A State-of-the-Art Vegetation Map for Jordan: A New Tool for Conservation in a Biodiverse Country
Abstract
:1. Introduction
2. Materials and Methods
2.1. Processing of Remote Sensing Data
2.2. Using Unsupervised Classification to Produce Land Use/Land Cover Map
2.3. Field Data
2.4. Statistical Analysis
2.5. Using Supervised Classification to Produce the Vegetation Map
2.6. Accuracy Assessment of Vegetation Maps
3. Results
3.1. Land Cover/Land Use Map
3.2. Vegetation Map
3.3. Using Remote Sensing to Classify Vegetation Types
3.4. Phytogeographical Regions
3.5. Accuracy Assessment of Vegetation Maps
4. Discussion
4.1. Land Cover/Land Use Map
4.2. Vegetation Map
4.3. Phytogeographical Regions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Confusion Matrices for Assessing the Accuracy of the Maps
TABLE Confusion Matrix | (DF) | (SF) | (SS) | (DS) | (RA) | (IA) | (S) | (WD) | (DM) | (WM) | (XS) | (WB) | (CBR) | (DBR) | (CP) | (RM) | (WB) | (UA) | Total | User’s Accuracy (%) | Kappa |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dense Forest (DF) | 43 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 43 | 100 | 0 |
Sparse Forest (SF) | 0 | 43 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 44 | 98 | 0 |
Shrubland-Steppe (SS) | 0 | 2 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17 | 88 | 0 |
Desert Scrubs (DS) | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 100 | 0 |
Rainfed Agriculture (RA) | 0 | 2 | 0 | 0 | 27 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 32 | 84 | 0 |
Irrigated Agriculture (IA) | 1 | 0 | 0 | 0 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 | 94 | 0 |
Sand (S) | 0 | 1 | 0 | 0 | 0 | 0 | 94 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 100 | 94 | 0 |
Wadi Deposits (WD) | 0 | 2 | 0 | 0 | 1 | 0 | 7 | 115 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 128 | 90 | 0 |
Dry Mudflat (DM) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 26 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 28 | 93 | 0 |
Wet Mudflat (WM) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 | 100 | 0 |
Xerophytic Slope (XS) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 100 | 0 |
Wadi Beds (WB) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 29 | 0 | 0 | 9 | 0 | 0 | 0 | 40 | 73 | 0 |
Consolidated Basalt Rocks (CBR) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13 | 0 | 0 | 0 | 0 | 0 | 13 | 100 | 0 |
Disintegrated Basalt Rocks (DBR) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | 19 | 95 | 0 |
Chert Plain (CP) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | 1 | 1 | 73 | 0 | 0 | 0 | 82 | 89 | 0 |
Rocky Mountain (RM) | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 15 | 80 | 0 |
Water Body (WB) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 4 | 100 | 0 |
Urban Area (UA) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 10 | 100 | 0 |
Total | 44 | 52 | 15 | 20 | 28 | 17 | 103 | 118 | 29 | 16 | 15 | 35 | 14 | 19 | 83 | 17 | 5 | 10 | 640 | 0 | 0 |
Producer’s Accuracy (%) | 98 | 83 | 100 | 90 | 96 | 88 | 91 | 97 | 90 | 100 | 100 | 83 | 93 | 95 | 88 | 71 | 80 | 100 | 0 | 91 | 0 |
Kappa | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.9 |
TABLE Confusion Matrix | (APF) | (AW) | (S) | (GH) | (SD) | (SVA) | (SV) | (M) | (RH) | (GB) | (RV) | (TH) | (DO) | (EO) | (PF) | (JF) | (GSS) | (SH) | Total | User’s Accuracy (%) | Kappa |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Anthropogenic Pine Forest (APF) | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 100 | 0 |
Acacia Woodland (AW) | 0 | 21 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22 | 95 | 0 |
Steppes Vegetation (S) | 1 | 0 | 26 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 | 93 | 0 |
Gravel Hammada Vegetation (GH) | 0 | 0 | 0 | 47 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 49 | 96 | 0 |
Sand Dune Vegetation (SD) | 0 | 2 | 0 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17 | 88 | 0 |
Sandy Gravel Hammada-V. gerrardii & A. judaica (SVA) | 0 | 1 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 88 | 0 |
Saline Vegetation (SV) | 0 | 0 | 1 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 86 | 0 |
Mudflat Vegetation (M) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 100 | 0 |
Runoff Hammada Vegetation (RH) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 100 | 0 |
Garrigue and Batha (GB) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 21 | 95 | 0 |
Riparian Vegetation (RV) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 100 | 0 |
Thermophilous Vegetation (TH) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 100 | 0 |
Deciduous Oak Forest (DO) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 7 | 100 | 0 |
Evergreen Oak Forest (EO) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 1 | 0 | 0 | 0 | 6 | 83 | 0 |
Pine Forest (PF) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 8 | 100 | 0 |
Juniper Forest (JF) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 4 | 100 | 0 |
Granite and Sandstones Shrubland (GSS) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 4 | 100 | 0 |
Sandy Gravel Hammada-Hammada scoparia (SH) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 100 | 0 |
Total | 5 | 24 | 27 | 48 | 16 | 7 | 7 | 6 | 16 | 20 | 7 | 10 | 8 | 5 | 9 | 4 | 4 | 4 | 227 | 0 | 0 |
Producer’s Accuracy (%) | 80 | 88 | 96 | 98 | 94 | 100 | 86 | 100 | 94 | 100 | 100 | 100 | 88 | 100 | 89 | 100 | 100 | 100 | 0 | 95 | 0 |
Kappa | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 94 |
References
- Nicolson, M. Alexander von Humboldt, Humboldtian science and the origins of the study of vegetation. Hist. Sci. 1987, 25, 167–194. [Google Scholar] [CrossRef]
- Whittaker, R.H. Classification of natural communities. Bot. Rev. 1962, 28, 1–239. [Google Scholar] [CrossRef]
- Zohary, M. Geobotanical Foundations of the Middle East; Gustav Fischer: Stuttgart, Germany, 1973. [Google Scholar]
- Por, F.D. The Levantine landbridge. Historical and present patterns. In Proceedings of the Symposium of the Fauna and Zoogeography of the Middle East; Krupp, F., Schneider, W., Kinzelbach, R., Eds.; Ludwig Reichert Verlag: Wiesbaden, Germany, 1987; pp. 23–28. [Google Scholar]
- Eig, A. Les elements et les groupes phytogeographiques auxiliaires dans la flore Palestinienne’. Repert. Spec. Nov. Regni Veg. 1931–1932, 63, 1–201, 63, 1–120. [Google Scholar]
- Eig, A. On the phytogeographical subdivision of Palestine. Palestine J. Bot. 1938, 1, 4–12. [Google Scholar]
- White, F.; Léonard, J. Phytogeographical links between Africa and Southwest Asia. Flora Veg. Mundi 1991, 9, 229–246. [Google Scholar]
- Léonard, J. Contribution à L’Étude de la Flore et de la Vegetation des Deserts D’Iran (Dasht-e-Kavir, Dasht-e-Lut, Jaz Kurian). Considerations Phytogeographiques sur les Phytochories Irano–Touranienne, Saharo-Sindienne et de la Somalie-Pays Masai; Jardin Botanique National de Belgique: Meise, Belgium, 1989. [Google Scholar]
- Long, G. The Bioclimatology and Vegetation of East Jordan; UNESCO/FAO: Rome, Italy, 1957. [Google Scholar]
- Al-Eisawi, D.M. Vegetation of Jordan. In Studies in the History and Archaeology of Jordan; Hadidi, A., Ed.; Ministry of Archaeology and Tourism: Amman, Jordan, 1985; Volume 1, pp. 45–56. [Google Scholar]
- Al-Eisawi, D.M. Vegetation of Jordan; UNESCO (ROSTAS): Cairo, Egypt, 1996; p. 284. [Google Scholar]
- Danin, A. Distribution Atlas of Plants in the Flora Palaestina Area; The Israel Academy of Sciences and Humanities: Jerusalem, Israel, 2004. [Google Scholar]
- Zohary, M.; Feinbrun-Dothan, N. Flora Palestina; The Israel Academy of Sciences and Humanities: Jerusalem, Israel, 1966; Volume 1. [Google Scholar]
- Albert, A.; Petutschnnig, B.; Watzka, M. Zur Vegetation und Flora Jordaniens. In Reise Durch die Natur Jordaniens; Waitzbaur, W., Albert, R., Petutschnnig, B., Aubrecht, G., Eds.; Biologiezentrum der Oberosterreichen Landesmuseen: Linz, Austria, 2003. [Google Scholar]
- Al-Jaloudy, M.A. FAO Country Pasture Profile for Jordan. Available online: http://www.fao.org/ag/AGP/agpc/doc/Counprof/Jordan/Jordan.htm (accessed on 15 November 2019).
- Kasapligil, B. Report to the Government of the Hashemite Kingdom of Jordan on an Ecological Survey of the Vegetation in Relation to Forestry and Grazing; UNESCO/FAO: Rome, Italy, 1956. [Google Scholar]
- Danin, A. Desert rocks as plant refugia in the Near East. Bot. Rev. 1999, 65, 93–170. [Google Scholar] [CrossRef]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective; Pearson Education, Inc.: Glenview, IL, USA, 2016. [Google Scholar]
- Homer, C.; Dewitz, J.; Jin, S.; Xian, G.; Costello, C.; Danielson, P.; Gass, L.; Funk, M.; Wickham, J.; Stehman, S.; et al. Conterminous United States land cover change patterns 2001–2016 from the 2016 national land cover database. ISPRS J. Photogramm. Remote Sens. 2020, 162, 184–199. [Google Scholar] [CrossRef]
- Abbas, A.M.; Al-Kahtani, M.A.; Alfaifi, M.Y.; Elbehairi, S.E.I.; Badry, M.O. Floristic diversity and phytogeography of Jabal Fayfa: A subtropical dry zone, south-west Saudi Arabia. Diversity 2020, 12, 345. [Google Scholar] [CrossRef]
- Zheng, J.; Fu, H.; Li, W.; Wu, W.; Zhao, Y.; Dong, R.; Yu, L. Cross-regional oil palm tree counting and detection via a multi-level attention domain adaptation network. ISPRS J. Photogramm. Remote Sens. 2020, 167, 154–177. [Google Scholar] [CrossRef]
- Gibbons, J.W.; Winne, C.T.; Scott, D.E.; Willson, J.D.; Glaudas, X.; Andrews, K.M.; Todd, B.D.; Fedewa, L.A.; Wilkinson, L.; Tsaliagos, R.N.; et al. Remarkable amphibian biomass and abundance in an isolated wetland: Implications for wetland conservation. Conserv. Biol. 2006, 20, 1457–1465. [Google Scholar] [CrossRef]
- Al-Bakri, J.T.; Salahat, M.; Suleiman, A.; Suifan, M.; Hamdan, M.R.; Khresat, S.; Kandakji, T. Impact of climate and land use changes on water and food security in Jordan: Implications for transcending “The Tragedy of the Commons”. Sustainability 2013, 5, 724–748. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Gad, S.; Kusky, T.M. Lithological mapping in the Eastern Desert of Egypt, the Barramiya area, using Landsat thematic mapper (TM). J. Afr. Earth Sci. 2006, 44, 96–202. [Google Scholar] [CrossRef]
- Shrestha, D.P.; Zinck, J.A. Land use classification in mountainous areas: Integration of image processing, digital elevation data and field knowledge (application to Nepal). Int. J. Appl. Earth Obs. Geoinf. 2001, 3, 78–85. [Google Scholar] [CrossRef]
- Franceschini, G.; de Leo, E.; Muchoney, D. Jordan—Land Cover Atlas; FAO: Rome, Italy, 2019. [Google Scholar]
- Ministry of Agriculture. The Soils of Jordan: Level 1 (Reconnaissance Survey), Report of the National Soil Map and Land Use Project; MOA: Amman, Jordan, 1993; Volume 1. [Google Scholar]
- Mitchard, E. Standard Operating Procedure Manual, Collection of Ground Data Points for Calibration and Validation of a Landcover Map. 2017. [Google Scholar]
- Taifour, H.; El-Oqlah, A. Plants of Jordan—An Annotated Checklist; Kew Royal Botanic Gardens: London, UK, 2017. [Google Scholar]
- Bray, J.R.; Curtis, J.T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349. [Google Scholar] [CrossRef]
- Ricotta, C.; Podani, J. On some properties of the Bray-Curtis dissimilarity and their ecological meaning. Ecol. Complex. 2017, 31, 201–205. [Google Scholar] [CrossRef]
- Murtagh, F.; Legendre, P. Ward’s hierarchical agglomerative clustering method: Which algorithms implement Ward’s criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef] [Green Version]
- Masud, M.A.; Huang, J.Z.; Wei, C.; Wang, J.; Khan, I.; Zhong, M. I-nice: A new approach for identifying the number of clusters and initial cluster centres. Inf. 2018, 466, 129–151. [Google Scholar] [CrossRef]
- Thorndike, R.L. Who belongs in the family? Psychometrika 1953, 18, 267–276. [Google Scholar] [CrossRef]
- Dapporto, L.; Ramazzotti, M.; Fattorini, S.; Talavera, G.; Vila, R.; Dennis, R.L.H. Recluster: An unbiased clustering procedure for beta-diversity turnover. Ecography 2013, 36, 1070–1075. [Google Scholar] [CrossRef] [Green Version]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; O’hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Vegan: Community Ecology Package. R Package Version 2.4-4. 2017. Available online: https://CRAN.R-project.org/package=vegan (accessed on 15 November 2019).
- Dufrêne, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monog. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- Tryjanowski, P.; Morelli, F. Case study 3. Using indicator species analysis IndVal to identify bird indicators of HNV in farmlands from Western Poland. In Birds as Useful Indicators of High Nature Value Farmlands: Using Species Distribution Models as a Tool for Monitoring the Health of Agro-ecosystems; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 107–114. [Google Scholar]
- Wolski, G.; Kruk, A. Determination of plant communities based on bryophytes: The combined use of Kohonen artificial neural network and indicator species analysis. Ecol. Indic. 2020, 113, 106–160. [Google Scholar] [CrossRef]
- Della Rocca, F.; Stefanelli, S.; Pasquaretta, C.; Campanaro, A.; Bogliani, G. Effect of deadwood management on saproxylic beetle richness in the floodplain forests of northern Italy: Some measures for deadwood sustainable use. J. Insect Conserv. 2014, 18, 121–136. [Google Scholar] [CrossRef]
- de Caceres, M.; Jansen, F.; Indicspecies: Relationship between species and groups of sites. R Package Version 1.7.5. 2016. Available online: https://CRAN.Rproject.org/package=indicspecies (accessed on 15 November 2019).
- Rodwell, J.; Dring, J.; Pignatti, S.; Schaminé, J.; Mucina, L. Scientific Background to the EUNIS Habitat Classification: Phytosociological Relationships of EUNIS Habitats; Unit of Vegetation Science—Lancaster University & European Topic Centre on Nature Conservation: Paris, France, 1998. [Google Scholar]
- Congalton, R.G. Accuracy assessment of remotely sensed data: Future needs and directions. In Proceedings of Pecora 12 Land Information from Space-Based Systems, Sioux Falls, SD, USA, 24–26 August 1993; ASPRS, Bethesda: Rockville, MD, USA, 1994; Volume 12, pp. 383–388. [Google Scholar]
- Rwanga, S.S.; Ndambuki, J.M. Accuracy assessment of land use/land cover classification using remote sensing and GIS. Int. J. Geosci. 2017, 8, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Congalton, R.G.; Oderwald, R.G.; Mead, R.A. Assessing Landsat classification accuracy using discrete multivariate statistical techniques. Photogramm. Eng. Remote Sens. 1983, 49, 1671–1678. [Google Scholar]
- Pontius, R.G., Jr. Quantification error versus location error in comparison of categorical maps. Photogramm. Eng. Remote Sens. 2000, 66, 1011–1016. [Google Scholar]
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef] [Green Version]
- Zohary, M. Plant Life of Palestine (Israel and Jordan); The Ronald Press Company: New York, NY, USA, 1962. [Google Scholar]
- Danin, A. Near East ecosystems, plant diversity. In Encyclopedia of Biodiversity; Levin, S., Ed.; Academic Press: New York, NY, USA, 2001. [Google Scholar]
- Danin, A. Man and the natural environment. In The Archaeology of Society in the Holy Land; Levy, T.E., Ed.; Leicester University Press: London, UK, 1995. [Google Scholar]
- Ababsa, M. Atlas of Jordan: History, Territories and Society; Presses de l’ifpo: Beyrouth, Lebanon, 2013. [Google Scholar]
- Zohary, M. A vegetation map of Western Palestine. J. Ecol. 1947, 34, 1–19. [Google Scholar] [CrossRef]
- Atkinson, K.; Beaumont, P. The forests of Jordan. Econ. Bot. 1971, 25, 305–311. [Google Scholar] [CrossRef]
- Liphschitz, N.; Biger, G. Ancient dominance of the Quercus calliprinos—Pistacia palaestina association in Mediterranean Israel. J. Veg. Sci. 1990, 1, 67–70. [Google Scholar] [CrossRef]
- Soto-Berelov, M. Vegetation Modeling of Holocene Landscapes in the Southern Levant. Ph.D. Thesis, Arizona State University, Tempe, AZ, USA, 2011. [Google Scholar]
Land Cover Class | Total Km2 | Percentage | Total Percentage | |
---|---|---|---|---|
Forests | Dense Forest | 398.2 | 0.45 | 0.89 |
Sparse Forest | 394.3 | 0.44 | ||
Highly productive rangelands | Shrubland/Steppe | 1484.0 | 1.66 | 14.1 |
Desert Scrubs | 3023.8 | 3.38 | ||
Wadi Beds | 8098.0 | 9.06 | ||
Arable lands | Rainfed Agriculture | 3532.4 | 3.95 | 5.39 |
Irrigated Agriculture | 1289.8 | 1.44 | ||
Dry lands | Sand | 5114.6 | 5.72 | 77.9 |
Wadi Deposits | 15981.4 | 17.89 | ||
Dry Mudflat | 1667.4 | 1.87 | ||
Wet Mudflat | 342.6 | 0.38 | ||
Xerophytic Slope | 1009.4 | 1.13 | ||
Consolidated Basalt Rocks | 691.0 | 0.77 | ||
Disintegrated Basalt Rocks | 7261.7 | 8.13 | ||
Chert Plain | 33744.4 | 37.77 | ||
Rocky Mountain | 3788.6 | 4.24 | ||
Others | Water Body | 540.7 | 0.62 | 1.72 |
Urban Area | 980.0 | 1.1 |
Vegetation Group | Vegetation Type |
---|---|
Mesic group | Deciduous Oak Forest |
Evergreen Oak Forest | |
Pine Forest | |
Garrigue and Batha | |
Xeric group | Juniper Forest |
Acacia Woodland | |
Steppe Vegetation | |
Sand Dune Vegetation | |
Sandy Gravel Hammada Vegetation with Hammada scoparia | |
Sandy Gravel Hammada Vegetation with Vachellia gerrardii and Artemisia judaica | |
Granite and Sandstone Shrubland | |
Mudflat Vegetation | |
Runoff Hammada Vegetation | |
Riparian Vegetation | |
Saline Vegetation | |
Thermophilous Vegetation |
Vegetation Type | Total Km2 | Percentage (%) |
---|---|---|
Gravel Hammada Vegetation | 45871.9 | 51.34 |
Sand Dune Vegetation | 1760.7 | 1.97 |
Steppe Vegetation | 11293.4 | 12.24 |
Granite and Sandstone Shrubland | 4079.7 | 4.57 |
Acacia Woodland | 1453.7 | 1.63 |
Sandy Gravel Hammada Vegetation with Hammada scoparia | 2408.5 | 2.70 |
Sandy Gravel Hammada Vegetation with Vachellia gerrardii and Artemisia judaica | 2909.8 | 3.26 |
Garrigue and Batha | 4815.2 | 5.39 |
Runoff Hammada Vegetation | 11677.4 | 13.07 |
Mudflat Vegetation | 893.1 | 2.00 |
Saline Vegetation | 392.7 | 0.44 |
Juniper Forest | 191.7 | 0.21 |
Deciduous Oak Forest | 156.3 | 0.17 |
Anthropogenic Pine Forest | 116.3 | 0.13 |
Riparian Vegetation | 71.9 | 0.08 |
Thermophilous Vegetation | 534.3 | 0.60 |
Pine Forest | 18.3 | 0.02 |
Evergreen Oak Forest | 156.7 | 0.18 |
Bio-Geographic Region | Vegetation Type |
---|---|
Mediterranean | Deciduous Oak Forest |
Evergreen Oak Forest | |
Pine Forest | |
Garrigue and Batha | |
Juniper Forest | |
Riparian Vegetation | |
Irano–Turanian | Steppe Vegetation |
Riparian Vegetation | |
Saharo–Sindian–Arabian regional subzone | Mudflat Vegetation |
Gravel Hammada Vegetation | |
Runoff Hammada Vegetation | |
Sandy Gravel Hammada Vegetation with Hammada scoparia | |
Saharo–Sindian–Nubo-Sindian subzone | Mudflat Vegetation |
Granite and Sandstone Shrubland | |
Riparian Vegetation | |
Thermophilous Vegetation | |
Saline Vegetation | |
Sand Dune Vegetation | |
Acacia Woodland | |
Sandy Gravel Hammada Vegetation with Vachellia gerrardii and Artemisia judaica |
Map | Accuracy Assessment (%) | Overall Accuracy | Kappa Coefficient | Classification Accuracy |
---|---|---|---|---|
Vegetation map produced by Kasapligil (1956) | 47 | Low | 0.38 | Weak |
Vegetation map produced by Al-Eisawi (1996) | 50 | Moderate | 0.43 | Weak |
Vegetation map produced by Danin (1999a) | 59 | Moderate | 0.47 | Weak |
Vegetation map produced by Albert et al. (2003) | 61 | Moderate | 0.55 | Weak |
Land cover/land use map | 91 | High | 0.90 | Very good |
Current vegetation map | 95 | High | 0.94 | Very good |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taifour, H.; Dexter, K.G.; Al-Bakri, J.; Miller, A.; Neale, S. A State-of-the-Art Vegetation Map for Jordan: A New Tool for Conservation in a Biodiverse Country. Conservation 2022, 2, 174-194. https://doi.org/10.3390/conservation2010012
Taifour H, Dexter KG, Al-Bakri J, Miller A, Neale S. A State-of-the-Art Vegetation Map for Jordan: A New Tool for Conservation in a Biodiverse Country. Conservation. 2022; 2(1):174-194. https://doi.org/10.3390/conservation2010012
Chicago/Turabian StyleTaifour, Hatem, Kyle G. Dexter, Jawad Al-Bakri, Anthony Miller, and Sophie Neale. 2022. "A State-of-the-Art Vegetation Map for Jordan: A New Tool for Conservation in a Biodiverse Country" Conservation 2, no. 1: 174-194. https://doi.org/10.3390/conservation2010012
APA StyleTaifour, H., Dexter, K. G., Al-Bakri, J., Miller, A., & Neale, S. (2022). A State-of-the-Art Vegetation Map for Jordan: A New Tool for Conservation in a Biodiverse Country. Conservation, 2(1), 174-194. https://doi.org/10.3390/conservation2010012