The Bioremediation Potential of Perennial Ryegrass (Lolium perenne L.) in the Presence of Cadmium or Copper
Abstract
1. Introduction
2. Results
2.1. Inhibition of Root and Shoot Growth
2.2. Fresh Mass (FM), Dry Mass (DM) and Water Content (WC) of Roots and Shoots
2.3. Photosynthetic Pigments and Protein Thiol (-SH) Group Content
2.4. Bioaccumulation of Cadmium and Copper and Their Translocation in Plants
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Experimental Design
4.2. Determination of Physiological and Biochemical Parameters
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ikeda, M.; Zhang, Z.-W.; Shimbo, S.; Watanabe, T.; Nakatsuka, H.; Moon, C.-S.; Matsuda-Inoguchi, N.; Higashikawa, K. Urban population exposure to lead and cadmium in east and south-east Asia. Sci. Total Environ. 2000, 249, 373–384. [Google Scholar] [CrossRef]
- Kuklová, M.; Hniličková, H.; Hnilička, F.; Pivková, I.; Kukla, J. Impact of expressway on physiology of plants and accumulation of risk elements in forest ecosystems. Plant Soil Environ. 2019, 65, 46–53. [Google Scholar] [CrossRef]
- Mbarki, S.; Talbi, O.; Skalicky, M.; Vachova, P.; Hejnak, V.; Hnilicka, F.; Al-ashkar, I.; Abdelly, C.; Rahman, M.A.; El Sabagh, A.; et al. Comparison of grain sorghum and alfalfa for providing of sandy soil with different soil amendments and salt stress. Front. Environ. Sci. 2022, 10, 1022629. [Google Scholar] [CrossRef]
- Lhotská, M.; Zemanová, V.; Pavlík, M.; Pavlíková, D.; Hnilička, F.; Popov, M. Leaf fitness and stress response after the application of contaminated soil dust particulate matter. Sci. Rep. 2022, 12, 10046. [Google Scholar] [CrossRef]
- Dos Santos Silva, J.V.; Furtado de Almeida, A.-A.; Ahnert, D.; da Silva, N.M.; Souza dos Santos, M.L.; de Almeida Santos, N.; Baligar, V.C. Foliar applied cuprous oxide fungicide induces physiological, biochemical and molecular changes in cacao leaves. Sci. Hortic. 2020, 265, 109224. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Cai, K.; Yu, Y.; Zhang, M.; Kim, K. Concentration, source, and total health risks of cadmium in multiple media in densely populated areas, China. Int. J. Environ. Res. Public Health 2019, 16, 2269. [Google Scholar] [CrossRef]
- Nishijo, M.; Nakagawa, H.; Suwazono, Y.; Nogawa, K.; Kido, T. Causes of death in patients with Itai-itai disease suffering from severe chronic cadmium poisoning: A nested case-control analysis of a follow-up study in Japan. BMJ Open 2017, 13, e015694. [Google Scholar] [CrossRef] [PubMed]
- Palutoglu, M.; Akgul, B.; Suyarko, V.; Yakovenko, M.; Kryuchenko, N.; Sasmaz, A. Phytoremediation of cadmium by native plants grown on mining soil. Bull. Environ. Contam. Toxicol. 2017, 100, 293–297. [Google Scholar] [CrossRef]
- Baran, A.; Czech, T.; Wieczorek, J. Chemical properties and toxicity of soils contaminated by mining activity. Ecotoxicology 2014, 23, 1234–1244. [Google Scholar] [CrossRef]
- Covre, W.P.; Ramos, S.J.; da Silveira Pereira, W.V.; de Souza, E.S.; Martins, G.C.; Teixeira, O.M.M.; do Amarante, C.B.; Dias, Y.N.; Fernandes, A.R. Impact of copper mining wastes in the Amazon: Properties and risks to environment and human health. J. Hazard. Mater. 2022, 421, 126688. [Google Scholar] [CrossRef]
- Hadjipanagiotou, C.; Christou, A.; Zissimos, A.M.; Chatzitheodoridis, E.; Varnavas, S. Contamination of stream waters, sediments, and agricultural soil in the surroundings of an abandoned copper mine by potentially toxic elements and associated environmental and potential human health–derived risks: A case study from Agrokipia, Cyprus. Environ. Sci. Pollut. Res. 2020, 27, 41279–41298. [Google Scholar] [CrossRef]
- Hutchinson, T.C.; Whitby, L.M. Heavy-metal pollution in the Sudbury mining and smelting region of Canada, I. Soil and vegetation contamination by nickel, copper, and other metals. Environ. Conserv. 2009, 1, 123–132. [Google Scholar] [CrossRef]
- Mackie, K.A.; Müller, T.; Kandeler, E. Remediation of copper in vineyards—A mini review. Environ. Pollut. 2012, 167, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Ballabio, C.; Panagos, P.; Lugato, E.; Huang, J.H.; Orgiazzi, A.; Jones, A.; Fernández-Ugalde, O.; Borrelli, P.; Montanarella, L. Copper distribution in European topsoils: An assessment based on LUCAS soil survey. Sci. Total Environ. 2018, 636, 282–298. [Google Scholar] [CrossRef] [PubMed]
- De Bernardi, A.; Marini, E.; Casucci, C.; Tiano, L.; Marcheggiani, F.; Vischetti, C. Copper monitoring in vineyard soils of central Italy subjected to three antifungal treatments, and effects of sub-lethal copper doses on the earthworm Eisenia fetida. Toxics 2022, 10, 310. [Google Scholar] [CrossRef] [PubMed]
- Ortega, P.; Sánchez, E.; Gil, E.; Matamoros, V. Use of cover crops in vineyards to prevent groundwater pollution by copper and organic fungicides. Soil column studies. Chemosphere 2022, 303, 134975. [Google Scholar] [CrossRef]
- Ali, B.; Qian, P.; Jin, R.; Khan, M.; Aziz, R.; Tian, T.; Zhou, W. Physiological and ultra-structural changes in Brassica napus seedlings induced by cadmium stress. Biol. Plant. 2014, 58, 131–138. [Google Scholar] [CrossRef]
- Cosio, C.; Martinoia, E.; Keller, C. Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol. 2004, 134, 716–725. [Google Scholar] [CrossRef]
- Zou, J.; Yue, J.; Jiang, W.; Liu, D. Effects of cadmium stress on root tip cells and some physiological indexes in Allium cepa var. Agrogarum L. Acta Biol. Crac. Ser. Bot. 2012, 54, 129–141. [Google Scholar] [CrossRef]
- Chaoui, A.; Mazhoudi, S.; Ghorbal, M.H.; Ferjani, E.E. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci. 1997, 127, 139–147. [Google Scholar] [CrossRef]
- di Toppi, S.L.; Gabbrielli, R. Response to cadmium in higher plants. Environ. Exp. Bot. 1999, 41, 105–130. [Google Scholar] [CrossRef]
- Singh, S.; Eapen, S. Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere 2006, 62, 233–246. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, J.J.; Wang, J.; Wu, H.; Ou, Y.; Li, B. Transcriptional, physiological and cytological analysis validated the roles of some key genes linked Cd stress in Salix matsudana Koidz. Environ. Exp. Bot. 2017, 134, 116–129. [Google Scholar] [CrossRef]
- Jia, L.; Liu, Z.; Chen, W.; Ye, Y.; Yu, S.; He, X. Hormesis effects induced by cadmium on growth and photosynthetic performance in a hyperaccumulator. Lonicera japonica Thunb. J. Plant Growth Regul. 2015, 34, 13–21. [Google Scholar] [CrossRef]
- Tang, Y.; Xie, Y.; Sun, G.; Tan, H.; Lin, L.; Li, H.; Liao, M.; Wang, Z.; Lv, X.; Liang, D.; et al. Cadmium-accumulator straw application alleviates cadmium stress of lettuce (Lactuca sativa) by promoting photosynthetic activity and antioxidative enzyme activities. Environ. Sci. Pollut. Res. 2018, 25, 30671–30679. [Google Scholar] [CrossRef]
- Schützendübel, A.; Schwanz, P.; Teichmann, T.; Gross, K.; Langenfeld-Heyser, R.; Godbold, D.L.; Polle, A. Cadmium-induced changes in antioxidative systems, H2O2 content and differentiation in pine (Pinus sylvestris) roots. Plant Physiol. 2001, 127, 887–892. [Google Scholar] [CrossRef]
- Riziwan, M.; Ali, S.; Abbas, T.; Zia-ur-Rehman, M.; Hannan, F.; Keller, C.; Al-Wabel, M.I.; Ok, Y.S. Cadmium minimization in wheat: A critical review. Ecotoxicol. Environ. Saf. 2016, 130, 43–53. [Google Scholar] [CrossRef]
- Thakare, M.; Sarma, H.; Datar, S.; Roy, A.; Pawar, P.; Gupta, K.; Pandit, S.; Prasad, R. Understanding the holistic approach to plant-microbe remediation technologies for removing heavy metals and radionuclides from soil. Curr. Res. Biotechnol. 2021, 3, 84–98. [Google Scholar] [CrossRef]
- Brandt, K.K.; Holm, P.E.; Noybroe, O. Evidence for bioavailable copper-dissolved organic matter complexes and transiently increased copper bioavailability in manure-amended soils as determined by bioluminescent bacterial biosensors. Environ. Sci. Technol. 2008, 42, 3102–3108. [Google Scholar] [CrossRef]
- Vishnu, D.; Dhandapani, B.; Kannappan Panchamoorthy, G.; Vo, D.-V.N.; Ramakrishnan, S.R. Comparison of surface-engineered superparamagnetic nanosorbents with low-cost adsorbents of cellulose, zeolites and biochar for the removal of organic and inorganic pollutants: A review. Environ. Chem. Lett. 2021, 19, 3181–3208. [Google Scholar] [CrossRef]
- Kumar, B.L.; Gopal, D.V.R.S. Effective role of indigenous microorganisms for sustainable environment. 3Biotech 2015, 5, 867–876. [Google Scholar] [CrossRef] [PubMed]
- Abumaizar, R.J.; Smith, E.H. Heavy metal contaminants removal by soil washing. J. Hazard. Mater. 1999, 70, 71–86. [Google Scholar] [CrossRef]
- Jadia, C.D.; Fulekar, M.H. Phytoremediation of heavy metals: Recent techniques. Afr. J. Biotechnol. 2009, 8, 921–928. [Google Scholar]
- Reeves, R.D.; Baker, A.J.M.; Jaffré, T.; Erskine, P.D.; Echevarria, G.; van der Ent, A. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol. 2017, 218, 397–400. [Google Scholar] [CrossRef]
- Masarovičová, E.; Kráľová, K.; Kummerová, M. Principles of classification of medicinal plants as hyperaccumulators or excluders. Acta Physiol. Plant 2010, 32, 823–829. [Google Scholar] [CrossRef]
- Patra, D.K.; Acharya, S.; Pradhan, C.; Patra, H.K. Poaceae plants as potential phytoremediators of heavy metals and eco-restoration in contaminated mining sites. Environ. Technol. Innov. 2021, 21, 101293. [Google Scholar] [CrossRef]
- Brooks, R.R. (Ed.) Plants That Hyperaccumulate Heavy Metals; CAB International: Wallingford, UK, 1998; 384p. [Google Scholar]
- Furini, E. (Ed.) Plants and Heavy Metals; SpringerBriefs in Biometals; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Baker, A.J.M.; Brooks, R.R. Terrestrial higher plants which hyperaccumulate metallic elements—A review of their distribution, ecology and phytochemistry. Biorecovery 1989, 1, 81–126. [Google Scholar]
- Jaffré, T.; Reeves, R.D.; Baker, A.J.M.; Schat, H.; van der Ent, A. The discovery of nickel hyperaccumulation in the New Caledonian tree Pycnandra acuminate 40 years on: An introduction to a Virtual Issue. New Phytol. 2018, 218, 397–400. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Zhu, L.; Wang, J. Combined treatment of contaminated soil with a bacterial Stenotrophomonas strain DXZ9 and ryegrass (Lolium perenne) enhances DDT and DDE remediation. Environ. Sci. Pollut. Res. 2018, 25, 31895–31905. [Google Scholar] [CrossRef]
- Vigliotta, G.; Matrella, S.; Cicatelli, A.; Guarino, F.; Castiglione, S. Effects of heavy metals and chelants on phytoremediation capacity and on rhizobacterial communities of maize. J. Environ. Manage. 2016, 179, 93–102. [Google Scholar] [CrossRef]
- Gawryluk, A.; Wylupek, T.; Wolanski, P. Assessment of Cu, Pb and Zn content in selected species of grasses and in the soil of the roadside embankment. Ecol. Evol. 2020, 10, 9841–9852. [Google Scholar] [CrossRef]
- Khalid, S.; Shahid, M.; Niazi, N.K.; Murtaza, B.; Bibi, I.; Dumat, C. A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 2017, 182, 247–268. [Google Scholar] [CrossRef]
- Mori, A. Farmyard manure application and associated root proliferation improve the net greenhouse gas balance of Italian ryegrass—Maize double-cropping field in Nasu, Japan. Sci. Total Environ. 2021, 792, 148332. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Li, R.; Wu, W.; Abdelrahman, H.; Wang, J.; Al-Solaimani, S.G.; Antoniadis, V.; Rinklebe, J.; Lee, S.S.; et al. Mitigation of the mobilization and accumulation of toxic metal(loid)s in ryegrass using sodium sulfide. Sci. Total Environ. 2024, 909, 168387. [Google Scholar] [CrossRef] [PubMed]
- Mahar, A.; Wang, P.; Ali, A.; Awasthi, M.K.; Lahori, A.H.; Wang, Q.; Li, R.; Zhang, Z. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotox. Environ. Saf. 2016, 126, 111–121. [Google Scholar] [CrossRef]
- Salama, A.K.; Osman, K.A.; Gouda, N.A.-R. Remediation of lead and cadmium-contaminated soils. Int. J. Phytoremediat. 2016, 18, 364–367. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, W.; Geng, Y.; Ren, X.; Wang, Z.; Cao, S. The response to the combine pollution of cadmium, zinc and lead by the antioxidant activity of Lolium perenne L. J. Agro-Environ. Sci. 2018, 37, 1117–1124. [Google Scholar]
- Huo, W.; Zhao, Z.; Wang, L.; Zou, R.; Fan, H. Study of the effects of intercropping different hyperaccumulator and accumulator plants on Cd uptake and transportation by maize. Earth Sci. Front. 2019, 26, 118–127. [Google Scholar] [CrossRef]
- Broadhurst, C.L.; Chaney, R.L. Growth and metal accumulation of an Alyssum murale nickel hyperaccumulator ecotype co-cropped with Alyssum montanum and perennial ryegrass in serpentine. Soil. Front. Plant Sci. 2016, 7, 451. [Google Scholar] [CrossRef]
- Wang, K.; Huang, H.; Zhu, Z.; Li, T.; He, Z.; Yang, X.; Alva, A. Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis). Int. J. Phytoremediat. 2013, 15, 283–298. [Google Scholar] [CrossRef]
- Jarvis, S.C.; Jones, L.H.P. Uptake and transport of cadmium by perennial ryegrass from flowing solution culture with a constant concentration of cadmium. Plant Soil 1978, 49, 333–342. [Google Scholar] [CrossRef]
- Xie, H.; Ma, Y.; Wang, Y.; Sun, F.; Liu, R.; Liu, X.; Xu, Y. Biological response and phytoremediation of perennial ryegrass to halogenated flame retardants and Cd in contaminated soils. J. Environ. Chem. Eng. 2021, 9, 106526. [Google Scholar] [CrossRef]
- Faizan, M.; Alam, P.; Hussain, A.; Karabulut, F.; Tonny, S.H.; Cheng, S.H.; Yusuf, M.; Adil, M.F.; Shear, S.; Alomrani, S.O.; et al. Phytochelatins: Key regulator against heavy metal toxicity in plants. Plant Stress 2024, 11, 100355. [Google Scholar] [CrossRef]
- Eggink, L.L.; LoBrutto, R.; Brune, D.C.; Brusslan, J.; Yamasato, A.; Tanaka, A.; Hoober, J.K. Synthesis of chlorophyll b: Localization of chlorophyllide a oxygenase and discovery of a stable radical in the catalytic subunit. BMC Plant Biol. 2004, 4, 5. [Google Scholar] [CrossRef]
- Ke, T.; Guo, G.; Liu, J.; Zhang, C.; Tao, Y.; Wang, P.; Xu, Y.; Chen, L. Improvement of the Cu and Cd phytostabilization efficiency of perennial ryegrass through the inoculation of three metal-resistant PGPR strains. Environ. Pollut. 2021, 271, 116314. [Google Scholar] [CrossRef]
- Panagos, P.; Van Liedekerke, M.; Yigini, Y.; Montanarella, L. Contaminated sites in Europe: Review of the current situation based on data collected through a European network. J. Environ. Public Health 2013, 2013, 158764. [Google Scholar] [CrossRef]
- Smith, S.R. Effect of soil pH on availability to crops of metals in sewage sludge-treated soils. I. Nickel, copper and zinc uptake and toxicity to ryegrass. Environ. Pollut. 1994, 85, 321–327. [Google Scholar] [CrossRef]
- De Conti, L.; Cesco, S.; Mimmo, T.; Pii, Y.; Valentinuzzi, F.; Melo, G.W.B.; Ceretta, C.A.; Trentin, E.; Marques, A.C.R.; Brunetto, G. Iron fertilization to enhance tolerance mechanisms to copper toxicity of ryegrass plants used as cover crop in vineyards. Chemosphere 2020, 243, 125928. [Google Scholar] [CrossRef]
- Nie, M.; Wu, C.; Tang, Y.; Shi, G.; Wang, X.; Hu, C.; Cao, J.; Zhao, X. Selenium and Bacillus proteolyticus SES synergistically enhanced ryegrass to remediate Cu–Cd–Cr contaminated soil. Environ. Pollut. 2023, 323, 121272. [Google Scholar] [CrossRef] [PubMed]
- Renoux, A.Y.; Rochelau, S.; Sarrazin, M.; Sunahara, G.I.; Blais, J.-F. Assessment of a sewage sludge treatment on cadmium, copper and zinc bioavailability in barley, ryegrass and earthworms. Environ. Pollut. 2007, 145, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Dradrach, A.; Karczewka, A.; Bogacz, A.; Kawałko, D.; Pruchniewicz, D. Accumulation of potentially toxic metals in ryegrass (Lolium perenne, L.) and other components of lawn vegetation in variously contaminated sites of urban areas. Sustainability 2024, 16, 8040. [Google Scholar] [CrossRef]
- Deng, J.; Zhou, H.; Jiang, S.; Wang, Z.; Li, S.; Wu, T.; Li, M.; Zhan, Y. Remediation of Cd and Cu compound contaminated woil with ryegrass (Lolium perenne L.) combined with electrokinetics. Sep. Sci. Technol. 2025, 60, 302–315. [Google Scholar] [CrossRef]
- Zhou, H.; Deng, J.; Ye, M.; Jiang, S.; Li, S.; Wu, T.; Li, M.; Zhan, Y. Ryegrass (Lolium perenne L.) assisted electrokinetics coupled with permeable reactive barrier for the remediation of cadmium and copper compound contaminated soil. J. Environ. Chem. Eng. 2024, 12, 113281. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, W.; Ao, S. The regulating effects and mechanism of biochar and maiganite on copper and camium in a polluted soil-Lolium perenne L. system. PeerJ 2021, 9, e11921. [Google Scholar] [CrossRef]
- Sarathchandra, S.S.; Rengel, Z.; Solaiman, Z.M. Remediation of heavy metal-contaminated iron ore tailings by applying compost and growing perennial ryegrass (Lolium perenne L.). Chemosphere 2022, 288, 132573. [Google Scholar] [CrossRef] [PubMed]
- Dresler, S.; Hanaka, A.; Bednarek, W.; Maksymiec, W. Accumulation of low-molecular-weight organic acids in roots and leaf segments of Zea mays plants treated with cadmium and copper. Acta Physiol. Plant. 2014, 36, 1565–1575. [Google Scholar] [CrossRef]
- Usman, K.; Al-Ghouti, M.A.; Abu-Dieyeh, M.H. The assessment of cadmium, chromium, copper, and nickel tolerance and bioaccumulation by shrub plant Tetraena qataranse. Sci. Rep. 2019, 9, 5658. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Habibul, N.; Hu, Y.-Y.; Meng, F.-L.; Zhang, X.; Sheng, G.-P. Mixture toxicity and uptake of 1-butyl-3methylimidazolium bromide and cadmium co-contaminants in water by perennial ryegrass (Lolium perenne L.). J. Hazard. Mater. 2020, 386, 121972. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Prasad, M.N.V.; Fujita, M. Cadmium Toxicity and Tolerance in Plants: From Physiology to Remediation; Academic Press: London, UK; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Redondo-Gómez, S.; Mateos-Naranjo, E.; Andrades-Moreno, L. Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum. J. Hazard. Mater. 2010, 184, 299–307. [Google Scholar] [CrossRef]
- OECD. Guidelines for the testing of chemicals. In Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test, Test 208; OECD: Paris, France, 2006. [Google Scholar]
- US EPA. Ecological Effects Test Guidelines, 712-C-011. OCSPP 850.4150: Vegetative Vigor; U.S. Environmental Protection Agency: Washington, DC, USA, 2012.
- STN 83 8303; Skúšanie Nebezpečných Vlastností Odpadov. Ekotoxicita. Skúšky Akútnej Toxicity na Vodných Organizmoch a Skúšky Inhibície Rastu Rias a Vyšších Kultúrnych Rastlín. [Testing of Dangerous Properties of Wastes. Ecotoxicity. Acute Toxicity Tests on Aquatic Organisms and Growth Inhibition Tests of Algae and Higher Cultivated Plants]. Office for Standardization, Metrology and Testing of the Slovak Republic: Bratislava, Slovakia, 1999. (In Slovak)
- Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants Without Soil; Circular 347; California Agricultural Experiment Station: Berkeley, CA, USA, 1950; p. 32. [Google Scholar]
- Molnárová, M.; Fargašová, A. Relationship between various physiological and biochemical parameters activated by cadmium in Sinapis alba L. and Hordeum vulgare L. Ecol. Eng. 2012, 49, 65–72. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–90. [Google Scholar] [CrossRef]
- Viner, R.I.; Krainev, A.G.; Williams, T.D.; Schoneich, C.; Bigelow, D.J. Identification of oxidation sensitive peptides within the cytoplasmic domain of the sarcoplasmic reticulum Ca2+-ATPase. Biochemistry 1997, 36, 7706–7716. [Google Scholar] [CrossRef]
- Drazic, G.; Mihailovic, N. Modification of cadmium toxicity in soybean seedlings by salicylic acid. Plant Sci. 2005, 168, 511–517. [Google Scholar] [CrossRef]
- Istran. Determination of Zn, Cd, Pb and Cu in Clear as Well as in Turbid Samples; Application list No. 67, manual guide v.2009-10 for EcaFlow 150GLP; Istran: Bratislava, Slovak Republic, 2009. [Google Scholar]



| Lolium perenne | IC50 (mg/L) (LCI-UCI) | |
|---|---|---|
| Root | Shoot | |
| Cd | 2793 (2609–2991) | 708 (661–758) |
| Cu | 807 (757–860) | 0.43 (0.35–0.53) |
| c (µg Cd/L) | c (Roots) (µg/g DM) | BAF-Roots | c (Shoots) (µg/g DM) | BAF-Shoots | TF |
|---|---|---|---|---|---|
| 0 | nd | - | nd | - | - |
| 49.2 | 3035 ± 202 | 61.687 | 693 ± 244 | 14.085 | 0.228 |
| 492.3 | 33,322 ± 27,947 | 67.686 | 165 ± 30 | 0.335 | 0.005 |
| 4923.0 | 16,222 ± 6483 | 3.295 | 2534 ± 2496 | 0.515 | 0.156 |
| c (µg Cu/L) | |||||
| 0 | 1649 ± 110 | - | 30.2 ± 4.0 | - | - |
| 37.29 | 1,078,011 ± 1,524,538 | 28,908.850 | 381,532 ± 1467 | 10,231.483 | 0.353 |
| 372.9 | 14,759 ± 8404 | 39.579 | 414 ± 322 | 1.110 | 0.029 |
| 3729.3 | 3504 ± 472 | 0.940 | 62.0 ± 0.9 | 0.017 | 0.018 |
| (a) | |||||||||||||
| Cd | Cd Accumulation | Growth | Mass of Root | Mass of Shoot | PP | ||||||||
| Root | Shoot | Root | Shoot | FM | DM | WC | FM | DM | WC | chl a | chl b | car | |
| Cd accum.-shoot | 0.08 | ||||||||||||
| Growth-root | −0.61 | −0.52 | |||||||||||
| Growth-shoot | 0.14 | −0.71 | −0.49 | ||||||||||
| mass of root-FM | −0.46 | 0.44 | 0.78 | −0.80 | |||||||||
| mass of root-DM | −0.73 | 0.29 | 0.86 * | −0.76 | 0.81 ** | ||||||||
| mass of root-WC | 0.88 | −0.06 | 0.05 | −0.21 | 0.35 | −0.06 | |||||||
| mass of shoot-FM | −0.57 | −0.51 | 0.68 | −0.19 | 0.42 | 0.42 | 0.06 | ||||||
| mass of shoot-DM | −0.65 | −0.56 | 0.62 | −0.07 | 0.33 | 0.29 | 0.04 | 0.97 *** | |||||
| mass of shoot-WC | 0.82 | 0.36 | −0.61 | 0.01 | −0.27 | −0.43 | 0.54 | −0.13 | −0.19 | ||||
| chl a | 0.04 | 0.90 | −0.25 | −0.69 | 0.33 | 0.29 | 0.16 | 0.02 | −0.07 | 0.51 | |||
| chl b | 0.45 | 0.79 | −0.47 | −0.45 | 0.08 | −0.01 | 0.34 | −0.13 | −0.24 | 0.82 * | 0.89 ** | ||
| car | 0.44 | 0.87 | −0.54 | −0.43 | −0.01 | −0.20 | 0.41 | −0.31 | −0.34 | 0.77 * | 0.82 ** | 0.91 *** | |
| –SH | 0.40 | 0.48 | −0.33 | −0.36 | 0.21 | 0.15 | 0.43 | 0.29 | 0.19 | 0.75 * | 0.79 * | 0.84 ** | 0.66 |
| (b) | |||||||||||||
| Cu | Cu Accumulation | Growth | Mass of Root | Mass of Shoot | PP | ||||||||
| Root | Shoot | Root | Shoot | FM | DM | WC | FM | DM | WC | chl a | chl b | car | |
| Cu accum.-shoot | 1.00 | ||||||||||||
| Growth-root | −0.50 | −0.42 | |||||||||||
| Growth-shoot | 0.97 | 0.99 | 0.49 | ||||||||||
| mass of root-FM | −0.48 | −0.40 | 0.89 * | 0.13 | |||||||||
| mass of root-DM | −0.55 | −0.47 | 0.37 | −0.44 | 0.36 | ||||||||
| mass of root-WC | 0.83 | 0.88 | −0.10 | −0.27 | −0.24 | −0.36 | |||||||
| mass of shoot-FM | 0.90 | 0.94 | 0.06 | 0.57 | −0.10 | −0.32 | 0.19 | ||||||
| mass of shoot-DM | 0.96 | 0.98 | −0.25 | 0.07 | −0.13 | −0.12 | 0.25 | 0.74 * | |||||
| mass of shoot-WC | 0.90 | 0.98 | −0.10 | 0.37 | −0.42 | −0.15 | −0.08 | 0.60 | 0.12 | ||||
| chl a | 0.98 | 0.96 | −0.18 | 0.03 | −0.52 | −0.34 | 0.57 | 0.25 | −0.14 | 0.64 | |||
| chl b | 0.68 | 0.62 | −0.84 * | −0.19 | −0.83 ** | −0.37 | 0.30 | 0.46 | 0.34 | 0.65 | 0.63 | ||
| car | 0.04 | −0.05 | −0.84 * | −0.30 | −0.64 | −0.33 | −0.25 | 0.07 | 0.09 | 0.23 | 0.01 | 0.68 * | |
| –SH | −0.61 | −0.68 | −0.25 | 0.05 | −0.27 | 0.24 | −0.47 | 0.31 | 0.01 | 0.83 ** | 0.29 | 0.51 | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Šotek, P.E.; Molnárová, M.; Nawaz, A.; Fargašová, A. The Bioremediation Potential of Perennial Ryegrass (Lolium perenne L.) in the Presence of Cadmium or Copper. Stresses 2026, 6, 3. https://doi.org/10.3390/stresses6010003
Šotek PE, Molnárová M, Nawaz A, Fargašová A. The Bioremediation Potential of Perennial Ryegrass (Lolium perenne L.) in the Presence of Cadmium or Copper. Stresses. 2026; 6(1):3. https://doi.org/10.3390/stresses6010003
Chicago/Turabian StyleŠotek, Pavlína Eliška, Marianna Molnárová, Ammara Nawaz, and Agáta Fargašová. 2026. "The Bioremediation Potential of Perennial Ryegrass (Lolium perenne L.) in the Presence of Cadmium or Copper" Stresses 6, no. 1: 3. https://doi.org/10.3390/stresses6010003
APA StyleŠotek, P. E., Molnárová, M., Nawaz, A., & Fargašová, A. (2026). The Bioremediation Potential of Perennial Ryegrass (Lolium perenne L.) in the Presence of Cadmium or Copper. Stresses, 6(1), 3. https://doi.org/10.3390/stresses6010003

