Leaf Traits and Fluctuating Asymmetry as Stress Indicators in a Mangrove Species After an Extreme Rainfall Event
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Area
4.2. Study Species
4.3. Study Design
4.4. Data Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balestrini, R.; Chitarra, W.; Ghirardo, A.; Nardini, A.; Nerva, L. A stressful life: How plants cope with multiple biotic and abiotic adverse factors. Plant Stress 2022, 5, 100095. [Google Scholar] [CrossRef]
- Meisner, A.; De Deyn, G.B.; de Boer, W.; van der Putten, W.H. Soil biotic legacy effects of extreme weather events influence plant invasiveness. Proc. Natl. Acad. Sci. USA 2013, 110, 9835–9838. [Google Scholar] [CrossRef] [PubMed]
- Ripple, W.J.; Wolf, C.; Gregg, J.W.; Rockström, J.; Newsome, T.M.; Law, B.E.; Marques, L.; Lenton, T.M.; Xu, C.; Huq, S.; et al. 2023 Special Report The 2023 state of the climate report: Entering uncharted territory. BioScience 2023, 12, 841–850. [Google Scholar] [CrossRef]
- Orlowsky, B.; Seneviratne, S.I. Global changes in extreme events: Regional and seasonal dimension. Clim. Change 2012, 110, 669–696. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Vegetation stress: An introduction to the stress concept in plants. J. Plant Physiol. 1996, 148, 4–14. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Ellison, J.C. Vulnerability of mangroves and tidal wetlands of the Great Barrier Reef to climate change. In Climate Change and the Great Barrier Reef: A Vulnerability Assessment; Johnson, J.E., Marshall, P.A., Eds.; Great Barrier Reef Marine Park Authority and Australian Greenhouse Office: Townsville, Australia, 2007; pp. 237–269. [Google Scholar]
- Osland, M.J.; Feher, L.C.; Griffith, K.T.; Cavanaugh, K.C.; Enwright, N.M.; Day, R.H.; Stagg, C.L.; Krauss, K.W.; Howard, R.J.; Grace, J.B.; et al. Climatic controls on the global distribution, abundance, and species richness of mangrove forests. Ecol. Monogr. 2017, 87, 341–359. [Google Scholar] [CrossRef]
- Knight, J.M.; Dale, P.E.R.; Dunn, R.J.K.; Broadbent, G.J.; Lemckert, C.J. Patterns of tidal flooding within a mangrove forest: Coombabah Lake, Southeast Queensland, Australia. Estuar. Coast. Shelf. Sci. 2008, 76, 580–593. [Google Scholar] [CrossRef]
- Ellison, J.C. Impacts of sediment burial on mangroves. Mar. Pollut. Bull. 1999, 37, 420–426. [Google Scholar] [CrossRef]
- Lagomasino, D.; Fatoyinbo, T.; Castañeda-Moya, E.; Cook, B.D.; Montesano, P.M.; Neigh, C.S.; Morton, D.C. Storm surge and ponding explain mangrove dieback in southwest Florida following Hurricane Irma. Nat. Commun. 2021, 12, 4003. [Google Scholar] [CrossRef]
- Pezeshki, S.R.; DeLaune, R.D. Soil oxidation-reduction in wetlands and its impact on plant functioning. Biology 2012, 1, 196–221. [Google Scholar] [CrossRef]
- Hogan, J.A.; Castañeda-Moya, E.; Lamb-Wotton, L.; Troxler, T.; Baraloto, C. Water levels primarily drive variation in photosynthesis and nutrient use of scrub Red Mangroves in the southeastern Florida Everglades. Tree Physiol. 2022, 42, 797–814. [Google Scholar] [CrossRef]
- Palmer, A.R.; Strobeck, C. Fluctuating asymmetry: Measurement, analysis, patterns. Annu. Rev. Ecol. Syst. 1986, 17, 391–421. [Google Scholar] [CrossRef]
- Cornelissen, T.; Stiling, P. Small variations over large scales: Fluctuating asymmetry over the range of two oak species. Int. J. Plant Sci. 2010, 171, 303–309. [Google Scholar] [CrossRef]
- Graham, J.H.; Raz, S.; Hel-Or, H.; Nevo, E. Fluctuating asymmetry: Methods, theory, and applications. Symmetry 2010, 2, 466–540. [Google Scholar] [CrossRef]
- Venâncio, H.; Alves-Silva, E.; Santos, J.C. Leaf phenotypic variation and developmental instability in relation to different light regimes. Acta Bot. Bras. 2016, 30, 296–303. [Google Scholar] [CrossRef]
- Telhado, C.; Silveira, F.A.; Fernandes, G.W.; Cornelissen, T. Fluctuating asymmetry in leaves and flowers of sympatric species in a tropical montane environment. Plant Species Biol. 2017, 32, 3–12. [Google Scholar] [CrossRef]
- Graham, J.H.; Freeman, D.C.; Emlen, J.M. Antisymmetry, directional asymmetry, and dynamic morphogenesis. Genetica 1993, 89, 121–137. [Google Scholar] [CrossRef]
- Møller, A.P.; Swaddle, J.P. Asymmetry, Developmental Stability and Evolution; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Freeman, D.C.; Brown, M.L.; Duda, J.J.; Graraham, J.H.; Emlen, J.M.; Krzysik, A.J.; Zak, J.C. Leaf fluctuating asymmetry, soil disturbance and plant stress: A multiple year comparison using two herbs, Ipomoea pandurata and Cnidoscolus stimulosus. Ecol. Indic. 2005, 5, 85–95. [Google Scholar] [CrossRef]
- Cuevas-Reyes, P.; Fernandes, G.W.; González-Rodríguez, A.; Pimenta, M. Effects of generalist and specialist parasitic plants (Loranthaceae) on the fluctuating asymmetry patterns of rupestrian host plants. Basic. Appl. Ecol. 2011, 12, 449–455. [Google Scholar] [CrossRef]
- Euan-Quiñones, O.A.; Mena-Martín, H.; Herrera-Pérez, P.; Cetina-Pérez, R.A.; Bautista-Parra, S.G.; Ballina-Gomez, H.S. Beyond the Classical Janzen–Connell Hypothesis: The Role of the Area Under the Parent Tree Crown of Manilkara zapota. Stresses 2024, 4, 762–772. [Google Scholar] [CrossRef]
- Hódar, J.A. Leaf fluctuating asymmetry of Holm oak in response to drought under contrasting climatic conditions. J. Arid. Environ. 2002, 52, 233–243. [Google Scholar] [CrossRef]
- Valkama, J.; Kozlov, M.V. Impact of climatic factors on developmental stability of mountain birches growing in a contaminated area. J. Appl. Ecol. 2001, 38, 665–673. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Villar, R. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Díaz, S.; Kattge, J.; Cornelissen, J.H.; Wright, I.J.; Lavorel, S.; Dray, S.; Gorné, L.D. The global spectrum of plant form and function. Nature 2016, 529, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.; Poorter, H.J.P.C. Photosynthetic acclimation of plants to growth irradiance: The relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant. Cell. Environ. 2001, 24, 755–767. [Google Scholar] [CrossRef]
- Tribouillois, H.; Fort, F.; Cruz, P.; Charles, R.; Flores, O.; Garnier, E.; Justes, E. A functional characterisation of a wide range of cover crop species: Growth and nitrogen acquisition rates, leaf traits and ecological strategies. PLoS ONE 2015, 10, e0122156. [Google Scholar] [CrossRef]
- Reich, P.B.; Walters, M.B. Photosynthesis-nitrogen relations in Amazonian tree species: II. Variation in nitrogen vis-a-vis specific leaf area influences mass-and area-based expressions. Oecologia 1994, 97, 73–81. [Google Scholar] [CrossRef]
- Adame, M.F.; Virdis, B.; Lovelock, C.E. Effect of geomorphological setting and rainfall on nutrient exchange in mangroves during tidal inundation. Mar. Freshw. Res. 2010, 61, 1197–1206. [Google Scholar] [CrossRef]
- Lappalainen, J.H.; Martel, J.; Lempa, K.; Wilsey, B.; Ossipov, V. Effects of resource availability on carbon allocation and developmental instability in cloned birch seedlings. Int. J. Plant Sci. 2000, 161, 119–125. [Google Scholar] [CrossRef]
- Instituto Nacional de Meteorologia do Brasil. Extremes Events in June 2022 in BRAZIL. Available online: https://portal.inmet.gov.br/noticias/eventos-extremos-de-junho-de-2022-no-brasil#:~:text=Em%20junho%20de%202022%2C%20os,extremos%20nas%20regi%C3%B5es%20do%20Brasil (accessed on 12 August 2022).
- Flooding List. Brazil—Homes Destroyed, Hundreds Displaced by Floods in Pernambuco, Alagoas and Paraíba. Available online: https://floodlist.com/america/brazil-floods-pernambuco-alagoas-paraiba-may-2022 (accessed on 24 December 2024).
- Skelton, N.J.; Allaway, W.G. Oxygen and pressure changes measured in situ during flooding in roots of the Grey Mangrove Avicennia marina (Forssk.) Vierh. Aquat. Bot. 1996, 54, 165–175. [Google Scholar] [CrossRef]
- McKee, K.L. Growth and physiological responses of neotropical mangrove seedlings to root zone hypoxia. Tree Physiol. 1996, 16, 883–889. [Google Scholar] [CrossRef] [PubMed]
- Nadia, T.L.; Morellato, L.P.C.; Machado, I.C. Reproductive phenology of a northeast Brazilian mangrove community: Environmental and biotic constraints. Flora-Morphol. Distrib. Funct. Ecol. Plants 2012, 207, 682–692. [Google Scholar] [CrossRef]
- Eyre, B. Nutrient biogeochemistry in the tropical Moresby river estuary system North Queensland, Australia. Estuar. Coast. Shelf Sci. 1994, 39, 15–31. [Google Scholar] [CrossRef]
- Wösten, J.H.M.; De Willigen, P.; Tri, N.H.; Lien, T.V.; Smith, S.V. Nutrient dynamics in mangrove areas of the Red River Estuary in Vietnam. Estuar. Coast. Shelf Sci. 2003, 57, 65–72. [Google Scholar] [CrossRef]
- Naidoo, G. Effects of salinity and nitrogen on growth and water relations in the mangrove, Avicennia marina (Forsk.) Vierh. New Phytol. 1987, 107, 317–325. [Google Scholar] [CrossRef]
- Knops, J.M.; Reinhart, K. Specific leaf area along a nitrogen fertilization gradient. Am. Midl. Nat. 2000, 144, 265–272. [Google Scholar] [CrossRef]
- Bompy, F.; Lequeue, G.; Imbert, D.; Dulormne, M. Increasing fluctuations of soil salinity affect seedling growth performances and physiology in three Neotropical mangrove species. Plant Soil 2014, 380, 399–413. [Google Scholar] [CrossRef]
- Ahmed, S.; Sarker, S.K.; Friess, D.A.; Kamruzzaman, M.; Jacobs, M.; Islam, M.A.; Pretzsch, H. Salinity reduces site quality and mangrove forest functions. From monitoring to understanding. Sci. Total Environ. 2022, 853, 158662. [Google Scholar] [CrossRef]
- Yanez-Espinosa, L.; Terrazas, T.; Lopez-Mata, L.; Valdez-Hernandez, J.I. Wood variation in Laguncularia racemosa and its effect on fibre quality. Wood Sci. Technol. 2004, 38, 217–226. [Google Scholar] [CrossRef]
- Peterson, J.M.; Bell, S.S. Tidal events and salt-marsh structure influence black mangrove (Avicennia germinans) recruitment across an ecotone. Ecology 2012, 93, 1648–1658. [Google Scholar] [CrossRef]
- Ataíde, G.D.M.; Castro, R.V.; Correia, A.C.G.; dos Reis, G.G.; Reis, M.D.G.F.; Rosado, A.M. Interaction of trees and winds: Ecophysiological aspects and forestry. Ciênc Florest. 2015, 25, 523–536. [Google Scholar] [CrossRef]
- Huang, P.; Wan, X.; Lieffers, V.J. Daytime and nighttime wind differentially affects hydraulic properties and thigmomorphogenic response of poplar saplings. Physiol. Plant 2016, 157, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Liu, X.; He, Y.; Lv, P.; Zhang, L.; Wei, S. Responses of physiological characteristics of annual C4 herbs to precipitation and wind changes in semi-arid sandy grassland, Northern China. Pol. J. Ecol. 2020, 68, 121–131. [Google Scholar] [CrossRef]
- Villavicencio, C.B.; Ferreira, A.C.; Costa, R.C.D.; Machado, J.V.; Freitas, C.V.C.; Moro, M.F.; Bezerra, L.E.A. Facilitation in mangrove ecosystem: The role of herbaceous species in seedling recruitment and growth patterns of Avicennia germinans in a recovering mangrove in Northeastern Brazil. Acta Bot. Bras. 2024, 38, e20220283. [Google Scholar] [CrossRef]
- Kodikara, K.A.S.; Jayatissa, L.P.; Huxham, M.; Dahdouh-Guebas, F.; Koedam, N. The effects of salinity on growth and survival of mangrove seedlings changes with age. Acta Bot. Bras. 2017, 32, 37–46. [Google Scholar] [CrossRef]
- Ball, M.C. Interactive effects of salinity and irradiance on growth: Implications for mangrove forest structure along salinity gradients. Trees 2002, 16, 126–139. [Google Scholar] [CrossRef]
- Lonard, R.I.; Judd, F.W.; DeYoe, H.R.; Stalter, R. Biology and Ecology of the Halophyte Laguncularia racemosa (L.) Gaertn. f.: A Review. In Handbook of Halophytes; Grigore, M.N., Ed.; Springer: Cham, Germany, 2021. [Google Scholar] [CrossRef]
- Sobrado, M.A. Influence of external salinity on the osmolality of xylem sap, leaf tissue and leaf gland secretion of the mangrove Laguncularia racemosa (L.) Gaertn. Trees 2004, 18, 422–427. [Google Scholar] [CrossRef]
- Méndez-Alonzo, R.; López-Portillo, J.; Moctezuma, C.; Bartlett, M.K.; Sack, L. Osmotic and hydraulic adjustment of mangrove saplings to extreme salinity. Tree Physio 2016, 36, 1562–1572. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Abdel-Haleem, M.; Khedr, E.H. Harnessing GABA Pathways to Improve Plant Resilience Against Salt Stress. Horticulturae 2024, 10, 1296. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística. Cidades e Estados. Available online: https://www.ibge.gov.br/cidades-e-estados/al/porto-de-pedras.html (accessed on 22 July 2023).
- Instituto Chico Mendes da Conservação da Biodiversidade. Plano de Manejo da Área de Proteção Ambiental Costa dos Corais 2020. Available online: https://www.icmbio.gov.br/apacostadoscorais/planos-de-manejo/zoneamento.html (accessed on 3 February 2022).
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2014, 22, 711–728. [Google Scholar] [CrossRef]
- Instituto Nacional de Meteorologia do Brasil. Banco de Dados Meteorológicos—BDMET, Brasília. 2022. Available online: https://bdmep.inmet.gov.br/ (accessed on 20 February 2025).
- Instituto Nacional de Meteorologia do Brasil. Rainfall Balance of Maceió in May 2023. Available online: https://portal.inmet.gov.br/uploads/notastecnicas/Macei%C3%B3-Balan%C3%A7o_Maio_2023.pdf (accessed on 7 July 2023).
- Costa, P.; Dórea, A.; Mariano-Neto, E.; Barros, F. Are there general spatial patterns of mangrove structure and composition along estuarine salinity gradients in Todos os Santos Bay? Estuar. Coast. Shelf Sci. 2015, 166, 83–91. [Google Scholar] [CrossRef]
- Basha, S.K. An overview on global mangroves distribution. Indian. J. Geo-Mar. Sci. 2018, 43, 766–772. [Google Scholar]
- Sereneski-Lima, C.; Baggio, R.A.; Pil, M.W.; Boeger, M.R.T.; Boeger, W.A. Historical and contemporary factors affect the genetic diversity and structure of Laguncularia racemosa (L.) Gaertn, along the western Atlantic coast. Estuar. Coast. Shelf Sci. 2021, 249, 107055. [Google Scholar] [CrossRef]
- De Alvarenga AM, S.B.; Botosso, P.C.; Soffiatti, P. Stem growth and phenology of three subtropical mangrove tree species. Braz. J. Bot. 2017, 40, 907–914. [Google Scholar] [CrossRef]
- Ball, M.C. Patterns of secondary succession in a mangrove forest of southern Florida. Oecologia 1980, 44, 226–235. [Google Scholar] [CrossRef]
- Saenger, P.; West, P.W. Determinants of some leaf characteristics of Australian mangroves. Bot. J. Linn. Soc. 2016, 180, 530–541. [Google Scholar] [CrossRef]
- Choong, M.F.; Lucas, P.W.; Ong, J.S.Y.; Pereira, B.; Tan, H.T.W.; Turner, I.M. Leaf fracture toughness and sclerophylly: Their correlations and ecological implications. New Phytol. 1992, 121, 597–610. [Google Scholar] [CrossRef]
- Gomes, H.B.; Ambrizzi, T.; Pontes da Silva, B.F.; Hodghes, K.; Dias, P.L.S.; Herdies, D.L.; Silva, M.C.L.; Gomes, H.B. Climatology of easterly wave disturbances over the tropical South Atlantic. Clim. Dyn. 2019, 53, 1393–1411. [Google Scholar] [CrossRef]
- Junior, F.D.C.V.; Zachariah, M.; do Vale Silva, T.L.; dos Santos, E.P.; Coelho, C.A.; Alves, L.M.; Otto, F.E. An attribution study of very intense rainfall events in Eastern Northeast Brazil. Weather. Clim. Extrem. 2024, 100699. [Google Scholar] [CrossRef]
- McPhillips, L.E.; Chang, H.; Chester, M.V.; Depietri, Y.; Friedman, E.; Grimm, N.B.; Kominoski, J.S.; McPhearson, T.; Méndez-Lázaro, P.; Rosi, E.J.; et al. Defining Extreme Events: A Cross-Disciplinary Review. Earth’s Future 2018, 6, 441–455. [Google Scholar] [CrossRef]
- Marengo, J.A.; Alcantara, E.; Cunha, A.P.; Seluchi, M.; Nobre, C.A.; Dolif, G.; Moraes, O.L. Flash floods and landslides in the city of Recife, Northeast Brazil after heavy rain on May 25–28, 2022: Causes, impacts, and disaster preparedness. Weather. Clim. Extrem. 2023, 39, 100545. [Google Scholar] [CrossRef]
- Mendes, G.M.; Silveira, F.A.O.; Oliveira, C.; Dáttilo, W.; Guevara, R.; Ruiz-Guerra, B.; Boaventura, M.G.; Sershen, R.S.; Phartyal, S.S.; Ribeiro, S.P.; et al. How much leaf area do insects eat? A data set of insect herbivory sampled globally with a standardized protocol. Ecology 2021, 102, e03301. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. Bot. 2013, 61, 167–234. [Google Scholar] [CrossRef]
- Alves-Silva, E.; Santos, J.C.; Cornelissen, T.G. How many leaves are enough? The influence of sample size on estimates of plant developmental instability and leaf asymmetry. Ecol. Indic. 2018, 89, 912–924. [Google Scholar] [CrossRef]
- Mendes, G.; Boaventura, M.G.; Cornelissen, T. Fluctuating asymmetry as a bioindicator of environmental stress caused by pollution in a pioneer plant species. Environ. Entomol. 2018, 47, 1479–1484. [Google Scholar] [CrossRef]
- Cornelissen, T.; Stiling, P. Perfect is best: Low leaf fluctuating asymmetry reduces herbivory by leaf miners. Oecologia 2005, 142, 46–56. [Google Scholar] [CrossRef]
- Maldonado-López, Y.; Vaca-Sánchez, M.S.; Canché-Delgado, A.; García-Jaín, S.E.; González-Rodríguez, A.; Cornelissen, T.; Cuevas-Reyes, P. Leaf herbivory and fluctuating asymmetry as indicators of mangrove stress. Wetlands Ecol. Manag. 2019, 27, 571–580. [Google Scholar] [CrossRef]
- Alves-Silva, E.; Del-Claro, K. Herbivory causes increases in leaf spinescence and fluctuating asymmetry as a mechanism of delayed induced resistance in a tropical savanna tree. Plant Ecol. Evol. 2016, 149, 73–80. [Google Scholar] [CrossRef]
- Merila, J.; Biorklund, M. Fluctuating asymmetry and measurement error. Syst. Biol. 1995, 44, 97–101. [Google Scholar] [CrossRef]
- Májeková, M.; Springer, B.; Ferenc, V.; Gruntman, M.; Tielbörger, K. Leaf fluctuating asymmetry is not a reliable indicator of stress. Funct. Ecol. 2024, 38, 1447–1457. [Google Scholar] [CrossRef]
- Graham, J.H.; Whitesell, M.J.; Flemming, M., II; Hel-Or, H.; Nevo, E.; Raz, S. Fluctuating Asymmetry of Plant Leaves: Batch Processing with LAMINA and Continuous Symmetry Measures. Symmetry 2015, 7, 255–268. [Google Scholar] [CrossRef]
- Gross, J.; Ligges, U. Nortest: Tests for Normality. R Package Version 1.0-4. 2015. Available online: https://cran.r-project.org/web/packages/nortest/index.html (accessed on 20 November 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 20 November 2024).
- Bartoń, K. MuMIn: Multi-Model Inference. R Package Version 1.48.4. Available online: https://CRAN.R-project.org/package=MuMIn (accessed on 20 November 2024).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; Available online: https://ggplot2.tidyverse.org (accessed on 20 November 2024).
Model | Source of Variation | Estimate | Std. Error | z Value | p-Value | R2m | R2c |
---|---|---|---|---|---|---|---|
LA~Sampling Period | Intercept | 3.11 | 0.04 | 70.42 | <0.001 | 0.14 | 0.28 |
LA | −0.53 | 0.03 | −15.94 | <0.001 | |||
SLA~Sampling Period | Intercept | 4.29 | 0.04 | 88.40 | <0.001 | 0.11 | 0.15 |
SLA | −0.54 | 0.03 | −13.68 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serafim, D.; Seixas, L.; Sabino, J.V.; Barão, K.R.; Santos, J.C.; Demetrio, G.R. Leaf Traits and Fluctuating Asymmetry as Stress Indicators in a Mangrove Species After an Extreme Rainfall Event. Stresses 2025, 5, 21. https://doi.org/10.3390/stresses5010021
Serafim D, Seixas L, Sabino JV, Barão KR, Santos JC, Demetrio GR. Leaf Traits and Fluctuating Asymmetry as Stress Indicators in a Mangrove Species After an Extreme Rainfall Event. Stresses. 2025; 5(1):21. https://doi.org/10.3390/stresses5010021
Chicago/Turabian StyleSerafim, Dalton, Luziene Seixas, João Victor Sabino, Kim Ribeiro Barão, Jean Carlos Santos, and Guilherme Ramos Demetrio. 2025. "Leaf Traits and Fluctuating Asymmetry as Stress Indicators in a Mangrove Species After an Extreme Rainfall Event" Stresses 5, no. 1: 21. https://doi.org/10.3390/stresses5010021
APA StyleSerafim, D., Seixas, L., Sabino, J. V., Barão, K. R., Santos, J. C., & Demetrio, G. R. (2025). Leaf Traits and Fluctuating Asymmetry as Stress Indicators in a Mangrove Species After an Extreme Rainfall Event. Stresses, 5(1), 21. https://doi.org/10.3390/stresses5010021