Observing Spatiotemporal Inconsistency of Erosion and Accretion in the Barak River Using Remote Sensing and GIS Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Data
2.2.2. Methods
Identification of Erosion, Deposition, and Unchanged Area
Land Use/Land Cover Classification
Slope Analysis
3. Results
3.1. Erosion, Accretion, and Unchanged Area (1984–1992)
3.2. Erosion, Accretion, and Unchanged Area (1992–2002)
3.3. Erosion, Accretion, and Unchanged Area (2002–2012)
3.4. Erosion, Accretion, and Unchanged Area (2012–2017)
3.5. Erosion, Accretion, and Unchanged Area (1984–2017)
3.6. Spatio-Temporal Changes in the Land Use Land Cover (LULC)
3.7. Slope Analysis
4. Discussion
5. Conclusions and Future Scope
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Esfahani, F.S.; Keshavarzi, A. Effect of different meander curvatures on spatial variation of coherent turbulent flow structure inside ingoing multi-bend river meanders. Stoch. Environ. Res. Risk Assess. 2011, 25, 913–928. [Google Scholar] [CrossRef]
- Annayat, W.; Sil, B.S. Predicting Meander migration of the Barak river by empirical and time sequence methods. In Water Security and Sustainability; Springer: Singapore, 2021; pp. 113–129. [Google Scholar]
- Annayat, W.; Ashwini, K.; Sil, B.S. Monitoring Land Use and Land Cover Analysis of the Barak Basin Using Geospatial Techniques. In Anthropogeomorphology; Springer: Cham, Switzerland, 2022; pp. 427–441. [Google Scholar]
- Annayat, W.; Ashwini, K.; Sil, B.S. Channel Migration Detection and Landuse/Landcover Changes for Barak River in Northeast India. J. Geol. Soc. India 2022, 98, 981–990. [Google Scholar] [CrossRef]
- Fayaz, M.; Meraj, G.; Khader, S.A.; Farooq, M. ARIMA and SPSS statistics based assessment of landslide occurrence in western Himalayas. Environ. Chall. 2022, 9, 100624. [Google Scholar] [CrossRef]
- Tomar, P.; Singh, S.K.; Kanga, S.; Meraj, G.; Kranjčić, N.; Đurin, B.; Pattanaik, A. GIS-Based Urban Flood Risk Assessment and Management—A Case Study of Delhi National Capital Territory (NCT), India. Sustainability 2021, 13, 12850. [Google Scholar] [CrossRef]
- Heitmuller, F.T.; Hudson, F.P.; Kesel, R.H. Overbank Sedimentation from the Historic AD 2011 Flood along the Lower Mississippi River, USA. Geology 2017, 45, 107–110. [Google Scholar] [CrossRef]
- Bordoloi, K.; Nikam, B.R.; Srivastav, S.K.; Sahariah, D. Assessment of Riverbank Erosion and Erosion Probability Using Geospatial Approach: A Case Study of the Subansiri River, Assam, India. Appl. Geomat. 2020, 12, 265–280. [Google Scholar] [CrossRef]
- Finotello, A.; Lanzoni, S.; Ghinassi, M.; Marani, M.; Rinaldo, A.; D’Alpaos, A. Field Migration Rates of Tidal Meanders Recapitulate Fluvial Morphodynamics. Proc. Natl. Acad. Sci. USA 2018, 115, 1463–1468. [Google Scholar] [CrossRef] [Green Version]
- Esfahani, F.S.; Keshavarzi, A. Dynamic mechanism of turbulent flow in meandering channels: Considerations for deflection angle. Stoch. Environ. Res. Risk Assess. 2013, 27, 1093–1114. [Google Scholar] [CrossRef]
- Florsheim, J.; Jeffrey, L.; Mount, F.; Chin, A. Bank Erosion as a Desirable Attribute of Rivers. BioScience 2008, 58, 519–529. [Google Scholar] [CrossRef] [Green Version]
- Best, J.L.; Ashworth, P.J.; Sarker, M.H.; Roden, J.E. The Brahmaputra-Jamuna River, Bangladesh. In Large Rivers: Geomorphology and Management; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007; pp. 395–430. [Google Scholar]
- De Rose, R.C.; Basher, L.R. Measurement of River Bank and Cliff Erosion from Sequential LIDAR and Historical Aerial Photography. Geomorphology 2011, 126, 132–147. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Schultz, R.C.; Isenhart, T.M. Stream Bank Erosion Adjacent to Riparian Forest Buffers, Row-Crop Fields, and Continuously-Grazed Pastures along Bear Creek in Central Iowa. J. Soil Water Conserv. 2004, 59, 19–27. [Google Scholar]
- Mafi-Gholami, D.; Zenner, E.K.; Jaafari, A.; Bakhtyari, H.R.; Bui, D.T. Multi-hazards vulnerability assessment of southern coasts of Iran. J. Environ. Manag. 2019, 252, 109628. [Google Scholar] [CrossRef] [PubMed]
- Ielpi, A.; Lapôtre, M.G.; Gibling, M.R.; Boyce, C.K. The impact of vegetation on meandering rivers. Nat. Rev. Earth Environ. 2022, 3, 165–178. [Google Scholar] [CrossRef]
- Rather, M.A.; Meraj, G.; Farooq, M.; Shiekh, B.A.; Kumar, P.; Kanga, S.; Singh, S.K.; Sahu, N.; Tiwari, S.P. Identifying the Potential Dam Sites to Avert the Risk of Catastrophic Floods in the Jhelum Basin, Kashmir, NW Himalaya, India. Remote Sens. 2022, 14, 1538. [Google Scholar] [CrossRef]
- Wellmeyer, J.L.; Slattery, M.C.; Phillips, J.D. Quantifying Downstream Impacts of Impoundment on Flow Regime and Channel Planform, Lower Trinity River, Texas. Geomorphology 2005, 69, 1–13. [Google Scholar] [CrossRef]
- Santillán, D.; Cueto-Felgueroso, L.; Sordo-Ward, A.; Garrote, L. Influence of Erodible Beds on Shallow Water Hydrodynamics during Flood Events. Water 2020, 12, 3340. [Google Scholar] [CrossRef]
- Majumdar, S.; Pan, N.D. Spatio-Temporal Shift of Right Bank of the Gumti River, Amarpur Town, Tripura and Its Impact. In Landscape Ecology and Water Management; Springer: Berlin, Germany, 2014; pp. 221–232. [Google Scholar]
- Mosavi, A.; Sajedi-Hosseini, F.; Choubin, B.; Taromideh, F.; Rahi, G.; Dineva, A.A. Susceptibility mapping of soil water erosion using machine learning models. Water 2020, 12, 1995. [Google Scholar] [CrossRef]
- Alcántara-Ayala, I. Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology 2002, 47, 107–124. [Google Scholar] [CrossRef]
- Liébault, F.S.; Cassel, L.M.; Talaska, N. Long Profile Responses of Alpine Braided Rivers in SE France. River Res. Appl. 2013, 29, 1253–1266. [Google Scholar] [CrossRef]
- Meraj, G.; Farooq, M.; Singh, S.K.; Islam, M.; Kanga, S. Modeling the sediment retention and ecosystem provisioning services in the Kashmir valley, India, Western Himalayas. Model. Earth Syst. Environ. 2022, 8, 3859–3884. [Google Scholar] [CrossRef]
- Mosavi, A.; Golshan, M.; Janizadeh, S.; Choubin, B.; Melesse, A.M.; Dineva, A.A. Ensemble models of GLM, FDA, MARS, and RF for flood and erosion susceptibility mapping: A priority assessment of sub-basins. Geocarto Int. 2022, 37, 2541–2560. [Google Scholar] [CrossRef]
- Fu, Z.; Jiang, J.; Gao, Y.; Krienke, B.; Wang, M.; Zhong, K.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; et al. Wheat growth monitoring and yield estimation based on multi-rotor unmanned aerial vehicle. Remote Sens. 2020, 12, 508. [Google Scholar] [CrossRef] [Green Version]
- Shao, Z.; Tang, P.; Wang, Z.; Saleem, N.; Yam, S.; Sommai, C. BRRNet: A fully convolutional neural network for automatic building extraction from high-resolution remote sensing images. Remote Sens. 2020, 12, 1050. [Google Scholar] [CrossRef] [Green Version]
- Youdeowei, P.O. Bank Collapse and Erosion at the Upper Reaches of the Ekole Creek in the Niger Delta Area of Nigeria. Bull. Eng. Geol. Environ. 1997, 55, 167–172. [Google Scholar] [CrossRef]
- Yang, X.; Damen, M.C.J.; Zuidam, R.A.V. Satellite Remote Sensing and GIS for the Analysis of Channel Migration Changes in the Active Yellow River Delta, China. Int. J. Appl. Earth Obs. Geoinf. 1999, 1, 146–157. [Google Scholar] [CrossRef]
- Pati, J.K.; Lal, J.; Prakash, K.; Bhusan, R. Spatio-Temporal Shift of Western Bank of the Ganga River, Allahabad City and Its Implications. J. Indian Soc. Remote Sens. 2008, 36, 289–297. [Google Scholar] [CrossRef]
- Ollero, A. Channel Changes and Floodplain Management in the Meandering Middle Ebro River, Spain. Geomorphology 2010, 117, 247–260. [Google Scholar] [CrossRef]
- Sarkar, A.; Garg, R.D.; Sharma, N. RS-GIS Based Assessment of River Dynamics of Brahmaputra River in India. J. Water Resour. Prot. 2012, 4, 17423. [Google Scholar] [CrossRef] [Green Version]
- Mount, N.J.; Tate, N.J.; Sarker, M.H.; Thorne, C.R. Evolutionary, Multi-Scale Analysis of River Bank Line Retreat Using Continuous Wavelet Transforms: Jamuna River, Bangladesh. Geomorphology 2013, 183, 82–95. [Google Scholar] [CrossRef]
- Dhari, S.; Arya, D.S.; Murumkar, A.R. Application of Remote Sensing and GIS in Sinuosity and River Shifting Analysis of the Ganges River in Uttarakhand Plains. Appl. Geomat. 2015, 7, 13–21. [Google Scholar] [CrossRef]
- Magliulo, P.; Bozzi, F.; Pignone, M. Assessing the Planform Changes of the Tammaro River (Southern Italy) from 1870 to 1955 Using a GIS-Aided Historical Map Analysis. Environ. Earth Sci. 2016, 75, 355. [Google Scholar] [CrossRef]
- Yousefi, S.; Moradi, H.R.; Pourghasemi, H.R.; Khatami, R. Assessment of Floodplain Landuse and Channel Morphology within Meandering Reach of the Talar River in Iran Using GIS and Aerial Photographs. Geocarto Int. 2018, 33, 1367–1380. [Google Scholar] [CrossRef]
- Dewan, A.; Corner, R.; Saleem, A.; Rahman, M.; Haider, R.; Rahman, M.; Sarker, M.H. Assessing Channel Changes of the Ganges-Padma River System in Bangladesh Using Landsat and Hydrological Data. Geomorphology 2017, 276, 257–279. [Google Scholar] [CrossRef]
- Debnath, J.; Meraj, G.; Das Pan, N.; Chand, K.; Debbarma, S.; Sahariah, D.; Gualtieri, C.; Kanga, S.; Singh, S.K.; Farooq, M. Integrated remote sensing and field-based approach to assess the temporal evolution and future projection of meanders: A case study on River Manu in North-Eastern India. PLoS ONE 2022, 17, e0271190. [Google Scholar] [CrossRef] [PubMed]
- Annayat, W.; Sil, B.S. Assessing Channel Morphology and Prediction of Centerline Channel Migration of the Barak River Using Geospatial Techniques. Bull. Eng. Geol. Environ. 2020, 79, 5161–5183. [Google Scholar] [CrossRef]
- Annayat, W.; Sil, B.S. Changes in Morphometric Meander Parameters and Prediction of Meander Channel Migration for the Alluvial Part of the Barak River. J. Geol. Soc. India 2020, 96, 279–291. [Google Scholar] [CrossRef]
- Ghosh, M.K.; Kumar, L.; Roy, C. Monitoring the Coastline Change of Hatiya Island in Bangladesh Using Remote Sensing Techniques. ISPRS J. Photogramm. Remote Sens. 2015, 101, 137–144. [Google Scholar] [CrossRef]
- Yao, Z.; Xiao, J.; Ta, W.; Jia, X. Planform Channel Dynamics along the Ningxia–Inner Mongolia Reaches of the Yellow River from 1958 to 2008: Analysis Using Landsat Images and Topographic Maps. Environ. Earth Sci. 2013, 70, 97–106. [Google Scholar] [CrossRef]
- Langat, P.K.; Kumar, L.; Koech, R. Monitoring River Channel Dynamics Using Remote Sensing and GIS Techniques. Geomorphology 2019, 325, 92–102. [Google Scholar] [CrossRef]
- Pan, J.J.; Chang, C.I. Destriping of Landsat MSS images by filtering techniques. Photogramm. Eng. Remote Sens. 1992, 58, 1417. [Google Scholar]
- Gatto, L.W.; Campbell, M.V.; Ehlen, J.; Ryerson, C.C.; Hunter, L.E.; Tracy, B.T. A GIS System for Inferring Subsurface Geology and Material Properties: Proof of Concept. In Engineering Research and Development Center Hanover Nh; Cold Regions Research and Engineering Lab: Hanover, NH, USA, 2006. [Google Scholar]
- Debnath, J.; Sahariah, D.; Lahon, D.; Nath, N.; Chand, K.; Meraj, G.; Farooq, M.; Kumar, P.; Kanga, S.; Singh, S.K. Geospatial modeling to assess the past and future land use-land cover changes in the Brahmaputra Valley, NE India, for sustainable land resource management. Environ. Sci. Pollut. Res. 2022, 1–24. [Google Scholar] [CrossRef]
- Wagner, M.A. Reconstruction of a Tornado Disaster Employing Remote Sensing Techniques: A Case Study of the 1999 Moore, Oklahoma Tornado. Master’s Thesis, Arizona State University, Tempe, AZ, USA, 2011. [Google Scholar]
- Ahmed, A.A.; Fawzi, A. Meandering and Bank Erosion of the River Nile and Its Environmental Impact on the Area between Sohag and El-Minia, Egypt. Arab. J. Geosci. 2011, 4, 1–11. [Google Scholar] [CrossRef]
- Thakur, P.K.; Laha, C.; Aggarwal, S.P. River Bank Erosion Hazard Study of River Ganga, Upstream of Farakka Barrage Using Remote Sensing and GIS. Nat. Hazards 2012, 61, 967–987. [Google Scholar] [CrossRef]
- Henshaw, A.J.; Gurnell, A.M.; Bertoldi, W.; Drake, N.A. An Assessment of the Degree to Which Landsat TM Data Can Support the Assessment of Fluvial Dynamics, as Revealed by Changes in Vegetation Extent and Channel Position, along a Large River. Geomorphology 2013, 202, 74–85. [Google Scholar] [CrossRef]
- Wajahat, A.; Sundar, S.B. Estimation and Analysis of Possible Flood for the Silchar City-a Case Study. Disaster Adv. 2018, 11. [Google Scholar]
- Saleh, F.; Ducharne, A.; Flipo, N.; Oudin, L.; Ledoux, E. Impact of River Bed Morphology on Discharge and Water Levels Simulated by a 1D Saint–Venant Hydraulic Model at Regional Scale. J. Hydrol. 2013, 476, 169–177. [Google Scholar] [CrossRef]
- Bernini, A.; Bosino, A.; Botha, G.A.; Maerker, M. Evaluation of Gully Erosion Susceptibility Using a Maximum Entropy Model in the Upper Mkhomazi River Basin in South Africa. ISPRS Int. J. Geo-Inf. 2021, 10, 729. [Google Scholar] [CrossRef]
- Debnath, J.; Pan, N.D.; Ahmed, I.; Bhowmik, M. Channel Migration and Its Impact on Land Use/Land Cover Using RS and GIS: A Study on Khowai River of Tripura, North-East. Egypt. J. Remote Sens. Space Sci. 2017, 20, 197–210. [Google Scholar] [CrossRef]
- Li, Z.; Yu, G.A.; Brierley, G.J.; Wang, Z.; Jia, Y. Migration and cutoff of meanders in the hyperarid environment of the middle Tarim River, northwestern China. Geomorphology 2017, 276, 116–124. [Google Scholar] [CrossRef]
- Timár, G. Controls on Channel Sinuosity Changes: A Case Study of the Tisza River, the Great Hungarian Plain. Quat. Sci. Rev. 2003, 22, 2199–2207. [Google Scholar] [CrossRef] [Green Version]
- Engel, F.L.; Rhoads, B.L. Interaction among Mean Flow, Turbulence, Bed Morphology, Bank Failures and Channel Planform in an Evolving Compound Meander Loop. Geomorphology 2012, 163, 70–83. [Google Scholar] [CrossRef]
- Meraj, G.; Romshoo, S.A.; Yousuf, A.R.; Altaf, S.; Altaf, F. Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya. Nat. Hazards 2015, 77, 153–175. [Google Scholar] [CrossRef]
- Cama, M.; Schillaci, C.; Kropáček, J.; Hochschild, V.; Bosino, A.; Märker, M. A Probabilistic Assessment of Soil Erosion Susceptibility in a Head Catchment of the Jemma Basin, Ethiopian Highlands. Geosciences 2020, 10, 248. [Google Scholar] [CrossRef]
- James, L.A.; Lecce, S.A. Impacts of Land-Use and Land-Cover Change on River Systems. Treatise Geomorphol. 2013, 9, 768–793. [Google Scholar]
- Meraj, G.; Khan, T.; Romshoo, S.A.; Farooq, M.; Rohitashw, K.; Sheikh, B.A. An Integrated Geoinformatics and Hydrological Modelling-Based Approach for Effective Flood Management in the Jhelum Basin, NW Himalaya. Proceedings 2019, 7, 8. [Google Scholar]
- Gurnell, A.M.; Rinaldi, M.; Belletti, B.; Bizzi, S.; Blamauer, B.; Braca, G.; Buijse, A.; Bussettini, M.; Camenen, B.; Comiti, F. A Multi-Scale Hierarchical Framework for Developing Understanding of River Behaviour to Support River Management. Aquat. Sci. 2016, 78, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Halder, A.; Mowla Chowdhury, R. Evaluation of the river Padma morphological transition in the central Bangladesh using GIS and remote sensing techniques. Int. J. River Basin Manag. 2021, 1–15. [Google Scholar] [CrossRef]
- Altaf, F.; Meraj, G.; Romshoo, S.A. Morphometric analysis to infer hydrological behaviour of Lidder watershed, Western Himalaya, India. Geogr. J. 2013, 2013, 178021. [Google Scholar] [CrossRef] [Green Version]
- Sajan, B.; Mishra, V.N.; Kanga, S.; Meraj, G.; Singh, S.K.; Kumar, P. Cellular Automata-Based Artificial Neural Network Model for Assessing Past, Present, and Future Land Use/Land Cover Dynamics. Agronomy 2022, 12, 2772. [Google Scholar] [CrossRef]
Year | Path/Row | Acquisition Date | Satellite | Sensor | Source |
---|---|---|---|---|---|
1984 | 136/43 | 05/02/1984 | Landsat 1 | MSS | |
1992 | 136/43 | 09/01/1992 | Landsat 3 | TM | |
2002 | 136/43 | 05/02/2002 | Landsat 4 | ETM | United States |
2012 | 136/43 | 23/02/2012 | Landsat 5 | ETM | Geological Survey |
2017 | 136/43 | 18/12/2017 | Landsat 8 | OLI |
Year | Area (ha) | ||
---|---|---|---|
Erosion | Accretion | Difference | |
1984–1992 1992–2002 2002–2012 2012–2017 1984–2017 | 666.42 498.01 332.69 727.56 541.11 | 405.6 539.88 540.187 351.32 1054.21 | 260.82 −41.87 −207.49 376.24 513.11 |
Category | 2017 | 1984 | Difference | ||||
---|---|---|---|---|---|---|---|
Area (Km2) | % Change | Area (Km2) | % Change | Area (Km2) | % Change | ||
1 | Water | 36.08 | 7.80 | 39.95 | 8.71 | −3.87 | −0.91 |
2 | Settlement | 73.73 | 16.09 | 25.79 | 5.62 | 47.94 | 10.47 |
3 | Vegetation | 175.50 | 38.30 | 242.70 | 52.96 | −67.2 | −14.66 |
4 | Arable | 172.89 | 37.73 | 149.78 | 32.68 | 23.11 | 5.05 |
Total | 458.21 | 100 | 458.21 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sil, B.S.; Ashwini, K.; Annayat, W.; Debnath, J.; Farooq, M.; Meraj, G. Observing Spatiotemporal Inconsistency of Erosion and Accretion in the Barak River Using Remote Sensing and GIS Techniques. Conservation 2023, 3, 14-31. https://doi.org/10.3390/conservation3010002
Sil BS, Ashwini K, Annayat W, Debnath J, Farooq M, Meraj G. Observing Spatiotemporal Inconsistency of Erosion and Accretion in the Barak River Using Remote Sensing and GIS Techniques. Conservation. 2023; 3(1):14-31. https://doi.org/10.3390/conservation3010002
Chicago/Turabian StyleSil, Briti Sundar, Kumar Ashwini, Wajahat Annayat, Jatan Debnath, Majid Farooq, and Gowhar Meraj. 2023. "Observing Spatiotemporal Inconsistency of Erosion and Accretion in the Barak River Using Remote Sensing and GIS Techniques" Conservation 3, no. 1: 14-31. https://doi.org/10.3390/conservation3010002