leshem, Y.; Charter, M. Barn Owl Tyto alba Breeding Success in Man-Made Structures in the Jordan Rift Valley, Israel. Sandgrouse 2008, 30, 134–137. [Google Scholar]
- Paz, A.; Jareño, D.; Arroyo, L.; Viñuela, J.; Mougeot, F.; Luque-Larena, J.J.; Fargallo, J.A. Avian Predators as a Biological Control System of Common Vole (Microtus arvalis) Populations in North-Western Spain: Experimental Set-Up and Preliminary Results. Pest Manag. Sci. 2013, 69, 444–450. [Google Scholar] [CrossRef]
- Paz Luna, A.; Bintanel, H.; Viñuela, J.; Villanúa, D. Nest-Boxes for Raptors as a Biological Control System of Vole Pests: High Local Success with Moderate Negative Consequences for Non-Target Species. Biol. Control 2020, 146, 104267. [Google Scholar] [CrossRef]
- Jareño, D.; Paz Luna, A.; Viñuela, J. Local Effects of Nest-Boxes for Avian Predators over Common Vole Abundance during a Mid-Density Outbreak. Life 2023, 13, 1963. [Google Scholar] [CrossRef] [PubMed]
- Kross, S.M.; Baldwin, R.A. Gopherbusters? A Review of the Candidacy of Barn Owls as the Ultimate Natural Pest Control Option. In Proceedings of the Vertebrate Pest Conference, Newport Beach, CA, USA, 7–10 March 2016; Volume 27, pp. 345–352. [Google Scholar] [CrossRef]
- Johnson, M.D.; Wendt, C.; St. George, D.; Huysman, A.E.; Estes, B.R.; Castañeda, X.A. Can Barn Owls Help Control Rodents in Winegrape Vineyard Landscapes? A Review of Key Questions and Suggested Next Steps. In Proceedings of the Vertebrate Pest Conference, Rohnert Park, CA, USA, 26 February–1 March 2018; Volume 28, pp. 207–214. [Google Scholar] [CrossRef]
- Hansen, A.; Johnson, M. Evaluating the Use of Barn Owl Nest Boxes for Rodent Pest Control in Winegrape Vineyards in Napa Valley. In Proceedings of the Vertebrate Pest Conference, Reno, NV, USA, 7–10 March 2022; Volume 30, pp. 1–8. [Google Scholar]
- Bessou, C.; Verwilghen, A.; Beaudoin-Ollivier, L.; Marichal, R.; Ollivier, J.; Baron, V.; Bonneau, X.; Carron, M.-P.; Snoeck, D.; Naim, M.; et al. Agroecological Practices in Oil Palm Plantations: Examples from the Field. OCL 2017, 24, D305. [Google Scholar] [CrossRef]
- Murgianto, F.; Edyson; Putra, S.K.; Ardiyanto, A. Role of The Barn Owl Tyto alba javanica as a Biological Agent for Rat Pest Control in The Oil Palm Plantation of Bumitama Agri Ltd. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Depok, Indonesia, 27–28 August 2022; Volume 985, p. 012048. [Google Scholar] [CrossRef]
- Zainal Abidin, C.M.R.; Noor, H.M.; Hamid, N.H.; Ravindran, S.; Puan, C.L.; Kasim, A.; Salim, H. Breeding Parameters of an Introduced Barn Owl (Tyto alba javanica) Population in an Agricultural Area. J. Raptor Res. 2022, 56, 455–465. [Google Scholar] [CrossRef]
- Mah, A.N.M.M.A.; Puan, C.L.; Zakaria, M. The Use of Nest Boxes in Malaysia: Design and the Potential for Research and In-situ Conservation of Birds. Pertanika J. Trop. Agric. Sci. 2023, 46, 951–969. [Google Scholar] [CrossRef]
- Milana, G.; Luiselli, L.; Amori, G. Forty Years of Dietary Studies on Barn Owl (Tyto alba) Reveal Long Term Trends in Diversity Metrics of Small Mammal Prey. Anim. Biol. 2018, 68, 129–146. [Google Scholar] [CrossRef]
- Love, R.A.; Webbon, C.; Glue, D.E.; Harris, S. Changes in the Food of British Barn Owls (Tyto alba) between 1974 and 1997. Mammal Rev. 2000, 30, 107–129. [Google Scholar] [CrossRef]
- Romano, A.; Séchaud, R.; Roulin, A. Global Biogeographical Patterns in the Diet of a Cosmopolitan Avian Predator. J. Biogeogr. 2020, 47, 1467–1481. [Google Scholar] [CrossRef]
- Konishi, M. How the Owl Tracks Its Prey: Experiments with Trained Barn Owls Reveal How Their Acute Sense of Hearing Enables Them to Catch Prey in the Dark. Am. Sci. 2012, 100, 494–501. [Google Scholar] [CrossRef]
- Bachmann, T.; Blazek, S.; Erlinghagen, T.; Baumgartner, W.; Wagner, H. Barn Owl Flight. In Nature-Inspired Fluid Mechanics, Notes on Numerical Fluid Mechanics and Multidisciplinary Design; Tropea, C., Bleckmann, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 119, pp. 101–116. [Google Scholar] [CrossRef]
- Boonman, A.; Zadicario, P.; Mazon, Y.; Rabi, C.; Eilam, D. The Sounds of Silence: Barn Owl Noise in Landing and Taking Off. Behav. Process. 2018, 157, 484–488. [Google Scholar] [CrossRef]
- Frey, C.; Sonnay, C.; Dreiss, A.; Roulin, A. Habitat, Breeding Performance, Diet and Individual Age in Swiss Barn Owls (Tyto alba). J. Ornithol. 2011, 152, 279–290. [Google Scholar] [CrossRef]
- Wendt, C.A.; Johnson, M.D. Multi-Scale Analysis of Barn Owl Nest Box Selection on Napa Valley Vineyards. Agric. Ecosyst. Environ. 2017, 247, 75–83. [Google Scholar] [CrossRef]
- Charter, M.; Rozman, G. The Importance of Nest Box Placement for Barn Owls (Tyto alba). Animals 2022, 12, 2815. [Google Scholar] [CrossRef] [PubMed]
- Bank, L.; Haraszthy, L.; Horváth, A.; Horváth, G.F. Nesting Success and Productivity of the Common Barn-Owl Tyto alba: Results from a Nest Box Installation and Long-Term Breeding Monitoring Program in Southern Hungary. Ornis Hung. 2019, 27, 1–31. [Google Scholar] [CrossRef]
- Vissat, L.L.; Cain, S.; Toledo, S.; Spiegel, O.; Getz, W.M. Categorizing the Geometry of Animal Diel Movement Patterns with Examples from High-Resolution Barn Owl Tracking. Mov. Ecol. 2023, 11, 15. [Google Scholar] [CrossRef]
- Séchaud, R.; Schalcher, K.; Machado, A.P.; Roulin, A. Behaviour-Specific Habitat Selection Patterns of Breeding Barn Owls. Mov. Ecol. 2021, 9, 18. [Google Scholar] [CrossRef]
- Cain, S.; Solomon, T.; Leshem, Y.; Toledo, S.; Arnon, E.; Roulin, A.; Spiegel, O. Movement Predictability of Individual Barn Owls Facilitates Estimation of Home Range Size and Survival. Mov. Ecol. 2023, 11, 10. [Google Scholar] [CrossRef]
- Rozman, G.; Izhaki, I.; Roulin, A.; Charter, M.; Leshem, Y.; Alshamlih, M.; Bahaa, N.; Hatzofe, O.; Peleg, O.; Shenbrot, G. Movement Ecology, Breeding, Diet, and Roosting Behavior of Barn Owls (Tyto alba) in a Transboundary Conflict Region. Reg. Environ. Change 2021, 21, 26. [Google Scholar] [CrossRef]
- Available online: https://www.barnowltrust.org.uk/barn-owl-nestbox/barn-owl-nestboxes/ (accessed on 23 July 2024).
- Available online: https://www.barnowlbox.com/ht-faq/new-faq-question-46/ (accessed on 23 July 2024).
- Leech, D.I.; Shawyer, C.R.; Barimore, C.J.; Crick, H.Q.P. The Barn Owl Monitoring Programme: Establishing a Protocol to Assess Temporal and Spatial Variation in Productivity at a National Scale. Ardea 2009, 97, 421–428. [Google Scholar] [CrossRef]
- Keshet, D.; Brook, A.; Malkinson, D.; Izhaki, I.; Charter, M. The Use of Drones to Determine Rodent Location and Damage in Agricultural Crops. Drones 2022, 6, 396. [Google Scholar] [CrossRef]
- Regev, T.; Kogel, I.; Segev, D.; Benzion, B.; Muller, Y.; Motro, Y. Precise Control of Rodents in Alfalfa Fields Using Drones. In Proceedings of the 49th California Alfalfa & Grain Symposium, Reno, NV, USA, 19–21 November 2019. [Google Scholar]
- Shi, H.; Pan, Q.; Luo, G.; Hellwich, O.; Chen, C.; Voorde, T.V.d.; Kurban, A.; De Maeyer, P.; Wu, S. Analysis of the Impacts of Environmental Factors on Rat Hole Density in the Northern Slope of the Tienshan Mountains with Satellite Remote Sensing Data. Remote Sens. 2021, 13, 4709. [Google Scholar] [CrossRef]
- Gao, X.; Bi, Y.; Du, J. Identification of Ratholes in Desert Steppe Based on UAV Hyperspectral Remote Sensing. Appl. Sci. 2023, 13, 7057. [Google Scholar] [CrossRef]
- Jurišić, A.; Ćupina, A.I.; Kavran, M.; Potkonjak, A.; Ivanović, I.; Bjelić-Čabrilo, O.; Meseldžija, M.; Dudić, M.; Poljaković-Pajnik, L.; Vasić, V. Surveillance Strategies of Rodents in Agroecosystems, Forestry and Urban Environments. Sustainability 2022, 14, 9233. [Google Scholar] [CrossRef]
- Radley, P.M.; Bednarz, J.C. Artificial Nest Structure Use and Reproductive Success of Barn Owls in Northeastern Arkansas. J. Raptor Res. 2005, 39, 164–170. [Google Scholar]
- Fajardo, I.; Babiloni, G.; Miranda, Y. Rehabilitated and wild Barn Owls (Tyto alba): Dispersal, life expectancy and mortality in Spain. Biol. Conserv. 2000, 94, 287–295. [Google Scholar] [CrossRef]
- Saufi, S.; Ravindran, S.; Hamid, N.H.; Abidin, C.M.R.Z.; Ahmad, H.; Ahmad, A.H.; Salim, H. Establishment of Barn Owls (Tyto alba javanica) in an Urban Area on Penang Island, Malaysia. J. Raptor Res. 2020, 54, 265–272. [Google Scholar] [CrossRef]
- Huysman, A.E.; Johnson, M.D. Multi-year nest box occupancy and short-term resilience to wildfire disturbance by barn owls in a vineyard agroecosystem. Ecosphere 2021, 12, e03438. [Google Scholar] [CrossRef]
- Toms, M.P.; Crick, H.Q.P.; Shawyer, C.R. The Status of Breeding Barn Owls Tyto alba in the United Kingdom 1995–97. Bird Study 2001, 48, 23–37. [Google Scholar] [CrossRef]
- Martínez, J.A.; López, G. Breeding Ecology of the Barn Owl (Tyto alba) in Valencia (SE Spain). J. Ornithol. 1999, 140, 93–99. [Google Scholar] [CrossRef]
- Milliet, E.; Schalcher, K.; Grangier-Bijou, A.; Almasi, B.; Butera, F.; Roulin, A. The Effects of Land Use Changes on Site Occupancy and Breeding Success of the Barn Owl (Tyto alba) from 1993 to 2020. Glob. Ecol. Conserv. 2024, 52, e02988. [Google Scholar] [CrossRef]
- Séchaud, R.; Schalcher, K.; Almasi, B.; Roulin, A. Home Range Size and Habitat Quality Affect Breeding Success but Not Parental Investment in Barn Owl Males. Sci. Rep. 2022, 12, 6516. [Google Scholar] [CrossRef]
- Castañeda, X.A.; Huysman, A.E.; Johnson, M.D. Barn Owls Select Uncultivated Habitats for Hunting in a Winegrape Growing Region of California. Ornithol. Appl. 2021, 123, 1–11. [Google Scholar] [CrossRef]
- Latorre, D.; Merino-Aguirre, R.; Fletcher, D.H.; Cruz, A.; Almeida, D. Effects of Habitat Structure and Feeding Habits on Productivity and Nestling Quality of Barn Owl Tyto alba (Scopoli, 1769) (Strigiformes: Tytonidae) in the Iberian Peninsula. Acta Zool. Bulg. 2022, 74, 203–214. [Google Scholar]
- Bontzorlos, V. Shrew Communities in Mediterranean Agro-Ecosystems of Central Greece: Associations with Crop Types, Land Uses, and Soil Parameters. Life 2023, 13, 2248. [Google Scholar] [CrossRef]
- St. George, D.A.; Johnson, M.D. Effects of Habitat on Prey Delivery Rate and Prey Species Composition of Breeding Barn Owls in Winegrape Vineyards. Agric. Ecosyst. Environ. 2021, 312, 107322. [Google Scholar] [CrossRef]
- Glåmseter, A.T. The Effects of Precipitation on Parental Food Provisioning in the Barn Owls (Tyto alba) Breeding in Norfolk, UK. Master’s Thesis, Norwegian University of Life Sciences, Ås, Norway, 2021. Available online: https://hdl.handle.net/11250/2829112 (accessed on 15 October 2024).
- Stuhler, J.D.; Portillo-Quintero, C.; Goetze, J.R.; Stevens, R.D. Efficacy of Remote Sensing Technologies for Burrow Count Estimates of a Rare Kangaroo Rat. Wildl. Soc. Bull. 2024, 48, e1510. [Google Scholar] [CrossRef]
- Torre, I.; Freixas, L.; Arrizabalaga, A.; Díaz, M. The Efficiency of Two Widely Used Commercial Live-Traps to Develop Monitoring Protocols for Small Mammal Biodiversity. Ecol. Indic. 2016, 66, 481–487. [Google Scholar] [CrossRef]
- San-Jose, L.M.; Séchaud, R.; Schalcher, K.; Judes, C.; Questiaux, A.; Oliveira-Xavier, A.; Roulin, A. Differential Fitness Effects of Moonlight on Plumage Colour Morphs in Barn Owls. Nat. Ecol. Evol. 2019, 3, 1331–1340. [Google Scholar] [CrossRef]
- Toledo, S.; Shohami, D.; Schiffner, I.; Lourie, E.; Orchan, Y.; Bartan, Y.; Nathan, R. Cognitive Map-Based Navigation in Wild Bats Revealed by a New High-Throughput Tracking System. Science 2020, 369, 188–193. [Google Scholar] [CrossRef]
- Arnold, E.M.; Hanser, S.E.; Regan, T.; Thompson, J.; Lowe, M.; Kociolek, A.; Belthoff, J.R. Spatial, Road Geometric, and Biotic Factors Associated with Barn Owl Mortality Along an Interstate Highway. Ibis 2019, 161, 36–47. [Google Scholar] [CrossRef]
- Hindmarch, S.; Elliott, J.E.; McCann, S.; Levesque, P. Habitat Use by Barn Owls Across a Rural to Urban Gradient and an Assessment of Stressors Including Habitat Loss, Rodenticide Exposure and Road Mortality. Landsc. Urban Plan. 2017, 164, 132–143. [Google Scholar] [CrossRef]
- Chausson, A.; Henry, I.; Almasi, B.; Roulin, A. Barn Owl (Tyto alba) Breeding Biology in Relation to Breeding Season Climate. J. Ornithol. 2014, 155, 273–281. [Google Scholar] [CrossRef]
- Charter, M.; Izhaki, I.; Meyrom, K.; Aviel, S.; Leshem, Y.; Roulin, A. The Relationship Between Weather and Reproduction of the Barn Owl Tyto alba in a Semi-Arid Agricultural Landscape in Israel. Avian Biol. Res. 2017, 10, 242–250. [Google Scholar] [CrossRef]
- Altwegg, R.; Roulin, A.; Kestenholz, M.; Jenni, L. Demographic Effects of Extreme Winter Weather in the Barn Owl. Oecologia 2006, 149, 44–51. [Google Scholar] [CrossRef]
- Bontzorlos, V.; Vlachopoulos, K.; Xenos, A. Distribution of Four Vole Species through the Barn Owl Tyto alba Diet Spectrum: Pattern Responses to Environmental Gradients in Intensive Agroecosystems of Central Greece. Life 2023, 13, 105. [Google Scholar] [CrossRef]
- Zaitzove-Raz, M.; Comay, O.; Motro, Y.; Dayan, T. Barn Owls as Biological Control Agents: Potential Risks to Non-Target Rare and Endangered Species. Anim. Conserv. 2020, 23, 646–659. [Google Scholar] [CrossRef]
- Glikman, J.A.; Frank, B.; Bogardus, M.; Meysohn, S.; Sandström, C.; Zimmermann, A.; Madden, F. Evolving Our Understanding and Practice in Addressing Social Conflict and Stakeholder Engagement Around Conservation Translocations. Front. Conserv. Sci. 2022, 3, 783709. [Google Scholar] [CrossRef]
- Hart, P.S.; Nisbet, E.C.; Shanahan, J.E. Environmental Values and the Social Amplification of Risk: An Examination of How Environmental Values and Media Use Influence Predispositions for Public Engagement in Wildlife Management Decision Making. Soc. Nat. Resour. 2011, 24, 276–291. [Google Scholar] [CrossRef]
- Maak, T. Responsible Leadership, Stakeholder Engagement, and the Emergence of Social Capital. J. Bus. Ethics 2007, 74, 329–343. [Google Scholar] [CrossRef]
- Milliet, E.; Plancherel, C.; Roulin, A.; Butera, F. The effect of collaboration on farmers’ pro-environmental behaviors—A systematic review. J. Environ. Psychol. 2024, 93, 102223. [Google Scholar] [CrossRef]
- Frankova, M.; Stejskal, V.; Aulicky, R. Efficacy of Rodenticide Baits with Decreased Concentrations of Brodifacoum: Validation of the Impact of the New EU Anticoagulant Regulation. Sci. Rep. 2019, 9, 16779. [Google Scholar] [CrossRef]
- Blažić, T.; Stojnić, B.; Milanović, S.; Jokić, G. A Strategy to Improve Rodent Control While Reducing Rodenticide Release into the Environment. Heliyon 2024, 10, e29471. [Google Scholar] [CrossRef]
- Witmer, G.W. Perspectives on Existing and Potential New Alternatives to Anticoagulant Rodenticides and the Implications for Integrated Pest Management; USDA National Wildlife Research Center—Staff Publications: Fort Collins, CO, USA, 2018; Volume 2095. Available online: https://digitalcommons.unl.edu/icwdm_usdanwrc/2095 (accessed on 15 October 2024).
- Gubler, D.J.; Reiter, P.; Ebi, K.L.; Yap, W.; Nasci, R.; Patz, J.A. Climate Variability and Change in the United States: Potential Impacts on Vector- and Rodent-Borne Diseases. Environ. Health Perspect. 2001, 109 (Suppl. 2), 223–233. [Google Scholar] [CrossRef]
- Martínez-Ruiz, M.; Dykstra, C.R.; Booms, T.L.; Henderson, M.T. Conservation Letter: Effects of Global Climate Change on Raptors. J. Raptor Res. 2023, 57, 92–105. [Google Scholar] [CrossRef]
- Sethi, V.; Spiegel, O.; Salter, R.; Cain, S.; Toledo, S.; Getz, W.M. An Information Theory Framework for Movement Path Segmentation and Analysis. bioRxiv 2024, 4, 1–13. [Google Scholar] [CrossRef]
- Arnon, E.; Cain, S.; Uzan, A.; Nathan, R.; Spiegel, O.; Toledo, S. Robust Time-of-Arrival Location Estimation Algorithms for Wildlife Tracking. Sensors 2023, 23, 9460. [Google Scholar] [CrossRef]
- Bontzorlos, V.A.; Johnson, D.H.; Poirazidis, K.; Roulin, A. Owl Symbolism in Greek Civilization Over the Last 5000 Years: Social Perceptions and Implications for Conservation. Eur. Zool. J. 2023, 90, 691–707. [Google Scholar] [CrossRef]
- Uva, V.; Päckert, M.; Cibois, A.; Fumagalli, L.; Roulin, A. Comprehensive molecular phylogeny of barn owls and relatives (Family: Tytonidae), and their six major Pleistocene radiations. Mol. Phylogenetics Evol. 2018, 125, 127–137. [Google Scholar] [CrossRef]
- Meek, W.R.; Burman, P.J.; Nowakowski, M.; Sparks, T.H.; Burman, N.J. Barn Owl Release in Lowland Southern England—A Twenty-One Year Study. Biol. Conserv. 2003, 109, 271–282. [Google Scholar] [CrossRef]
- Grande, J.M.; Orozco-Valor, P.M.; Liébana, M.S.; Sarasola, J.H. Birds of Prey in Agricultural Landscapes: The Role of Agriculture Expansion and Intensification. In Birds of Prey; Sarasola, J.H., Grande, J.M., Negro, J.J., Eds.; Springer: Cham, Switzerland, 2018; pp. 289–310. [Google Scholar] [CrossRef]
- Assandri, G.; Bazzi, G.; Siddi, L.; Nardelli, R.; Cecere, J.G.; Rubolini, D.; Morganti, M. The Occurrence of a Flagship Raptor Species in Intensive Agroecosystems Is Associated with More Diverse Farmland Bird Communities: Opportunities for Market-Based Conservation. Agric. Ecosyst. Environ. 2023, 349, 108441. [Google Scholar] [CrossRef]
- Raine, A.F.; Holmes, N.D.; Travers, M.; Cooper, B.A.; Day, R.H. The Impact of an Introduced Avian Predator, the Barn Owl (Tyto alba), on Hawaiian Seabirds. Mar. Ornithol. 2019, 47, 33–38. Available online: http://www.marineornithology.org/PDF/47_1/47_1_33-38.pdf (accessed on 15 October 2024).
- Roulin, A.; Abu Rashid, M.; Spiegel, B.; Charter, M.; Dreiss, A.N.; Leshem, Y. Nature Knows No Boundaries: The Role of Nature Conservation in Peacebuilding. Trends Ecol. Evol. 2017, 32, 305–310. [Google Scholar] [CrossRef] [PubMed]
Year of Barn Owl Nest Box Installment | Cumulative Total Number of Barn Owl Nest Boxes Installed in Cyprus National Territory | Number of Confirmed Occupied Barn Owl Nest Boxes | Total Thousands of kgs of Rodenticides Issued Each Year in Cyprus National Territory from the Ministry of Agriculture |
---|---|---|---|
2020 | 450 | no available data for all nest boxes | 201,150 kg |
2021 | 1124 | 79% (sample of only 200 nest boxes across Cyprus—not all boxes were monitored) | 190,050 kg |
2022 | 1328 | 20% (sample of only 200 nest boxes across Cyprus—not all boxes were monitored) | 106,525 kg |
2023–2024 | 1328 | 46% (sample of only 200 nest boxes across Cyprus—not all boxes were monitored) | 118,500 kg |
Municipalities Engaged in the Barn Owl Project in Thessaly, Greece | Agricultural Land with Annual Recurring Problems of Crop Destruction from Pest Rodents (sq.km) | Barn Owl Nest Boxes Installed in 2019 | Barn Owl Nest Boxes Installed in 2023 | Total Barn Owl Nest Boxes Installed and Operating in Thessaly in 2024 |
---|---|---|---|---|
Kileler | 160 | 53 | 20 | 73 |
Farsala | 160 | 25 | 28 | 53 |
Riga Feraiou | 137 | 19 | 20 | 39 |
Larisa | 110 | 5 | 30 | 35 |
Sofades | 57 | 0 | 20 | 20 |
Tempi | 142 | 0 | 20 | 20 |
Elassona | 75 | 0 | 20 | 20 |
Tirnavos | 64 | 0 | 20 | 20 |
Agia | 7 | 0 | 10 | 10 |
Total | 911 | 102 | 188 | 290 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bontzorlos, V.; Cain, S.; Leshem, Y.; Spiegel, O.; Motro, Y.; Bloch, I.; Cherkaoui, S.I.; Aviel, S.; Apostolidou, M.; Christou, A.; et al. Barn Owls as a Nature-Based Solution for Pest Control: A Multinational Initiative Around the Mediterranean and Other Regions. Conservation 2024, 4, 627-656. https://doi.org/10.3390/conservation4040039
Bontzorlos V, Cain S, Leshem Y, Spiegel O, Motro Y, Bloch I, Cherkaoui SI, Aviel S, Apostolidou M, Christou A, et al. Barn Owls as a Nature-Based Solution for Pest Control: A Multinational Initiative Around the Mediterranean and Other Regions. Conservation. 2024; 4(4):627-656. https://doi.org/10.3390/conservation4040039
Chicago/Turabian StyleBontzorlos, Vasileios, Shlomo Cain, Yossi Leshem, Orr Spiegel, Yoav Motro, Itai Bloch, Sidi Imad Cherkaoui, Shaul Aviel, Melpo Apostolidou, Antaia Christou, and et al. 2024. "Barn Owls as a Nature-Based Solution for Pest Control: A Multinational Initiative Around the Mediterranean and Other Regions" Conservation 4, no. 4: 627-656. https://doi.org/10.3390/conservation4040039
APA StyleBontzorlos, V., Cain, S., Leshem, Y., Spiegel, O., Motro, Y., Bloch, I., Cherkaoui, S. I., Aviel, S., Apostolidou, M., Christou, A., Nicolaou, H., Kassinis, N., Rashid, M. A., Bahdouhesh, M., & Roulin, A. (2024). Barn Owls as a Nature-Based Solution for Pest Control: A Multinational Initiative Around the Mediterranean and Other Regions. Conservation, 4(4), 627-656. https://doi.org/10.3390/conservation4040039