Fencing Can Alter Gene Flow of Asian Elephant Populations within Protected Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. DNA Extraction and Analysis
2.3. Population Structure
2.4. Slope Distribution Models
2.5. Resistance Maps
2.6. Model Optimization and Gene Flow
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Elephant | Start Date | End Date | Number of Records | Number of Days | Records per Day | Same Locations |
---|---|---|---|---|---|---|
Sat4 | 03/01/13 | 08/22/16 | 1752 | 1270 | 1.4 | 9 |
Sat2 | 05/23/13 | 12/14/13 | 2695 | 205 | 13.1 | 14 |
69c5 | 06/07/10 | 11/22/10 | 105 | 168 | 0.6 | 2 |
59b6 | 10/24/10 | 11/16/10 | 86 | 23 | 3.7 | 4 |
mdm | 12/19/18 | 04/04/19 | 2089 | 106 | 19.7 | 10 |
Appendix B
Appendix C
Northern Population | Southern Population | ||||||
---|---|---|---|---|---|---|---|
Transformation | Rmax | Power | AIC | Transformation | Rmax | Power | AIC |
Gamma | 80 | - | 26,569 | Gamma | 80 | - | 2714 |
Gamma | 40 | - | 26,592 | Gamma | 40 | - | 2731 |
Power | 80 | 1.0 | 26,618 | Gamma | 20 | - | 2749 |
Gamma | 20 | 2.0 | 26,622 | Exponential | 80 | - | 2752 |
Power | 40 | 1.0 | 26,640 | Power | 80 | 1.0 | 2756 |
Power | 80 | 2.0 | 26,643 | Exponential | 40 | - | 2758 |
Exponential | 80 | - | 26,645 | Gamma | 10 | - | 2764 |
Exponential | 40 | - | 26,653 | Power | 40 | 1.0 | 2765 |
Gamma | 10 | - | 26,654 | Exponential | 20 | - | 2766 |
Exponential | 20 | - | 26,665 | Power | 80 | 2.0 | 2768 |
Power | 20 | 1.0 | 26,669 | Exponential | 10 | 1.0 | 2774 |
Power | 40 | 2.0 | 26,684 | Power | 20 | 1.0 | 2775 |
Exponential | 10 | - | 26,684 | Power | 80 | 0.5 | 2777 |
Gamma | 5 | - | 26,695 | Gamma | 5 | 0.5 | 2777 |
Power | 80 | 0.5 | 26,695 | Power | 40 | 0.5 | 2778 |
Power | 40 | 0.5 | 26,699 | Power | 40 | 2.0 | 2780 |
Power | 10 | 1.0 | 26,706 | Power | 20 | 0.5 | 2781 |
Power | 20 | 0.5 | 26,706 | Exponential | 5 | - | 2783 |
Power | 20 | 2.0 | 26,714 | Power | 10 | 1.0 | 2784 |
Exponential | 5 | - | 26,715 | Power | 10 | 0.5 | 2785 |
Power | 10 | 0.5 | 26,717 | Power | 20 | 2.0 | 2787 |
Power | 5 | 0.5 | 26,736 | Power | 5 | 1.0 | 2790 |
Power | 5 | 1.0 | 26,738 | Power | 5 | 0.5 | 2790 |
Power | 10 | 2.0 | 26,741 | Power | 10 | 2.0 | 2791 |
Power | 80 | 4.0 | 26,745 | Power | 80 | 4.0 | 2791 |
Power | 80 | 0.1 | 26,751 | Power | 5 | 2.0 | 2793 |
Power | 40 | 0.1 | 26,751 | Power | 40 | 4.0 | 2793 |
Power | 20 | 0.1 | 26,752 | Power | 20 | 4.0 | 2795 |
Power | 10 | 0.1 | 26,754 | Power | 10 | 4.0 | 2796 |
Power | 40 | 4.0 | 26,757 | Power | 5 | 4.0 | 2797 |
Power | 5 | 0.1 | 26,758 | Euclidean | - | - | 2798 |
Power | 5 | 2.0 | 26,760 | Power | 5 | 0.1 | 2801 |
Power | 20 | 4.0 | 26,765 | Power | 10 | 0.1 | 2803 |
Power | 10 | 4.0 | 26,774 | Power | 20 | 0.1 | 2803 |
Euclidean | - | - | 26,781 | Power | 40 | 0.1 | 2804 |
Power | 5 | 4.0 | 26,782 | Power | 80 | 0.1 | 2804 |
References
- West, P.; Igoe, J.; Brockington, D. Parks and peoples: The social impact of protected areas. Annu. Rev. Anthropol. 2006, 35, 251–277. [Google Scholar] [CrossRef] [Green Version]
- Wittemyer, G.; Elsen, P.; Bean, W.T.; Burton, A.C.O.; Brashares, J.S. Accelerated human population growth at protected area edges. Science 2008, 321, 123–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, K.R.; Venter, O.; Fuller, R.A.; Allan, J.R.; Maxwell, S.L.; Negret, P.J.; Watson, J.E.M. One-third of global protected land is under intense human pressure. Science 2018, 360, 788–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, J.E.M.; Shanahan, D.F.; Di Marco, M.; Allan, J.; Laurance, W.F.; Sanderson, E.W.; Mackey, B.; Venter, O. Catastrophic declines in wilderness areas undermine global environment targets. Curr. Biol. 2016, 26, 2929–2934. [Google Scholar] [CrossRef] [Green Version]
- Shaffer, L.J.; Khadka, K.K.; Van Den Hoek, J.; Naithani, K.J. Human-elephant conflict: A review of current management strategies and future directions. Front. Ecol. Evol. 2019, 6, 235. [Google Scholar] [CrossRef] [Green Version]
- Fernando, P.; Ekanayaka, S.K.K.; Pastorini, J. The elephant at the fence: Almsman, panhandler, friend or foe? Eur. J. Wildl. Res. 2020, 66, 97. [Google Scholar] [CrossRef]
- Kalam, T.; Puttaveeraswamy, T.A.; Srivastava, R.K.; Puyravaud, J.-P.; Davidar, P. Spatial aggregation and specificity of incidents with wildlife make tea plantations in southern India potential buffers with protected areas. J. Threat. Taxa 2020, 12, 16478–16493. [Google Scholar] [CrossRef]
- Wilkinson, C.E.; McInturff, A.; Kelly, M.; Brashares, J.S. Quantifying wildlife responses to conservation fencing in East Africa. Biol. Conserv. 2021, 256, 109071. [Google Scholar] [CrossRef]
- Olivier, R. Distribution and status of the Asian elephant. Oryx 1978, 14, 379–424. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, L. Habitat selection by Asian elephant (Elephas maximus) in Xishuangbanna, Yunnan, China. Acta Theriol. Sin. 2005, 25, 229–236. [Google Scholar]
- Wall, J.; Douglas-Hamilton, I.; Vollrath, F. Elephants avoid costly mountaineering. Curr. Biol. 2006, 16, R527–R529. [Google Scholar] [CrossRef]
- Speakman, J.R.; Król, E. Maximal heat dissipation capacity and hyperthermia risk: Neglected key factors in the ecology of endotherms. J. Anim. Ecol. 2010, 79, 726–746. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Nielsen, K. Scaling: Why Is Animal Size So Important? Cambridge University Press: Cambridge, UK; New York, NY, USA, 1984; ISBN 978-0-521-26657-4. [Google Scholar]
- Wheatley, R.; Buettel, J.C.; Brook, B.W.; Johnson, C.N.; Wilson, R.P. Accidents alter animal fitness landscapes. Ecol. Lett. 2021, 24, 920–934. [Google Scholar] [CrossRef] [PubMed]
- Balkenhol, N.; Cushman, S.A.; Storfer, A.T.; Waits, L.P. (Eds.) Landscape Genetics; John Wiley & Sons, Ltd.: Chichester, UK, 2015; ISBN 978-1-118-52525-8. [Google Scholar]
- Peterson, E.E.; Hanks, E.M.; Hooten, M.B.; Ver Hoef, J.M.; Fortin, M.-J. Spatially structured statistical network models for landscape genetics. Ecol. Monogr. 2019, 89, e01355. [Google Scholar] [CrossRef] [Green Version]
- Shirk, A.J.; Wallin, D.O.; Cushman, S.A.; Rice, C.G.; Warheit, K.I. Inferring landscape effects on gene flow: A new model selection framework. Mol. Ecol. 2010, 19, 3603–3619. [Google Scholar] [CrossRef]
- Ruiz-González, A.; Gurrutxaga, M.; Cushman, S.A.; Madeira, M.J.; Randi, E.; Gómez-Moliner, B.J. Landscape genetics for the empirical assessment of resistance surfaces: The European pine marten (Martes martes) as a target-species of a regional ecological network. PLoS ONE 2014, 9, e110552. [Google Scholar] [CrossRef] [Green Version]
- Myers, N.; Mittermeier, R.; Mittermeier, C.; da Fonseca, G.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Baskaran, N. An overview of Asian elephants in the Western Ghats, southern India: Implications for the conservation of Western Ghats ecology. J. Threat. Taxa 2013, 5, 4854–4870. [Google Scholar] [CrossRef] [Green Version]
- Gubbi, S.; Swaminath, M.H.; Poornesha, H.C.; Bhat, R.; Raghunath, R. An elephantine challenge: Human–elephant conflict distribution in the largest Asian elephant population, southern India. Biodivers. Conserv. 2014, 23, 633–647. [Google Scholar] [CrossRef]
- De, R.; Sharma, R.; Davidar, P.; Arumugam, N.; Sedhupathy, A.; Puyravaud, J.-P.; Selvan, K.M.; Rahim, P.P.A.; Udayraj, S.; Parida, J.; et al. Pan-India population genetics signifies the importance of habitat connectivity for wild Asian elephant conservation. Glob. Ecol. Conserv. 2021, 32, e01888. [Google Scholar] [CrossRef]
- Parida, J.; Sharma, R.; De, R.; Kalam, T.; Sedhupathy, A.; Digal, D.K.; Reddy, P.A.; Goyal, S.P.; Puyravaud, J.-P.; Davidar, P. Genetic characterisation of fragmented Asian elephant populations with one recent extinction in its eastern-central Indian range. Ecol. Genet. Genom. 2022, 24, 100132. [Google Scholar] [CrossRef]
- Kongrit, C.; Siripunkaw, C.; Brockelman, W.Y.; Akkarapatumwong, V.; Wright, T.F.; Eggert, L.S. Isolation and Characterization of Dinucleotide Microsatellite Loci in the Asian Elephant (Elephas Maximus). Mol. Ecol. Resour. 2008, 8, 175–177. [Google Scholar] [CrossRef] [PubMed]
- Kalinowski, S.T.; Taper, M.L.; Marshall, T.C. Revising how the computer program Cervus accommodates genotyping error increases success in paternity assignment: Cervus likelihood model. Mol. Ecol. 2007, 16, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Valière, N. Gimlet: A computer program for analysing genetic individual identification data: Program note. Mol. Ecol. Notes 2002, 2, 377–379. [Google Scholar] [CrossRef]
- Pompanon, F.; Bonin, A.; Bellemain, E.; Taberlet, P. Genotyping errors: Causes, consequences and solutions. Nat. Rev. Genet. 2005, 6, 847–859. [Google Scholar] [CrossRef]
- Chapuis, M.-P.; Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 2007, 24, 621–631. [Google Scholar] [CrossRef] [Green Version]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B Methodol. 1977, 39, 1–22. [Google Scholar] [CrossRef]
- Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing, R version 4.0.0 (24-04-2020); R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Shirk, A.J.; Landguth, E.L.; Cushman, S.A. A comparison of individual-based genetic distance metrics for landscape genetics. Mol. Ecol. Resour. 2017, 17, 1308–1317. [Google Scholar] [CrossRef]
- Weir, B.S.; Cockerham, C.C. Estimating F-statistics for the analysis of population structure. Evolution 1984, 38, 1358–1370. [Google Scholar] [CrossRef]
- Nei, M. Genetic distances between populations. Am. Nat. 1972, 106, 283–292. [Google Scholar] [CrossRef]
- Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 2008, 17, 4015–4026. [Google Scholar] [CrossRef] [PubMed]
- Keenan, K.; McGinnity, P.; Cross, T.F.; Crozier, W.W.; Prodöhl, P.A. DiveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 2013, 4, 782–788. [Google Scholar] [CrossRef] [Green Version]
- Excoffier, L.; Smouse, P.E.; Quattro, J.M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 1992, 131, 479–491. [Google Scholar] [CrossRef]
- Excoffier, L.; Laval, G.; Schneider, S. Arlequin (Version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinform. Online 2005, 1, 47–50. [Google Scholar] [CrossRef] [Green Version]
- Cushman, S.A.; Lewis, J.S. Movement behavior explains genetic differentiation in American black bears. Landsc. Ecol. 2010, 25, 1613–1625. [Google Scholar] [CrossRef]
- Reuter, H.I.; Nelson, A.; Jarvis, A. An evaluation of void filling interpolation methods for SRTM data. Int. J. Geogr. Inf. Sci. 2007, 21, 983–1008. [Google Scholar] [CrossRef]
- GRASS Development Team. Geographic Resources Analysis Support System (GRASS) Software; Version 7.8.2; Open Source Geospatial Foundation: Beaverton, OR, USA, 2020. [Google Scholar]
- Delignette-Muller, M.-L.; Dutang, C. Fitdistrplus: An R package for fitting distributions. J. Stat. Softw. 2015, 64, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling, R package version 3.3-13; CRAN: Vienna, Austria, 2020. [Google Scholar]
- Castillo, J.A.; Epps, C.W.; Davis, A.R.; Cushman, S.A. Landscape effects on gene flow for a climate-sensitive montane species, the American Pika. Mol. Ecol. 2014, 23, 843–856. [Google Scholar] [CrossRef]
- Shirk, A.J.; Landguth, E.L.; Cushman, S.A. A comparison of regression methods for model selection in individual-based landscape genetic analysis. Mol. Ecol. Resour. 2018, 18, 55–67. [Google Scholar] [CrossRef]
- Shirk, A.J.; Cushman, S.A. sGD: Software for estimating spatially explicit indices of genetic diversity. Mol. Ecol. Resour. 2011, 11, 922–934. [Google Scholar] [CrossRef] [PubMed]
- Peterman, W.E. ResistanceGA: An R package for the optimization of resistance surfaces using genetic algorithms. Methods Ecol. Evol. 2018, 9, 1638–1647. [Google Scholar] [CrossRef] [Green Version]
- Compton, B.W.; McGarigal, K.; Cushman, S.A.; Gamble, L.R. A resistant-kernel model of connectivity for amphibians that breed in vernal pools. Conserv. Biol. 2007, 21, 788–799. [Google Scholar] [CrossRef] [PubMed]
- Landguth, E.L.; Hand, B.K.; Glassy, J.; Cushman, S.A.; Sawaya, M.A. UNICOR: A species connectivity and corridor network simulator. Ecography 2012, 35, 9–14. [Google Scholar] [CrossRef]
- DeFries, R.; Hansen, A.; Newton, A.C.; Hansen, M.C. Increasing isolation of protected areas in tropical forests over the past twenty years. Ecol. Appl. 2005, 15, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Saura, S.; Bertzky, B.; Bastin, L.; Battistella, L.; Mandrici, A.; Dubois, G. Global trends in protected area connectivity from 2010 to 2018. Biol. Conserv. 2019, 238, 108183. [Google Scholar] [CrossRef]
- Frankham, R.; Ballou, J.D.; Briscoe, D.A. Introduction to Conservation Genetics, 2nd ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2010; ISBN 978-0-521-87847-0. [Google Scholar]
- Woodroffe, R.; Ginsberg, J.R. Edge Effects and the extinction of populations inside protected areas. Science 1998, 280, 2126–2128. [Google Scholar] [CrossRef] [Green Version]
- Pauchard, A.; Alaback, P.B. Influence of elevation, land use, and landscape context on patterns of alien plant invasions along roadsides in protected areas of South-Central Chile. Conserv. Biol. 2004, 18, 238–248. [Google Scholar] [CrossRef]
- Burivalova, Z.; Butler, R.A.; Wilcove, D.S. Analyzing Google Search data to debunk myths about the public’s interest in conservation. Front. Ecol. Environ. 2018, 16, 509–514. [Google Scholar] [CrossRef]
- Cushman, S.A.; Elliot, N.B.; Macdonald, D.W.; Loveridge, A.J. A multi-scale assessment of population connectivity in African lions (Panthera leo) in response to landscape change. Landsc. Ecol. 2016, 31, 1337–1353. [Google Scholar] [CrossRef]
- Broquet, T.; Petit, E. Quantifying genotyping errors in noninvasive population genetics. Mol. Ecol. 2004, 13, 3601–3608. [Google Scholar] [CrossRef] [PubMed]
- Vidya, T.N.C.; Fernando, P.; Melnick, D.J.; Sukumar, R. Population genetic structure and conservation of Asian elephants (Elephas maximus) across India. Anim. Conserv. 2005, 8, 377–388. [Google Scholar] [CrossRef]
- Halsey, L.G.; White, C.R. A different angle: Comparative analyses of whole-animal transport costs when running uphill. J. Exp. Biol. 2017, 220, 161–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baskaran, N.; Sukumar, R. Karnataka Elephant Census 2010; Centre for Ecological Sciences, Indian Institute of Science & Asian Nature Conservation Foundation; Indian Institute of Science: Bangalore, India, 2011; p. 33. [Google Scholar]
- Vidya, T.N.C.; Sukumar, R. Social organization of the Asian elephant (Elephas maximus) in southern India inferred from microsatellite DNA. J. Ethol. 2005, 23, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Bowler, D.E.; Benton, T.G. Causes and consequences of animal dispersal strategies: Relating individual behaviour to spatial dynamics. Biol. Rev. 2005, 80, 205–225. [Google Scholar] [CrossRef] [Green Version]
- Fernando, P.; Wikramanayake, E.D.; Janaka, H.K.; Jayasinghe, L.K.A.; Gunawardena, M.; Kotagama, S.W.; Weerakoon, D.; Pastorini, J. Ranging behavior of the Asian elephant in Sri Lanka. Mamm. Biol. 2008, 73, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Sukumar, R. Ecology of the Asian elephant in southern India. II. Feeding habits and crop raiding patterns. J. Trop. Ecol. 1990, 6, 33–53. [Google Scholar] [CrossRef]
- Trautmann, T.R. Elephants and Kings: An Environmental History; The University of Chicago Press: Chicago, IL, USA, 2015; ISBN 978-0-226-26422-6. [Google Scholar]
- Baleka, S.; Herridge, V.L.; Catalano, G.; Lister, A.M.; Dickinson, M.R.; Di Patti, C.; Barlow, A.; Penkman, K.E.H.; Hofreiter, M.; Paijmans, J.L.A. Estimating the dwarfing rate of an extinct Sicilian elephant. Curr. Biol. 2021, 31, 3606–3612.E7. [Google Scholar] [CrossRef]
- Davidar, E.R.C.; Davidar, P.; Davidar, P.; Puyravaud, J.-P. Elephant (Elephas maximus Linnaeus Proboscidea: Elephantidae) migration paths in the Nilgiri Hills, India in the late 1970s. J. Threat. Taxa 2012, 4, 3284–3293. [Google Scholar] [CrossRef]
- Santiapillai, C.; Wijeyamohan, S.; Bandara, G.; Athurupana, R.; Dissanayake, N.; Read, B. An assessment of the human-elephant conflict in Sri Lanka. Ceylon J. Sci. Biol. Sci. 2010, 39, 21–33. [Google Scholar] [CrossRef]
- Kremen, C.; Merenlender, A.M. Landscapes that work for biodiversity and people. Science 2018, 362, eaau6020. [Google Scholar] [CrossRef] [PubMed]
Database | Shape (se.) | Rate (se.) | Average | Variance |
---|---|---|---|---|
SatDB | 1.820 (0.125) | 14.892 (1.175) | 0.122 | 0.008 |
Transformation | Rmax | Power | AIC | Transformation | Rmax | Power | AIC |
---|---|---|---|---|---|---|---|
Gamma | 80 | - | 43,499 | Exponential | 5 | - | 43,661 |
Gamma | 40 | - | 43,513 | Power | 10 | 0.5 | 43,664 |
Gamma | 20 | - | 43,530 | Power | 20 | 2.0 | 43,679 |
Power | 80 | 1.0 | 43,538 | Power | 5 | 0.5 | 43,701 |
Exponential | 80 | - | 43,546 | Power | 5 | 1.0 | 43,706 |
Exponential | 40 | - | 43,552 | Power | 10 | 2.0 | 43,710 |
Power | 40 | 1.0 | 43,567 | Power | 80 | 4.0 | 43,715 |
Exponential | 20 | - | 43,569 | Power | 80 | 0.1 | 43,730 |
Gamma | 10 | - | 43,572 | Power | 40 | 4.0 | 43,730 |
Power | 80 | 2.0 | 43,606 | Power | 40 | 0.1 | 43,731 |
Exponential | 10 | - | 43,607 | Power | 20 | 0.1 | 43,732 |
Power | 20 | 1.0 | 43,613 | Power | 10 | 0.1 | 43,735 |
Power | 80 | 0.5 | 43,614 | Power | 5 | 2.0 | 43,736 |
Power | 40 | 0.5 | 43,626 | Power | 5 | 0.1 | 43,740 |
Gamma | 5 | - | 43,635 | Power | 20 | 4.0 | 43,741 |
Power | 20 | 0.5 | 43,643 | Power | 10 | 4.0 | 43,754 |
Power | 40 | 2.0 | 43,646 | Euclidean | - | - | 43,761 |
Power | 10 | 1.0 | 43,661 | Power | 5 | 4.0 | 43,766 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puyravaud, J.-P.; Cushman, S.A.; Reddy, P.A.; Boominathan, D.; Sharma, R.; Arumugam, N.; Selvan, K.M.; Mohanraj, N.; Arulmozhi, S.; Rahim, A.; et al. Fencing Can Alter Gene Flow of Asian Elephant Populations within Protected Areas. Conservation 2022, 2, 709-725. https://doi.org/10.3390/conservation2040046
Puyravaud J-P, Cushman SA, Reddy PA, Boominathan D, Sharma R, Arumugam N, Selvan KM, Mohanraj N, Arulmozhi S, Rahim A, et al. Fencing Can Alter Gene Flow of Asian Elephant Populations within Protected Areas. Conservation. 2022; 2(4):709-725. https://doi.org/10.3390/conservation2040046
Chicago/Turabian StylePuyravaud, Jean-Philippe, Samuel A. Cushman, P. Anuradha Reddy, Durairaj Boominathan, Reeta Sharma, Neelakantan Arumugam, Kanagaraj Muthamizh Selvan, Nagarathinam Mohanraj, Sedupathy Arulmozhi, Abdul Rahim, and et al. 2022. "Fencing Can Alter Gene Flow of Asian Elephant Populations within Protected Areas" Conservation 2, no. 4: 709-725. https://doi.org/10.3390/conservation2040046
APA StylePuyravaud, J. -P., Cushman, S. A., Reddy, P. A., Boominathan, D., Sharma, R., Arumugam, N., Selvan, K. M., Mohanraj, N., Arulmozhi, S., Rahim, A., Kalam, T., De, R., Udayraj, S., Luis, A., Najar, M. U. I., Raman, K., Krishnakumar, B. M., Goyal, S. P., & Davidar, P. (2022). Fencing Can Alter Gene Flow of Asian Elephant Populations within Protected Areas. Conservation, 2(4), 709-725. https://doi.org/10.3390/conservation2040046