The Conservation of Biodiverse and Threatened Dry Rainforest Plant Communities Is Vital in a Changing Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Central Queensland Coast Study Area
2.2. Development of Regional Ecosystem Species Datasets
2.3. Development of Phylogenetic Analysis
2.4. Mapping of Regional Ecosystem Communities
2.5. Environmental Data
2.6. Analysis of Central Queensland Coast Rainforest Protected Area Estate
3. Results
3.1. Regional Ecosystem Diversity
3.2. Regional Ecosystem Distinctiveness
3.3. Environmental Factors
3.3.1. Rainfall
3.3.2. Geology
3.4. Central Queensland Coast Rainforest Protected Area Estate
3.5. Dry Regional Ecosystem Ttypes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Dominant Rock Groupings | Rock Types | Characteristics |
---|---|---|
Metamorphic (M) | Metamorphic | altered |
Igneous (I) | Granitoid | intrusive |
Mafities | ||
Felsites | ||
Gabbroid | ||
Sedimentary (S) | Sand | water/wind movement |
Colluvium | ||
Alluvium | ||
Sediments | ||
Volcanic (V) | Ultramafic | extrusive |
Basalt | ||
Volcanic–Sedimentary | ||
Volcanics |
Family | Botanical Name | NC Act (1992) | EPBC Act (1999) | Endemicity | No. of REs | RE ID |
---|---|---|---|---|---|---|
Acanthaceae | Graptophyllum excelsum | NT | QLD | 4 | 8.12.3a; 9.12.34; 11.11.5; 11.5.15 | |
Acanthaceae | Graptophyllum ilicifolium | V | V | QLD | 3 | 8.11.2; 8.12.19; 8.12.3a |
Annonaceae | Meiogyne heteropetala | NEQ; CEQ | 17 | 11.12.4; 11.12.9; 11.2.3; 7.12.11a; 8.12.11; 8.12.11a; 8.12.11c; 8.12.18; 8.12.19; 8.12.2; 8.12.28; 8.12.3a; 8.12.3c; 8.2.2; 8.3.10; 8.3.1a; 9.12.34 | ||
Apocynaceae | Cerbera dumicola | NT | QLD | 2 | 8.12.13; 11.5.15 | |
Apocynaceae | Neisosperma kilneri * | V | V | CEQ | 4 | 8.3.10; 8.12.18; 8.3.1a; 8.12.3a |
Apocynaceae | Parsonsia larcomensis | V | V | QLD | 3 | 8.11.2; 8.12.17b; 8.12.3c |
Brownlowiaceae | Berrya rotundifolia | V | QLD | 3 | 8.12.11a; 8.12.14b; 8.12.29 | |
Capparaceae | Capparis ornans | NEQ; CEQ | 7 | 11.2.3; 11.12.4; 8.12.16; 8.12.18; 11.11.21; 11.8.3; 11.12.16 | ||
Combretaceae | Macropteranthes fitzalanii | CEQ | 10 | 8.12.18; 8.2.2; 8.12.19; 8.3.9; 8.3.10; 8.3.1a; 8.12.3a; 8.12.28; 8.12.11a; 8.12.11 | ||
Cycadaceae | Cycas media | CYP; NEQ; CEQ | 12 | 11.12.9; 8.11.2; 8.12.11a; 8.12.14a; 8.12.18; 8.12.26; 8.12.29; 8.12.29a; 8.12.3a; 8.2.2; 8.8.1b; 9.12.34 | ||
Cyperaceae | Cyperus sp. Eungella NP (P.R.Sharpe 5052) | CEQ | 1 | 8.12.1a | ||
Elaeocarpaceae | Elaeocarpus largiflorens | NEQ; CEQ | 10 | 8.12.1b; 8.12.19; 8.12.1a; 8.12.17b; 8.8.1a; 7.12.16b; 8.12.2; 8.12.18; 8.12.30; 8.12.3a | ||
Euphorbiaceae | Croton magneticus | V | QLD | 4 | 8.12.29b; 11.12.16; 11.12.4; 11.12.4a | |
Euphorbiaceae | Trigonostemon inopinatus | V | QLD | 2 | 8.12.2; 8.12.3a | |
Hernandiaceae | Hernandia bivalvis | NT | QLD | 2 | 8.12.18; 8.3.1a | |
Laxmanniaceae | Cordyline petiolaris * | CEQ | 1 | 8.11.2 | ||
Leguminosae (Caesalpiniaceae) | Cassia sp. Paluma Range (G.Sankowsky+ 450) | NEQ | 10 | 8.12.18; 8.3.10; 11.12.4a; 8.12.28; 7.12.11b; 9.12.34; 11.12.16; 11.12.4; 8.12.11a; 8.12.17c | ||
Leguminosae (Fabaceae) | Hovea clavate * | CEQ | 1 | 8.3.1b | ||
Malvaceae | Brachychiton compactus | NT | QLD | 7 | 8.12.11; 8.12.11a; 8.12.18; 8.12.28; 8.2.2; 8.3.10; 8.3.1a | |
Malvaceae | Corchorus hygrophilus | V | AU | 2 | 11.12.4; 11.12.9 | |
Myrsinaceae | Myrsine crassifolia | CEQ | 8 | 11.2.3; 8.12.11c; 8.12.29; 8.12.17b; 8.12.1a; 8.12.2; 8.2.2; 8.2.5 | ||
Myrsinaceae | Myrsine ireneae subsp. ireneae * | NEQ; CEQ | 1 | 8.12.2 | ||
Myrtaceae | Gossia pubiflora | CEQ | 8 | 8.12.18; 8.12.19; 8.3.10; 8.2.2; 8.3.9; 8.3.1a; 8.12.11a; 8.12.28 | ||
Myrtaceae | Rhodamnia glabrescens | NT | QLD | 4 | 8.3.10; 8.3.1a; 8.12.18; 8.12.19 | |
Myrtaceae | Rhodamnia rubescens | CR | CR | AU | 1 | 8.12.2 |
Myrtaceae | Ristantia gouldii | V | V | QLD | 5 | 8.12.18; 8.12.19; 8.12.30; 8.3.10; 8.3.1a |
Myrtaceae | Ristantia waterhousei | V | CEQ | 2 | 8.12.30; 8.3.10 | |
Phyllanthaceae | Actephila bella | V | QLD | 1 | 8.12.3a | |
Phyllanthaceae | Actephila plicata | CEQ | 2 | 8.12.18; 8.3.10 | ||
Phyllanthaceae | Cleistanthus dallachyanus | NEQ; CEQ | 19 | 8.12.3a; 8.12.18; 8.12.19; 8.3.10; 8.3.1a; 11.12.4; 11.12.4a; 8.11.2; 8.12.11a; 8.2.2; 8.12.28; 7.12.11b; 11.12.9; 7.12.10a; 8.12.29b; 8.12.13; 8.12.14a; 8.12.14b; 11.12.16 | ||
Picrodendraceae | Dissiliaria indistincta | CEQ | 9 | 8.3.9; 8.3.10; 8.12.18; 8.3.1a; 8.12.11a; 11.12.4; 8.12.14b; 8.12.30; 9.12.33 | ||
Polygalaceae | Comesperma oblongatum * | V | CEQ | 1 | 8.12.11c | |
Rhamnaceae | Pomaderris clivicola | EN | V | AU | 4 | 7.12.16b; 7.12.21b; 8.12.13a; 8.3.1b |
Rubiaceae | Antirhea putaminosa | NEQ; CEQ | 5 | 11.11.21; 11.3.11; 11.12.4; 11.11.5; 11.5.15 | ||
Rubiaceae | Atractocarpus fitzalanii | NEQ; CEQ | 20 | 8.12.18; 8.12.3a; 8.12.1a; 8.3.10; 8.12.19; 8.3.1a; 8.11.2; 8.12.11; 8.12.1b; 9.12.34; 7.12.11b; 7.12.16b; 8.3.9; 8.12.2; 8.2.2; 7.12.10a; 7.3.26a; 11.12.9; 8.12.11a; 8.12.29a | ||
Rubiaceae | Larsenaikia jardinei | CEQ | 14 | 8.11.2; 8.12.11a; 8.12.18; 8.12.19; 8.12.1b; 8.12.28; 8.12.29; 8.12.3a; 8.2.2; 8.3.10; 8.3.1a; 8.3.9; 11.2.3; 11.3.11x1 | ||
Rubiaceae | Randia sp. Shute Harbour (D.A.Halford Q811) | CYP; NEQ; CEQ | 8 | 7.12.11a; 8.12.18; 8.12.19; 8.12.2; 8.12.3a; 8.3.1a; 8.3.9; 8.11.2 | ||
Rutaceae | Acronychia eungellensis | NT | QLD | 4 | 8.12.17a; 8.12.18; 8.12.19; 8.12.1a | |
Rutaceae | Medicosma obovata | V | V | QLD | 6 | 8.12.11a; 8.12.18; 8.12.30; 8.3.10; 8.3.1a; 8.3.9 |
Rutaceae | Phebalium distans | EN | EN | QLD | 3 | 7.12.11a; 7.12.16b; 7.12.21b |
Salicaceae | Homalium sp. South Molle Island (J.A.GrestyAQ208995) * | CEQ | 4 | 8.12.18; 8.3.10; 8.12.11a; 8.12.28 | ||
Salicaceae | Xylosma ovata | NT | AU | 9 | 8.10.1; 8.11.2x1a; 8.12.11a; 8.12.11c; 8.12.13a; 8.12.26; 8.12.3c; 8.2.2; 11.2.3 | |
Sapindaceae | Arytera dictyoneura | NT | QLD | 5 | 7.12.11a; 7.12.11b; 8.12.18; 8.12.3a; 8.3.1a | |
Sapindaceae | Arytera sp. Dryander Creek (P.R.Sharpe 4184) | CEQ | 8.12.18; 8.3.1a; 8.12.3a | |||
Sapindaceae | Diploglottis obovata | CEQ | 12 | 8.3.1a; 8.3.9; 8.12.19; 8.12.3a; 8.12.18; 8.3.10; 8.12.2; 8.11.2; 8.12.1b; 8.12.11c; 11.3.11; 8.8.1a | ||
Sapindaceae | Lepiderema punctulata | NEQ; CEQ | 1 | 8.12.18 | ||
Sapindaceae | Lepiderema sp. Impulse Creek (A.B.Pollock 73) * | CEQ | 1 | 8.3.9 | ||
Sapindaceae | Sarcotoechia heterophylla | NT | CEQ | 5 | 8.12.2; 8.12.1a; 8.12.19; 8.8.1a; 8.12.17a | |
Simaroubaceae | Samadera bidwillii * | V | CEQ | 2 | 8.2.5; 11.11.21 | |
Solanaceae | Solanum sporadotrichum * | NT | CEQ | 2 | 8.12.28; 8.12.11 | |
Sterculiaceae | Argyrodendron sp. Whitsundays (W.J.McDonald+ 5831) | CEQ | 4 | 8.12.18; 8.12.19; 8.3.10; 8.12.17c | ||
Zamiaceae | Bowenia serrulata | CEQ | 3 | 8.12.3c; 8.3.1b; 8.11.2 | ||
Zamiaceae | Macrozamia serpentina * | EN | CEQ | 1 | 11.11.21 |
References
- Metcalfe, D.B.; Rocha, W.; Balch, J.K.; Brando, P.M.; Doughty, C.E.; Malhi, Y. Impacts of fire on sources of soil CO2 efflux in a dry Amazon rain forest. Glob. Change Biol. 2018, 24, 3629–3641. [Google Scholar] [CrossRef] [PubMed]
- Tng, D.Y.; Apgaua, D.M.G.; Lawrence, S.G.W.; Bowman, D.M. Australia’s Seasonally Dry Tropical Forests need attention. Austral Ecol. 2019, 44, 552–554. [Google Scholar] [CrossRef]
- Raulino, W.N.C.; Freire, F.J.; Assunção, E.A.D.A.; Ataide, K.M.P.D.; Silva, H.V.D.; Silva, A.C.F.D. Nutrition of tree species in tropical dry forest and rainforest environments. Rev. Ceres 2020, 67, 70–80. [Google Scholar] [CrossRef]
- Kuschnig, N.; Cuaresma, J.C.; Krisztin, T.; Giljum, S. Spatial spillover effects from agriculture drive deforestation in Mato Grosso, Brazil. Sci. Rep. 2021, 11, 21804. [Google Scholar] [CrossRef] [PubMed]
- Biudes, M.S.; Geli, H.M.E.; Vourlitis, G.L.; Machado, N.G.; Pavão, V.M.; dos Santos, L.O.F.; Querino, C.A.S. Evapotranspiration Seasonality over Tropical Ecosystems in Mato Grosso, Brazil. Remote Sens. 2022, 14, 2482. [Google Scholar] [CrossRef]
- Rejou-Mechain, M.; Mortier, F.; Bastin, J.F.; Cornu, G.; Barbier, N.; Bayol, N.; Benedet, F.; Bry, X.; Dauby, G.; Deblauwe, V.; et al. Unveiling African rainforest composition and vulnerability to global change. Nature 2021, 593, 90–94. [Google Scholar] [CrossRef]
- Gillespie, T.W.; O’Neill, K.; Keppel, G.; Pau, S.; Meyer, J.-Y.; Price, J.P.; Jaffré, T. Prioritizing conservation of tropical dry forests in the Pacific. Oryx 2014, 48, 337–344. [Google Scholar] [CrossRef]
- Zeballos, S.R.; Giorgis, M.A.; Cabido, M.R.; Acosta, A.T.R.; Iglesias, M.D.R.; Cantero, J.J. The lowland seasonally dry subtropical forests in central Argentina: Vegetation types and a call for conservation. Veg. Classif. Surv. 2020, 1, 87–102. [Google Scholar] [CrossRef]
- Gillespie, T.W.; Grijalva, A.; Farris, C.N. Diversity, Composition, and Structure of Tropical Dry Forest in Central America. Plant Ecol. 2000, 147, 37–47. [Google Scholar] [CrossRef]
- Guo, Y.; Lu, J.; Franklin, S.B.; Wang, Q.; Xu, Y.; Zhang, K.; Bao, D.; Qiao, X.; Huang, H.; Lu, Z.; et al. Spatial distribution of tree species in a species-rich subtropical mountain forest in central China. Can. J. For. Res. 2013, 43, 826–835. [Google Scholar] [CrossRef]
- Blanchard, G.; Birnbaum, P.; Munoz, F. Extinction–immigration dynamics lag behind environmental filtering in shaping the composition of tropical dry forests within a changing landscape. Ecography 2020, 43, 869–881. [Google Scholar] [CrossRef]
- Reside, A.E.; Beher, J.; Cosgrove, A.J.; Evans, M.C.; Seabrook, L.; Silcock, J.L.; Wenger, A.S.; Maron, M. Ecological consequences of land clearing and policy reform in Queensland. Pac. Conserv. Biol. 2017, 23, 219–230. [Google Scholar] [CrossRef]
- Fensham, R.J. Floristics and Environmental Relations of inland Dry Rainforest in North Queensland. J. Biogeogr. 1995, 22, 1047–1063. [Google Scholar] [CrossRef]
- Laidlaw, M.J.; McDonald, W.J.F.; Hunter, R.J.; Putland, D.A.; Kitching, R.L. The potential impacts of climate change on Australian subtropical rainforest. Aust. J. Bot. 2011, 59, 440–449. [Google Scholar] [CrossRef]
- Shimizu-Kimura, Y.; Accad, A.; Shapcott, A. The relationship between climate change and the endangered rainforest shrub Triunia robusta (Proteaceae) endemic to southeast Queensland, Australia. Sci. Rep. 2017, 7, 46399. [Google Scholar] [CrossRef]
- Peppe, D.J.; Royer, D.L.; Cariglino, B.; Oliver, S.Y.; Newman, S.; Leight, E.; Enikolopov, G.; Fernandez-Burgos, M.; Herrera, F.; Adams, J.M.; et al. Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications. New Phytol. 2011, 190, 724–739. [Google Scholar] [CrossRef]
- Slik, J.W.F.; Franklin, J.; Arroyo-Rodriguez, V.; Field, R.; Aguilar, S.; Aguirre, N.; Ahumada, J.; Aiba, S.I.; Alves, L.F.; K, A.; et al. Phylogenetic classification of the world’s tropical forests. Proc. Natl. Acad. Sci. USA 2018, 115, 1837–1842. [Google Scholar] [CrossRef]
- Tietje, M.; Antonelli, A.; Forest, F.; Govaerts, R.; Smith, S.A.; Sun, M.; Baker, W.J.; Eiserhardt, W.L. Global hotspots of plant phylogenetic diversity. New Phytol. 2023, 240, 1636–1646. [Google Scholar] [CrossRef]
- Zu, K.; Zhang, C.; Chen, F.; Zhang, Z.; Ahmad, S.; Nabi, G. Latitudinal gradients of angiosperm plant diversity and phylogenetic structure in China’s nature reserves. Glob. Ecol. Conserv. 2023, 42, e02403. [Google Scholar] [CrossRef]
- Baur, G.N. Nature And Distribution of Rain-Forests in New South Wales. Aust. J. Bot. 1956, 5, 190–233. [Google Scholar] [CrossRef]
- REDD. Regional Ecosystem Description Database (REDD), Version 11.1; Department of Environment and Science: Brisbane, Australia, 2019.
- Adam, P. Australian Rainforests; Clarendon Press: Oxford, UK, 1992. [Google Scholar]
- Kruckeberg, A.R. An Essay: The stimulus of unusual geologies for plant speciation. Syst. Biol. 1986, 11, 455–463. [Google Scholar] [CrossRef]
- Ondei, S.; Prior, L.D.; Williamson, G.J.; Vigilante, T.; Bowman, D.M. Water, land, fire, and forest: Multi-scale determinants of rainforests in the Australian monsoon tropics. Ecol. Evol. 2017, 7, 1592–1604. [Google Scholar] [CrossRef] [PubMed]
- Neldner, V.J.; Wilson, B.A.; Dillewaard, H.A.; Ryan, T.S.; Butler, D.W.; McDonald, W.J.F.; Richter, D.; Addicott, E.P.; Appelman, C.N. Methodology for Survey and Mapping of Regional Ecosystems and Vegetation Communities in Queensland, Version 6.0; Department of Environment, Science and Innovation: Brisbane, Australia, 2023; p. 258.
- Neldner, V.J.; Butler, D.W.; Guymer, G.P. Queensland’s Regional Ecosystems: Building a Maintaining a Biodiversity Inventory, Planning Framework and Information System for Queensland, Version 2.0; Queensland Herbarium, Queensland Department of Environment and Science: Brisbane, Australia, 2019.
- Addicott, E.; Neldner, V.J.; Ryan, T. Aligning quantitative vegetation classification and landscape scale mapping: Updating the classification approach of the Regional Ecosystem classification system used in Queensland. Aust. J. Bot. 2021, 69, 400–413. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonsecat, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Rossetto, M.; Kooyman, R.; Sherwin, W.; Jones, R. Dispersal limitations rather than bottlenecks or habitat specificity can restrict the distribution of rare and endemic rainforest trees. Am. J. Bot. 2008, 95, 321–329. [Google Scholar] [CrossRef]
- Vandecar, K.L.; Lawrence, D.; Richards, D.; Schneider, L.; Rogan, J.; Schmook, B.; Wilbur, H. High Mortality for Rare Species Following Hurricane Disturbance in the Southern Yucatán. Biotropica 2011, 43, 676–684. [Google Scholar] [CrossRef]
- Dorazio, R.M.; Royle, J.A.; Söderström, B.; Glimskär, A. Estimating Species Richness and Accumulation by Modeling Species Occurrence and Detectability. Ecology 2006, 87, 842–854. [Google Scholar] [CrossRef]
- Costion, C.; Ford, A.; Cross, H.; Crayn, D.; Harrington, M.; Lowe, A. Plant DNA barcodes can accurately estimate species richness in poorly known floras. PLoS ONE 2011, 6, e26841. [Google Scholar] [CrossRef]
- Erickson, D.L.; Driskell, A. Construction and analysis of phylogenetic trees using DNA barcoding data. In DNA Barcodes: Methods and Protocols; Kress, W.J., Erickson, D.L., Eds.; Springer: New York, NY, USA, 2012; pp. 395–408. [Google Scholar]
- Gostel, M.R.; Kress, W.J. The Expanding Role of DNA Barcodes: Indispensable Tools for Ecology, Evolution, and Conservation. Diversity 2022, 14, 23. [Google Scholar] [CrossRef]
- Faith, D.P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 1992, 61, 1–10. [Google Scholar] [CrossRef]
- Faith, D.P.; Baker, A.M. Phylogenetic Diversity (PD) and Biodiversity Conservation: Some Bioinformatics Challenges. Evol. Bioinform. Online 2006, 2, 121–128. [Google Scholar] [CrossRef]
- Kembel, S.W. Disentangling niche and neutral influences on community assembly: Assessing the performance of community phylogenetic structure tests. Ecol. Lett. 2009, 12, 949–960. [Google Scholar] [CrossRef] [PubMed]
- Shapcott, A.; Forster, P.I.; Guymer, G.P.; McDonald, W.J.; Faith, D.P.; Erickson, D.; Kress, W.J. Mapping biodiversity and setting conservation priorities for SE Queensland’s rainforests using DNA barcoding. PLoS ONE 2015, 10, e0122164. [Google Scholar] [CrossRef] [PubMed]
- Costion, C.; Lowe, A.; Rossetto, M.; Kooyman, R.; Breed, M.; Ford, A.; Crayn, D. Building a Plant DNA Barcode Reference Library for a Diverse Tropical Flora: An Example from Queensland, Australia. Diversity 2016, 8, 5. [Google Scholar] [CrossRef]
- Howard, M.G.; McDonald, W.J.; Forster, P.I.; Kress, W.J.; Erickson, D.; Faith, D.P.; Shapcott, A. Patterns of Phylogenetic Diversity of Subtropical Rainforest of the Great Sandy Region, Australia Indicate Long Term Climatic Refugia. PLoS ONE 2016, 11, e0153565. [Google Scholar] [CrossRef]
- Howard, M.; Pearl, H.; McDonald, W.J.F.; Shimizu, Y.; Srivastava, S.K.; Shapcott, A. Assessment of the Diversity, Distinctiveness and Conservation of Australia’s Central Queensland Coastal Rainforests Using DNA Barcoding. Diversity 2023, 15, 378. [Google Scholar] [CrossRef]
- Kress, W.J.; Erickson, D.L.; Swenson, N.G.; Thompson, J.; Uriarte, M.; Zimmerman, J.K. Advances in the use of DNA barcodes to build a community phylogeny for tropical trees in a Puerto Rican forest dynamics plot. PLoS ONE 2010, 5, e15409. [Google Scholar] [CrossRef]
- Erickson, D.L.; Jones, F.A.; Swenson, N.G.; Pei, N.; Bourg, N.A.; Chen, W.; Davies, S.J.; Ge, X.J.; Hao, Z.; Howe, R.W.; et al. Comparative evolutionary diversity and phylogenetic structure across multiple forest dynamics plots: A mega-phylogeny approach. Front. Genet. 2014, 5, 358. [Google Scholar] [CrossRef]
- Costion, C.M.; Edwards, W.; Ford, A.J.; Metcalfe, D.J.; Cross, H.B.; Harrington, M.G.; Richardson, J.E.; Hilbert, D.W.; Lowe, A.J.; Crayn, D.M.; et al. Using phylogenetic diversity to identify ancient rain forest refugia and diversification zones in a biodiversity hotspot. Divers. Distrib. 2014, 21, 279–289. [Google Scholar] [CrossRef]
- Costion, C.M.; Kress, W.J.; Crayn, D.M. DNA Barcodes Confirm the Taxonomic and Conservation Status of a Species of Tree on the Brink of Extinction in the Pacific. PLoS ONE 2016, 11, e0155118. [Google Scholar] [CrossRef]
- Liu, J.; Liu, J.; Shan, Y.X.; Ge, X.J.; Burgess, K.S. The use of DNA barcodes to estimate phylogenetic diversity in forest communities of southern China. Ecol. Evol. 2019, 9, 5372–5379. [Google Scholar] [CrossRef] [PubMed]
- Webb, C.O. Exploring the Phylogenetic Structure of Ecological Communities: An Example for Rain Forest Trees. Am. Nat. 2000, 156, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Vamosi, S.M.; Heard, S.B.; Vamosi, J.C.; Webb, C.O. Emerging patterns in the comparative analysis of phylogenetic community structure. Mol. Ecol. 2009, 18, 572–592. [Google Scholar] [CrossRef] [PubMed]
- Weber, L.C.; VanDerWal, J.; Schmidt, S.; McDonald, W.J.F.; Shoo, L.P.; Ladiges, P.Y. Patterns of rain forest plant endemism in subtropical Australia relate to stable mesic refugia and species dispersal limitations. J. Biogeogr. 2014, 41, 222–238. [Google Scholar] [CrossRef]
- Kooyman, R.; Rossetto, M.; Cornwell, W.; Westoby, M. Phylogenetic tests of community assembly across regional to continental scales in tropical and subtropical rain forests. Glob. Ecol. Biogeogr. 2011, 20, 707–716. [Google Scholar] [CrossRef]
- Etherington, R.; Shapcott, A. Do habitat fragmentation and fire influence variation of plant species composition, structure and diversity within three regional ecosystems on the Sunshine Coast, Queensland, Australia? Aust. J. Bot. 2014, 62, 36–47. [Google Scholar] [CrossRef]
- Shapcott, A.; Liu, Y.; Howard, M.; Forster, P.I.; Kress, W.J.; Erickson, D.L.; Faith, D.P.; Shimizu, Y.; McDonald, W.J.F. Comparing Floristic Diversity and Conservation Priorities across South East Queensland Regional Rain Forest Ecosystems Using Phylodiversity Indexes. Int. J. Plant Sci. 2017, 178, 211–229. [Google Scholar] [CrossRef]
- Das, S.; Baumgartner, J.B.; Esperon-Rodriguez, M.; Wilson, P.D.; Yap, J.-Y.S.; Rossetto, M.; Beaumont, L.J. Identifying climate refugia for 30 Australian rainforest plant species, from the last glacial maximum to 2070. Landsc. Ecol. 2019, 34, 2883–2896. [Google Scholar] [CrossRef]
- IPBES. Global assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES: Bonn, Germany, 2019; p. 1144. ISBN 1978-1143-947851-947820-947851. [Google Scholar]
- CBD. Decision adopted by the Conference of the parties to the Convention on Biological Diversity: 15/4 Kunming-Montreal Global Biodiversity Framework. In Proceedings of the Conference of the Parties to the Convention on Biological Diversity, Montreal, QC, Canada, 7–9 December 2022. [Google Scholar]
- Margules, C.R.; Pressey, R.L. Systematic Conservation Planning. Nature 2000, 405, 243–253. [Google Scholar] [CrossRef]
- Botkin, D.B.; Saxe, H.; Araújo, M.B.; Betts, R.; Bradshaw, R.H.W.; Cedhagen, T.; Chesson, P.; Dawson, T.P.; Etterson, J.R.; Faith, D.P.; et al. Forecasting the Effects of Global Warming on Biodiversity. BioScience 2007, 57, 227–236. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, X.; Dimitrov, D.; Pellissier, L.; Borregaard, M.K.; Shrestha, N.; Su, X.; Luo, A.; Zimmermann, N.E.; Rahbek, C.; et al. An updated floristic map of the world. Nat. Commun. 2023, 14, 2990. [Google Scholar] [CrossRef] [PubMed]
- Webb, L.J.; Tracey, J.G. The rainforests of northern Australia. In Australian Vegetation, 2nd ed.; Groves, R.H., Ed.; University Press: Cambridge, UK, 1994; pp. 87–129. [Google Scholar]
- Joyce, E.M.; Thiele, K.R.; Slik, J.W.F.; Crayn, D.M. Plants will cross the lines: Climate and available land mass are the major determinants of phytogeographical patterns in the Sunda–Sahul Convergence Zone. Biol. J. Linn. Soc. 2021, 132, 374–387. [Google Scholar] [CrossRef]
- Janzen, D.H. Management of Habitat Fragments in a Tropical Dry Forest: Growth. Ann. Mo. Bot. Gard. 1988, 75, 105–116. [Google Scholar] [CrossRef]
- Taylor, P.D.; Fahrig, L.; Henein, K.; Merriam, G. Connectivity is a vital element of Landscape structure. Okios 1993, 68, 571–573. [Google Scholar] [CrossRef]
- Imbach, P.A.; Locatelli, B.; Molina, L.G.; Ciais, P.; Leadley, P.W. Climate change and plant dispersal along corridors in fragmented landscapes of Mesoamerica. Ecol. Evol. 2013, 3, 2917–2932. [Google Scholar] [CrossRef]
- Seabrook, L.; McAlpine, C.; Fensham, R. Spatial and temporal analysis of vegetation change in agricultural landscapes: A case study of two brigalow (Acacia harpophylla) landscapes in Queensland, Australia. Agric. Ecosyst. Environ. 2007, 120, 211–228. [Google Scholar] [CrossRef]
- Kemp, J.E.; Kutt, A.S. Vegetation change 10 years after cattle removal in a savanna landscape. Rangel. J. 2020, 42, 73–84. [Google Scholar] [CrossRef]
- Cali, M. BioCondition Methodology and Fine Scale Mapping of the Remnant Beach Scrubs of Central Queensland; EPA: Washington, DC, USA, 2008; p. 14. [Google Scholar]
- DoE. Littoral Rainforest and Coastal Vine Thickets of Eastern Australia. Available online: http://www.environment.gov.au/sprat (accessed on 12 March 2018).
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Willmott, W.F. Rock and Landscapes of the National Parks Central Queensland; Geological Society of Australia Incorporated: Brisbane, Australia, 2006. [Google Scholar]
- Accad, A.; Neldner, V.J.; Kelley, J.A.R.; Li, J.; Richter, D. Remnant Regional Ecosystem Vegetation in Queensland, Analyses 1997–2017; Queensland Herbarium: Brisbane, Australia, 2019. [Google Scholar]
- ESRI. ArcGIS, Version 10.7.1; ESRI Inc.: Redlands, CA, USA, 2019.
- Bland, L.M.; Keith, D.A.; Miller, R.M.; Murray, N.J.; Ródriguez, J.P. Guidelines for the application of IUCN Red List of Ecosystems Categories and Criteria, Version 1.1; IUCN: Gland, Switzerland, 2017.
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Hamady, M.; Lozupone, C.; Knight, R. Fast UniFrac: Facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J. 2010, 4, 17–27. [Google Scholar] [CrossRef]
- RCoreTeam. R Project for Statistical Computing 2023.06.0, Build 421; Posit Software, PBC: Boston, MA, USA, 2020.
- RStudioTeam. RStudio: Integrated Development for R. RStudio, v.1.4.1717; PBC: Boston, MA, USA, 2020.
- Paradis, E.; Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019, 35, 526–528. [Google Scholar] [CrossRef] [PubMed]
- Kembel, S.W.; Cowan, P.D.; Helmus, M.R.; Cornwell, W.K.; Morlon, H.; Ackerly, D.D.; Blomberg, S.P.; Webb, C.O. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 2010, 26, 1463–1464. [Google Scholar] [CrossRef] [PubMed]
- Neldner, V.J.; Niehus, R.E.; Wilson, B.A.; McDonald, W.J.F.; Ford, A.J.; Accad, A. The Vegetation of Queensland. Descriptions of Broad Vegetation Groups, Version 4.0; Queensland Herbarium: Brisbane, Australia, 2019.
- Van Welzen, P.C.; Kulju, K.K.M.; Sierra, S.E.C.; Slik, J.W.F. Key to the Malesian species of Mallotus (Euphorbiaceae). Blumea-Biodivers. Evol. Biogeogr. Plants 2010, 55, 285–290. [Google Scholar] [CrossRef]
- Hilbert, D.W.; Graham, A.; Hopkins, M.S. Glacial and interglacial refugia within a long-term rainforest refugium: The Wet Tropics Bioregion of NE Queensland, Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 251, 104–118. [Google Scholar] [CrossRef]
- Rezende, V.L.; Pontara, V.; Bueno, M.L.; van den Berg, E.; de Oliveira-Filho, A.T. Climate and evolutionary history define the phylogenetic diversity of vegetation types in the central region of South America. Oecologia 2020, 192, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Crayn, D.M.; Costion, C.; Harrington, M.G.; Richardson, J. The Sahul–Sunda floristic exchange: Dated molecular phylogenies document Cenozoic intercontinental dispersal dynamics. J. Biogeogr. 2014, 42, 11–24. [Google Scholar] [CrossRef]
- Yap, J.Y.S.; Rossetto, M.; Costion, C.; Crayn, D.; Kooyman, R.M.; Richardson, J.; Henry, R. Filters of floristic exchange: How traits and climate shape the rain forest invasion of Sahul from Sunda. J. Biogeogr. 2018, 45, 838–847. [Google Scholar] [CrossRef]
- Joyce, E.M. Evolution of the Northern Australian Flora: Role of the Sunda-Sahul Floristic Exchange; James Cook University: Townsville, Australia, 2021. [Google Scholar]
- MacArthur, R.H.; Wilson, E.O. An Equilibrium Theory of Insular Zoogeography. Evolution 1963, 17, 373–387. [Google Scholar] [CrossRef]
- Specht, R.L.; Batianoff, G.N.; Reeves, R.D. Vegetation structure and biodiversity along the eucalypt forest to rainforest continuum on the serpentinite soil catena in a subhumid area of Central Queensland, Australia. Austral Ecol. 2006, 31, 394–407. [Google Scholar] [CrossRef]
- Batianoff, G.N.; Neldner, V.J.; Naylor, G.C.; Olds, J.A. Mapping and Evaluating Capricornia Cays Vegetation and Regional Ecosystems; Queensland Government: Brisbane, Australia, 2012. [Google Scholar]
- Laliberté, E.; Zemunik, G.; Turner, B.L. Environmental filtering explains variation in plant diversity along resource gradients. Science 2014, 345, 1602–1605. [Google Scholar] [CrossRef]
- Cisneros, C.M.G.; Heringer, G.; Domen, Y.S.M.; Sánchez, L.R.; Meira-Neto, J.A.A. The environmental filtering and the conservation of tropical dry forests in mountains in a global change scenario. Biodivers. Conserv. 2021, 30, 2689–2705. [Google Scholar] [CrossRef]
- Ferreira-Arruda, T.; Guerrero-Ramírez, N.R.; Denelle, P.; Weigelt, P.; Kleyer, M.; Kreft, H. Island area and historical geomorphological dynamics shape multifaceted diversity of barrier island floras. Ecography 2022, 2022, e06238. [Google Scholar] [CrossRef]
- Kim, H.; Lee, C.-B. On the relative importance of landscape variables to plant diversity and phylogenetic community structure on uninhabited islands, South Korea. Landsc. Ecol. 2020, 36, 209–221. [Google Scholar] [CrossRef]
- Murray-Smith, C.; Brummitt, N.A.; Oliveira-Filho, A.T.; Bachman, S.; Moat, J.; Lughadha, E.M.; Lucas, E.J. Plant diversity hotspots in the Atlantic coastal forests of Brazil. Conserv. Biol. 2009, 23, 151–163. [Google Scholar] [CrossRef]
- Fine, P.V.A.; Kembel, S.W. Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. Ecography 2011, 34, 552–565. [Google Scholar] [CrossRef]
- Powell, M.; Accad, A.; Shapcott, A. Where they are, why they are there, and where they are going: Using niche models to assess impacts of disturbance on the distribution of three endemic rare subtropical rainforest trees of Macadamia (Proteaceae) species. Aust. J. Bot. 2014, 62, 322–334. [Google Scholar] [CrossRef]
- Donders, T.H.; Wagner, F.; Visscher, H. Late Pleistocene and Holocene subtropical vegetation dynamics recorded in perched lake deposits on Fraser Island, Queensland, Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 241, 417–439. [Google Scholar] [CrossRef]
- Price, G.J. Plio-Pleistocene Climate and Faunal Change in Central Eastern Australia. Episodes 2012, 35, 160–165. [Google Scholar] [CrossRef]
- Moss, P.T.; Tibby, J.; Petherick, L.; McGowan, H.; Barr, C. Late Quaternary vegetation history of North Stradbroke Island, Queensland, eastern Australia. Quat. Sci. Rev. 2013, 74, 257–272. [Google Scholar] [CrossRef]
- Webb, L.J.; Tracey, J.G. Australian Rainforest: Pattern and change. In Ecological Biogeography of Australia, 1st ed.; Keast, A., Ed.; Dr. W. Junk: The Hague, The Netherlands, 1981; pp. 605–694. [Google Scholar]
- Swaine, M.D.; Lieberman, D.; Hall, J.B. Structure and Dynamics of a Tropical Dry Forest in Ghana. Vegetatio 1990, 88, 31–51. [Google Scholar] [CrossRef]
- Peres, E.A.; Pinto-da-Rocha, R.; Lohmann, L.G.; Michelangeli, F.A.; Miyaki, C.Y.; Carnaval, A.C. Patterns of Species and Lineage Diversity in the Atlantic Rainforest of Brazil. In Neotropical Diversification: Patterns and Processes; Fascinating Life Sciences; Springer: Cham, Switzerland, 2020; pp. 415–447. [Google Scholar]
- Liang, J.; Gamarra, J.G.P.; Picard, N.; Zhou, M.; Pijanowski, B.; Jacobs, D.F.; Reich, P.B.; Crowther, T.W.; Nabuurs, G.J.; de-Miguel, S.; et al. Co-limitation towards lower latitudes shapes global forest diversity gradients. Nat. Ecol. Evol. 2022, 6, 1423–1437. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, G.; Bhatia, H.; Verma, P.; Singh, Y.P.; Utescher, T.; Mehrotra, R.C. High rainfall afforded resilience to tropical rainforests during Early Eocene Climatic Optimum. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2023, 628, 111762. [Google Scholar] [CrossRef]
- Lottermoser, B.G.; Whitehead, P.W.; Nelson, P.N.; Beaman, R.J. Rocks, Landscapes and Resourses of the Wet Tropics; Willmot, W., Lottermoser, B.G., Eds.; Gological Society of Australia Inc., Queensland Division: Brisbane, Australia, 2008. [Google Scholar]
- Wiens, J.J.; Graham, C.H. Niche Conservatism: Integrating Evolution, Ecology, and Conservation Biology. Annu. Rev.Ecol.Evol. Syst. 2005, 36, 519–539. [Google Scholar] [CrossRef]
- van der Ent, A.; Jaffré, T.; L’Huillier, L.; Gibson, N.; Reeves, R.D. The flora of ultramafic soils in the Australia–Pacific Region: State of knowledge and research priorities. Aust. J. Bot. 2015, 63, 173–190. [Google Scholar] [CrossRef]
- Batianoff, G.N.; Singh, S. Central Queensland serpentine landforms, plant ecology and endemism. S. Afr. J. Sci. 2001, 97, 495–500. [Google Scholar]
- Sánchez-Azofeifa, G.A.; Quesada, M.; Rodríguez, J.P.; Nassar, J.M.; Stoner, K.M.; Castillo, A.; Garvin, T.; Zent, E.L.; CalvoAlvarado, J.C.; Kalacska, M.E.R.; et al. Research Priorities for Neotropical Dry Forests. Biotropica 2005, 37, 477–485. [Google Scholar] [CrossRef]
- Scanlan, L.; McDonald, W.J.F.; Shapcott, A. Phylogenetic diversity and conservation of rainforests in the Sunshine Coast region, Queensland, Australia. Aust. J. Bot. 2018, 66, 518–530. [Google Scholar] [CrossRef]
- Gutierrez-Rodriguez, B.E.; Vasquez-Cruz, M.; Sosa, V. Phylogenetic endemism of the orchids of Megamexico reveals complementary areas for conservation. Plant Divers. 2022, 44, 351–359. [Google Scholar] [CrossRef]
- Littleton, E.W.; Dooley, K.; Webb, G.; Harper, A.B.; Powell, T.; Nicholls, Z.; Meinshausen, M.; Lenton, T.M. Dynamic modelling shows substantial contribution of ecosystem restoration to climate change mitigation. Environ. Res. Lett. 2021, 16, 124061. [Google Scholar] [CrossRef]
- Rossetto, M.; Kooyman, R. Conserving Refugia: What Are We Protecting and Why? Diversity 2021, 13, 67. [Google Scholar] [CrossRef]
- Prober, S.M.; Doerr, V.A.J.; Broadhurst, L.M.; Williams, K.J.; Dickson, F. Shifting the conservation paradigm: A synthesis of options for renovating nature under climate change. Ecol. Monogr. 2019, 89, e01333. [Google Scholar] [CrossRef]
- Zabin, C.J.; Jurgens, L.J.; Bible, J.M.; Patten, M.V.; Chang, A.L.; Grosholz, E.D.; Boyer, K.E. Increasing the resilience of ecological restoration to extreme climatic events. Front. Ecol. Environ. 2022, 20, 310–318. [Google Scholar] [CrossRef]
- Smith-Ramirez, C. The Chilean coastal range: A vanishing centre of biodiversity and endemism in South American temperate rainforests. Biodivers. Conserv. 2004, 13, 373–393. [Google Scholar] [CrossRef]
- EPA. Central Queensland Coast Flora, Fauna and Landscape: Expert Panel Report v1.3; EPA: Washington, DC, USA, 2006. [Google Scholar]
- Arthur, W.C. Tropical Cyclone Hazard. Assessment 2018; Geoscience Australia: Canberra, Australia, 2018. [Google Scholar]
- Hines, H.B.; Brook, M.; Wilson, J.; Mcdonald, W.J.F.; Hargreaves, J. The extent and severity of the Mackay Highlands 2018 wildfires and the potential impact on natural values, particularly in the mesic forests of the Eungella-Crediton area. Proc. R. Soc. Qld. 2020, 125, 139–157. [Google Scholar]
- Iturbide, M.; Gutiérrez, J.M.; Alves, L.M.; Bedia, J.; Cerezo-Mota, R.; Cimadevilla, E.; Cofiño, A.S.; Di Luca, A.; Faria, S.H.; Gorodetskaya, I.V.; et al. An update of IPCC climate reference regions for subcontinental analysis of climate model data: Definition and aggregated datasets. Earth Syst. Sci. Data 2020, 12, 2959–2970. [Google Scholar] [CrossRef]
- Queensland Herbarium. Regional Ecosystem Description Database (REDD), Version 13.1; DESI: Brisbane, Australia, 2024.
Rainforest Type | RE ID | Elevation Category | Location Category |
---|---|---|---|
Evergreen Rainforest | 8.2.5; 8.3.1b | Lowland | Coastal |
8.12.3c | Midland | Coastal | |
8.12.3a | Midland | Island; Coastal; Inland | |
8.12.1b; 8.12.30 | Upland | Coastal | |
8.12.17b; 8.12.2 | Upland | Coastal; Inland | |
8.12.17a; 8.12.1a; 8.8.1a; 8.8.1b | Upland | Inland | |
8.12.17c | Upland | Island | |
Rainforest Patches | 11.12.9; 8.12.13; 8.12.13a | Lowland | Inland |
11.12.16; 8.12.29; 8.12.29b | Lowland | Island; Coastal | |
8.12.29a | Midland | Island | |
Rainforest Understory | 8.2.6a | Lowland | Coastal |
7.3.16b; 7.3.26a | Lowland | Inland | |
8.12.14a; 8.12.14b | Lowland | Island | |
8.12.26 | Lowland | Island; Coastal | |
8.2.6b | Midland | Coastal; Inland | |
7.12.21b; 7.12.22b; 7.12.26b | Upland | Inland | |
Semi-Deciduous Rainforest | 11.3.40; 8.3.9 | Lowland | Coastal |
11.3.11; 8.3.1a | Lowland | Coastal; Inland | |
8.12.19 | Midland | Island; Coastal; Inland | |
Semi-Evergreen Rainforest | 11.3.11x1; 8.11.2x1a; 8.12.11c | Lowland | Coastal |
11.11.21; 11.11.5a; 11.12.4a; 8.11.2 | Lowland | Coastal; Inland | |
8.10.1 | Lowland | Island | |
11.2.3; 8.12.11; 8.12.11a; 8.12.28; 8.2.2; 8.3.10 | Lowland | Island; Coastal | |
8.12.18 | Lowland | Island; Coastal; Inland | |
11.5.15 | Midland | Coastal | |
11.12.4 | Midland | Island; Coastal; Inland | |
8.12.16 | Upland | Coastal; Inland | |
11.11.5; 11.4.1; 11.8.3; 8.12.3b; 9.12.34 | Upland | Inland | |
Wet Tropics Vine Forest | 7.12.11b; 7.12.1a; 7.3.50b; | Lowland | Inland |
7.12.48 | Midland | Inland | |
7.12.10a; 7.12.11a; 7.12.16b | Upland | Inland |
RE ID | SR | GR | FR | PD | MPD | NRI | MNTD | NTI | Threatened | Endemic | Gymno | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(EPBCAct) | (NCAct) | CQC | |||||||||||
Ecosys | Spp. | Spp. | Spp. | ||||||||||
11.11.21 | 173 | 140 | 61 | 6968 | 195.1 | *C 2.95 | 53.7 | −0.65 | (Rare) | 2 | 4 | 0 | |
11.11.5 | 134 | 115 | 54 | 5988 | 200.2 | 1.51 | 59.9 | −0.49 | 3 | 1 | |||
11.11.5a | 48 | 46 | 29 | 2902 | 191.9 | *C 1.75 | 86.6 | 0.09 | 1 | 0 | |||
11.12.16 | 149 | 125 | 59 | 6019 | 191.8 | *C 3.38 | 49.6 | 1.22 | CR | 1 | 7 | 0 | |
11.12.4 | *H 394 | 270 | 97 | 11,667 | 204 | *C 1.73 | 36.9 | −1.01 | 1 | 3 | 10 | 1 | |
11.12.4a | 188 | 144 | 72 | 7506 | 212.7 | −0.95 | 48.5 | 0.31 | 1 | 5 | 2 | ||
11.12.9 | 229 | 179 | 71 | 8550 | 205.8 | 0.69 | 45.9 | −0.21 | 1 | 1 | 8 | 1 | |
11.2.3 | 219 | 167 | 65 | 7594 | 195 | *C 3.22 | 42 | 1.31 | EN | 1 | 5 | 0 | |
11.3.11 | 140 | 114 | 48 | 5553 | 194.6 | *C 2.67 | 48.4 | *C 1.80 | EN | 4 | 0 | ||
11.3.11x1 | 38 | 36 | 31 | 2769 | 203.2 | 0.48 | 107.6 | −1.02 | 1 | 0 | |||
11.3.40 | 28 | 27 | 20 | 2082 | 209.4 | −0.05 | 103.1 | 0.2 | 0 | 0 | |||
11.4.1 | 4 | 4 | *L 3 | 433 | 142.7 | *C 1.82 | 88 | *C 2.23 | EN | 0 | 0 | ||
11.5.15 | 104 | 91 | 44 | 4576 | 184.8 | *C 3.69 | 52 | *C 2.09 | EN | 1 | 3 | 0 | |
11.8.3 | 35 | 33 | 25 | 2264 | 197.5 | 1.02 | 90.5 | 0.62 | EN | 1 | 0 | ||
7.12.10a | 82 | 75 | 42 | 4271 | 210.7 | −0.35 | 67.2 | 0.53 | 2 | 2 | |||
7.12.11a | 120 | 101 | 52 | 5565 | 212.3 | −0.68 | 52.2 | 1.62 | EN | 1 | 2 | 4 | 2 |
7.12.11b | 152 | 130 | 64 | 6464 | 218.4 | *E −2.12 | 53.6 | 0.22 | EN | 1 | 4 | 2 | |
7.12.16b | 259 | 163 | 79 | 8101 | 215.1 | *E −1.88 | 34 | *C 3.03 | 2 | 2 | 5 | 2 | |
7.12.1a | 7 | 8 | 8 | 832 | 221.2 | −0.43 | 169.9 | −0.33 | EN | 0 | 0 | ||
7.12.21b | 61 | 53 | 40 | 3347 | 197.6 | 1.23 | 70.8 | 1.07 | 2 | 1 | 0 | 0 | |
7.12.22b | 51 | 44 | 29 | 2921 | 207.4 | 0.08 | 75 | 1.1 | 1 | 0 | |||
7.12.26b | 64 | 49 | 33 | 3222 | 224.5 | *E −1.99 | 57.7 | *C 2.37 | 1 | 0 | |||
7.12.48 | 9 | 9 | 9 | 1033 | 216.4 | −0.35 | 182 | −1.17 | 0 | 0 | |||
7.3.16b | 50 | 43 | 29 | 3108 | 231.3 | *E −2.48 | 82.4 | 0.41 | 1 | 1 | 1 | ||
7.3.26a | 37 | 35 | 24 | 2520 | 220.9 | −1.13 | 89.2 | 0.6 | 1 | 0 | |||
7.3.50b | 48 | 43 | 31 | 3101 | 233.9 | *E −2.70 | 83.4 | 0.4 | EN | 1 | 1 | 1 | |
8.10.1 | 34 | 31 | 25 | 2363 | 191.4 | *C 1.47 | 105 | −0.45 | 1 | 1 | 0 | ||
8.11.2 | 202 | 163 | 71 | 7656 | 210.1 | −0.35 | 48 | −0.03 | 2 | 2 | 12 | 2 | |
8.11.2x1a | 136 | 120 | 65 | 6237 | 200.4 | *C 1.64 | 62.7 | −1.14 | 1 | 1 | 0 | ||
8.12.11 | 190 | 150 | 68 | 7362 | 205.7 | 0.64 | 47.3 | 0.54 | CR | 1 | 3 | 7 | 1 |
8.12.11a | 373 | *H 269 | 92 | 11,538 | 203.3 | *C 1.81 | 38.2 | −1.14 | CR | 4 | 4 | 21 | 2 |
8.12.11c | 159 | 128 | 63 | 6414 | 215 | −1.36 | 44.8 | *C 2.06 | CR | 1 | 2 | 5 | 1 |
8.12.13 | 136 | 112 | 55 | 5880 | 200.5 | 1.53 | 57.8 | −0.08 | 1 | 2 | 1 | ||
8.12.13a | 119 | 109 | 56 | 5428 | 193.9 | *C 2.47 | 56.9 | 0.73 | 1 | 1 | 2 | 0 | |
8.12.14a | 101 | 90 | 45 | 4796 | 199.9 | 1.38 | 59.4 | 0.95 | 4 | 1 | |||
8.12.14b | 79 | 76 | 43 | 4077 | 197.8 | 1.58 | 66.1 | 0.8 | 1 | 5 | 0 | ||
8.12.16 | 73 | 66 | 41 | 4087 | 186.6 | *C 2.80 | 79.8 | −0.64 | CR | 2 | 0 | ||
8.12.17a | 80 | 66 | 43 | 3970 | 220.9 | −1.7 | 61.7 | 1.27 | 3 | 3 | 0 | ||
8.12.17b | 95 | 65 | 40 | 3922 | 219.5 | *E −1.72 | 46.3 | *C 3.20 | 3 | 5 | 0 | ||
8.12.17c | 34 | 32 | 25 | 2315 | 226.4 | −1.54 | 89.5 | 0.79 | 1 | 3 | 0 | ||
8.12.18 | *H 483 | *H 303 | 98 | *H 13,009 | 205.7 | 1.3 | 32.8 | −0.65 | 7 | 7 | 25 | 2 | |
8.12.19 | 365 | 238 | 85 | 10,087 | 206.4 | 0.67 | 31.1 | *C 2.65 | 4 | 4 | 19 | 0 | |
8.12.1a | 253 | 179 | 79 | 8429 | 221.1 | *E −3.43 | 38.3 | *C 1.68 | 4 | 8 | 1 | ||
8.12.1b | 191 | 143 | 67 | 6711 | 209.7 | −0.3 | 42.7 | *C 1.83 | 1 | 9 | 0 | ||
8.12.2 | *H 404 | 271 | *H 104 | 11,442 | 211.8 | −1.26 | 31.6 | *C 1.69 | 2 | 11 | 1 | ||
8.12.26 | 75 | 71 | 42 | 4076 | 214.5 | −0.82 | 69.6 | 0.48 | 2 | 1 | |||
8.12.28 | 161 | 130 | 67 | 6777 | 201.9 | 1.3 | 53.6 | −0.08 | 2 | 12 | 1 | ||
8.12.29 | 127 | 109 | 51 | 5766 | 208.1 | 0.13 | 59.2 | −0.07 | 2 | 5 | 1 | ||
8.12.29a | 55 | 52 | 36 | 3266 | 198.8 | 1.09 | 81.1 | 0.22 | 2 | 1 | |||
8.12.29b | 117 | 99 | 56 | 5451 | 193.9 | *C2.45 | 61.9 | −0.1 | 1 | 2 | 0 | ||
8.12.30 | 95 | 78 | 45 | 4678 | 217.4 | −1.34 | 60.9 | 0.9 | 2 | 3 | 9 | 0 | |
8.12.3a | *H 479 | *H 301 | *H 102 | *H 12,469 | 205.8 | 1.24 | 30 | 1.28 | 6 | 7 | 18 | 2 | |
8.12.3b | 35 | 32 | 26 | 2391 | 205.8 | 0.23 | 93 | 0.41 | 0 | 0 | |||
8.12.3c | 245 | 187 | 76 | 8997 | 219.2 | *E −2.88 | 43.2 | 0.29 | 4 | 8 | 1 | ||
8.2.2 | 354 | 256 | 89 | 10,933 | 208.2 | 0.15 | 38.2 | −0.66 | CR | 2 | 13 | 2 | |
8.2.5 | 84 | 72 | 47 | 4610 | 220.5 | *E −1.75 | 71.4 | −0.14 | 2 | 3 | 0 | ||
8.2.6a | 68 | 65 | 36 | 3673 | 197.8 | 1.38 | 72.5 | 0.53 | 1 | 0 | |||
8.2.6b | 48 | 42 | 29 | 2857 | 211.9 | −0.34 | 79.5 | 0.77 | 0 | 0 | |||
8.3.10 | 338 | 237 | 87 | 10,497 | 204 | 1.58 | 37.8 | −0.04 | 4 | 6 | 20 | 1 | |
8.3.1a | 272 | 207 | 82 | 9253 | 204.2 | 1.25 | 40.6 | 0.41 | 1 | 6 | 19 | 1 | |
8.3.1b | 255 | 187 | 84 | 9206 | 218.5 | *E −2.74 | 42.6 | 0.17 | 1 | 4 | 4 | 1 | |
8.3.9 | 221 | 166 | 73 | 7830 | 206.1 | 0.55 | 43 | 0.89 | 1 | 11 | 0 | ||
8.8.1a | 120 | 90 | 52 | 4994 | 222.1 | *E −2.27 | 48.7 | *C 2.23 | 2 | 4 | 1 | ||
8.8.1b | 156 | 125 | 61 | 6695 | 214 | −1.11 | 55.7 | −0.43 | 3 | 3 | 0 | ||
9.12.34 | 150 | 130 | 63 | 6573 | 208 | 0.24 | 55.8 | −0.19 | 6 | 6 | 0 | ||
Mean (Stdv) | 5786 (2996) | 207 (13) | 0.23 (1.71) | 63.2 (27.9) | 0.57 (1.03) | ||||||||
CQC Total | 996 | 525 | 141 | 19,916 | 27 | 42 | 3 |
RE ID | No. REs | DomRock Group | GeoAge (Ma) Mean (stdv) | SR | GR | FR | PD Mean (stdv) | REs NCAct | Endemic spp./Group | Rainfall Mean (stdv) |
---|---|---|---|---|---|---|---|---|---|---|
11.12.16; 7.12.11a; 7.12.48; 8.12.14a; 8.12.17a; 8.12.1a | 6 | I | 291 (81) | 501 | 321 | 110 | 4969 (2234) | 4 | 18 | 1546 (500) |
11.12.4; 8.12.3a; 8.2.2 | 3 | * I/M/S/V | 197 (13) | 682 S | 406 | 120 S | 11,690 (627) S | 8 | 28 S | 1225 (193) |
11.11.5; 11.12.4a; 11.3.11; 7.12.10a; 7.12.11b; 7.12.16b; 8.12.11c; 8.12.17b; 8.12.3c; 9.12.34 | 10 | I/S | 174 (43) | 671 | 388 | 124 | 6379 (1498) | 4 | 20 | 1293 (204) |
8.11.2; 8.12.11a; 8.12.18; 8.12.19; 8.12.28; 8.3.10; 8.3.1a; | 7 | * I/S/V | 151 (26) | 673 S;V | 395 S;V | 116 S;V | 9831 (1997) S;V | 12 S;V | 33 S;V | 1641 (103) |
8.12.2; 8.3.9; 8.8.1a | 3 | I/V | 194 (13) | 470 | 299 | 108 | 8089 (2639) | 3 | 16 | 1594 (307) |
11.11.5a; 11.12.9; 11.2.3; 11.3.11x1; 11.3.40; 11.5.15; 7.12.1a; 7.12.21b; 7.12.22b; 7.12.26b; 7.3.16b; 7.3.26a; 7.3.50b; 8.10.1; 8.12.16; 8.12.3b; 8.2.5; 8.2.6a; 8.2.6b; 8.3.1b | 20 | * S | 29 (80) | 661 | 397 | 123 | 3836 (2121) | 2 | 16 | 1407 (481) |
11.11.21; 11.4.1; 11.8.3; 8.11.2x1a; 8.12.11; 8.12.13; 8.12.13a; 8.12.14b; 8.12.17c; 8.12.1b; 8.12.26; 8.12.29; 8.12.29a; 8.12.29b; 8.12.30; 8.8.1b | 16 | V | 162 (170) | 630 | 387 | 120 | 4850 (1913) | 9 | 28 | 1555 (549) |
RE ID | P–C Total (Ha) | P–C Total PA (Ha) | P–C % PA | REM Total (Ha) | REM Total PA (Ha) | REM% PA |
---|---|---|---|---|---|---|
11.11.21 | 1894 | 249 | 13 | 1518 | 248 | 16 |
11.11.5 | 37,342 | 2901 | 8 | 14,221 | 2839 | 20 |
11.11.5a | 2456 | 1748 | 71 | 2348 | 1747 | 74 |
11.12.16 | 1911 | 1220 | 64 | 1893 | 1220 | 64 |
11.12.4 | 37,972 | 11,448 | 30 | 30,691 | 11,328 | 37 |
11.12.4a | 413 | 76 | 18 | 385 | 76 | 20 |
11.12.9 | *H 111,709 | 8259 | 7 | *H 95,722 | 8220 | 9 |
11.2.3 | 2915 | 343 | 12 | 2418 | 337 | 14 |
11.3.11 | 1810 | 46 | 3 | 313 | 46 | 15 |
11.3.11x1 | 52 | 37 | 71 | 51 | 37 | 72 |
11.3.40 | 503 | 10 | 2 | 197 | 10 | 5 |
11.4.1 | 3035 | 0 | 0 | 123 | 0 | 0 |
11.5.15 | 5119 | 1 | 0 | 4972 | 1 | 0 |
11.8.3 | 510 | 8 | 2 | 394 | 8 | 2 |
7.12.10a | 1719 | 1203 | 70 | 1717 | 1203 | 70 |
7.12.11a | 12,882 | 11,874 | 92 | 12,876 | 11,873 | 92 |
7.12.11b | 2437 | 1829 | 75 | 2432 | 1829 | 75 |
7.12.16b | 33,790 | *H 31,755 | 94 | 33,353 | *H 31,556 | 95 |
7.12.1a | 5515 | 4936 | 90 | 5477 | 4924 | 90 |
7.12.21b | 5137 | 4335 | 84 | 5112 | 4329 | 85 |
7.12.22b | 3448 | 3258 | 94 | 3389 | 3248 | 96 |
7.12.26b | 295 | 294 | 100 | 295 | 294 | 100 |
7.12.48 | 506 | 475 | 94 | 506 | 475 | 94 |
7.3.16b | 11,839 | 2271 | 19 | 4408 | 1496 | 34 |
7.3.26a | 2407 | 506 | 21 | 2176 | 503 | 23 |
7.3.50b | 60 | 50 | 82 | 60 | 50 | 82 |
8.10.1 | 310 | 163 | 53 | 302 | 163 | 54 |
8.11.2 | 2875 | 521 | 18 | 2585 | 498 | 19 |
8.11.2x1a | 206 | 5 | 3 | 201 | 5 | 3 |
8.12.11 | 116 | 114 | 98 | 116 | 114 | 98 |
8.12.11a | 14,737 | 13,373 | 91 | 14,661 | 13,416 | 92 |
8.12.11c | 1553 | 283 | 18 | 1542 | 284 | 18 |
8.12.13 | 254 | 220 | 86 | 248 | 213 | 86 |
8.12.13a | 4456 | 2908 | 65 | 3932 | 2650 | 67 |
8.12.14a | 5150 | 4571 | 89 | 5104 | 4579 | 90 |
8.12.14b | 9167 | 8507 | 93 | 9122 | 8506 | 93 |
8.12.16 | 4155 | 1157 | 28 | 4152 | 1157 | 28 |
8.12.17a | 3638 | 3317 | 91 | 3505 | 3299 | 94 |
8.12.17b | 577 | 408 | 71 | 571 | 403 | 71 |
8.12.17c | 707 | 0 | 0 | 707 | 0 | 0 |
8.12.18 | 26,725 | *H 21,570 | 81 | 25,977 | *H 21,562 | 83 |
8.12.19 | 13,623 | 10,537 | 77 | 12,911 | 10,480 | 81 |
8.12.1a | 21,771 | 15,882 | 73 | 18,351 | 15,676 | 85 |
8.12.1b | 1392 | 1391 | 100 | 1392 | 1391 | 100 |
8.12.2 | 33,516 | *H 20,951 | 63 | 30,596 | *H 20,756 | 68 |
8.12.26 | 4523 | 1096 | 24 | 3106 | 1176 | 38 |
8.12.28 | 1321 | 772 | 58 | 1300 | 771 | 59 |
8.12.29 | 217 | 189 | 87 | 216 | 188 | 87 |
8.12.29a | 1798 | 1771 | 99 | 1830 | 1802 | 99 |
8.12.29b | 2728 | 1989 | 73 | 2726 | 1989 | 73 |
8.12.30 | 486 | 486 | 100 | 486 | 486 | 100 |
8.12.3a | *H 62,910 | *H 28,029 | 45 | *H 58,241 | *H 27,900 | 48 |
8.12.3b | 1930 | 1689 | 88 | 1914 | 1683 | 88 |
8.12.3c | 2127 | 236 | 11 | 1934 | 234 | 12 |
8.2.2 | 2501 | 212 | 8 | 2183 | 213 | 10 |
8.2.5 | 2726 | 212 | 8 | 2411 | 213 | 9 |
8.2.6a | 5689 | 997 | 18 | 3771 | 992 | 26 |
8.2.6b | 1259 | 29 | 2 | 927 | 29 | 3 |
8.3.10 | 2043 | 1034 | 51 | 1664 | 1030 | 62 |
8.3.1a | 11,636 | 142 | 1 | 5543 | 154 | 3 |
8.3.1b | 2314 | 571 | 25 | 1773 | 295 | 17 |
8.3.9 | 1275 | 1275 | 100 | 1275 | 1275 | 100 |
8.8.1a | 2340 | 700 | 30 | 1238 | 690 | 56 |
8.8.1b | 943 | 943 | 100 | 943 | 943 | 100 |
9.12.34 | 10,363 | 973 | 9 | 10,354 | 973 | 9 |
Total | 545,230 | 233,461 | 43 | 461,306 | 231,208 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Howard, M.; Pearl, H.; McDonald, B.; Shimizu, Y.; Srivastava, S.K.; Shapcott, A. The Conservation of Biodiverse and Threatened Dry Rainforest Plant Communities Is Vital in a Changing Climate. Conservation 2024, 4, 657-684. https://doi.org/10.3390/conservation4040040
Howard M, Pearl H, McDonald B, Shimizu Y, Srivastava SK, Shapcott A. The Conservation of Biodiverse and Threatened Dry Rainforest Plant Communities Is Vital in a Changing Climate. Conservation. 2024; 4(4):657-684. https://doi.org/10.3390/conservation4040040
Chicago/Turabian StyleHoward, Marion, Hilary Pearl, Bill McDonald, Yoko Shimizu, Sanjeev Kumar Srivastava, and Alison Shapcott. 2024. "The Conservation of Biodiverse and Threatened Dry Rainforest Plant Communities Is Vital in a Changing Climate" Conservation 4, no. 4: 657-684. https://doi.org/10.3390/conservation4040040
APA StyleHoward, M., Pearl, H., McDonald, B., Shimizu, Y., Srivastava, S. K., & Shapcott, A. (2024). The Conservation of Biodiverse and Threatened Dry Rainforest Plant Communities Is Vital in a Changing Climate. Conservation, 4(4), 657-684. https://doi.org/10.3390/conservation4040040