Improving Cognitive and Chemosensory Function in Caenorhabditis elegans Through Polyphenol-Rich Sugarcane Extract
Abstract
:1. Introduction
2. Results
2.1. PRSE Supplementation Improves Chemosensation
2.2. PRSE Supplementation Enhances Learning
2.3. PRSE Supplementation Might Reduce Memory Loss
3. Discussion
4. Materials and Methods
4.1. Strain, Culture Conditions and Harvesting Synchronous Cultures
4.2. Polyphenol-Rich Sugarcane Extract and Treatment
4.3. Chemotaxis Behaviour, Learning and Short-Term Associative Memory
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akter, R.; Rahman, H.; Behl, T.; Chowdhury, M.A.R.; Manirujjaman, M.; Bulbul, I.J.; Elshenaw, S.E.; Tit, D.M.; Bungau, S. Prospective Role of Polyphenolic Compounds in the Treatment of Neurodegenerative Diseases. CNS Neurol. Disord. Drug Targets 2021, 20, 430–450. [Google Scholar] [CrossRef] [PubMed]
- Menaa, F.; Menaa, A.; Tréton, J. Polyphenols against Skin Aging. In Polyphenols in Human Health and Disease; Elsevier: Amsterdam, The Netherlands, 2014; pp. 819–830. ISBN 978-0-12-398456-2. [Google Scholar]
- Pereira, Q.C.; Dos Santos, T.W.; Fortunato, I.M.; Ribeiro, M.L. The Molecular Mechanism of Polyphenols in the Regulation of Ageing Hallmarks. Int. J. Mol. Sci. 2023, 24, 5508. [Google Scholar] [CrossRef] [PubMed]
- Cherniack, E.P. Polyphenols and Aging. In Molecular Basis of Nutrition and Aging; Elsevier: Amsterdam, The Netherlands, 2016; pp. 649–657. ISBN 978-0-12-801816-3. [Google Scholar]
- Queen, B.; Tollefsbol, T. Polyphenols and Aging. Curr. Aging Sci. 2010, 3, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.; Kohl, S.; Thalmann, S.; Mateus, N.; Meyerhof, W.; De Freitas, V. Different Phenolic Compounds Activate Distinct Human Bitter Taste Receptors. J. Agric. Food Chem. 2013, 61, 1525–1533. [Google Scholar] [CrossRef]
- Bensalem, J.; Dudonné, S.; Etchamendy, N.; Pellay, H.; Amadieu, C.; Gaudout, D.; Dubreuil, S.; Paradis, M.-E.; Pomerleau, S.; Capuron, L.; et al. Polyphenols From Grape and Blueberry Improve Episodic Memory in Healthy Elderly with Lower Level of Memory Performance: A Bicentric Double-Blind, Randomized, Placebo-Controlled Clinical Study. J. Gerontol. Ser. A 2019, 74, 996–1007. [Google Scholar] [CrossRef]
- Kano, A.; Matsuyama, H.J.; Nakano, S.; Mori, I. AWC Thermosensory Neuron Interferes with Information Processing in a Compact Circuit Regulating Temperature-Evoked Posture Dynamics in the Nematode Caenorhabditis elegans. Neurosci. Res. 2023, 188, 10–27. [Google Scholar] [CrossRef]
- Zhu, M.; Chen, Y.; Zhao, N.; Bai, H.; Zhang, K.; Huang, X. Multiple Olfactory Pathways Contribute to the Lure Process of Caenorhabditis elegans by Pathogenic Bacteria. Sci. China Life Sci. 2021, 64, 1346–1354. [Google Scholar] [CrossRef]
- L’Etoile, N.D.; Bargmann, C.I. Olfaction and Odor Discrimination Are Mediated by the C. elegans Guanylyl Cyclase ODR-1. Neuron 2000, 25, 575–586. [Google Scholar] [CrossRef]
- Schaffitzel, E.; Hertweck, M. Recent Aging Research in Caenorhabditis elegans. Exp. Gerontol. 2006, 41, 557–563. [Google Scholar] [CrossRef]
- Lee, H.; Lee, S.-J.V. Recent Progress in Regulation of Aging by Insulin/IGF-1 Signaling in Caenorhabditis elegans. Mol. Cells 2022, 45, 763–770. [Google Scholar] [CrossRef]
- Braeckman, B.P.; Dhondt, I. Lifespan Extension in Caenorhabditis elegans Insulin/IGF-1 Signalling Mutants Is Supported by Non-Vertebrate Physiological Traits. Nematology 2017, 19, 499–508. [Google Scholar] [CrossRef]
- Leow, L.P.; Beckert, L.; Anderson, T.; Huckabee, M.-L. Changes in Chemosensitivity and Mechanosensitivity in Aging and Parkinson’s Disease. Dysphagia 2012, 27, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Misra, B.B. The Chemical Exposome of Human Aging. Front. Genet. 2020, 11, 574936. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.T. Insulin/Insulin-like Growth Factor Signaling in C. elegans. In WormBook: The Online Review of C. elegans Biology; WormBook: Pasadena, CA, USA, 2013; pp. 1–43. [Google Scholar] [CrossRef]
- Nicoletti, M.; Loppini, A.; Chiodo, L.; Folli, V.; Ruocco, G.; Filippi, S. AWC C. elegans Neuron: A Biological Sensor Model. In Proceedings of the 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT, Rome, Italy, 3–5 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 329–333. [Google Scholar]
- Munasinghe, M.; Almotayri, A.; Thomas, J.; Heydarian, D.; Weerasinghe, M.; Jois, M. Cocoa Improves Age-Associated Health and Extends Lifespan in C. elegans. Nutr. Healthy Aging 2021, 6, 73–86. [Google Scholar] [CrossRef]
- Munasinghe, M.; Almotayri, A.; Kolivas, D.; Thomas, J.; Heydarian, D.; Jois, M. Cocoa Supplementation Reduces Amyloid-Beta1–42 (Aβ1–42) Induced Deficits in a Transgenic C. elegans. Nutr. Healthy Aging 2021, 6, 117–130. [Google Scholar] [CrossRef]
- Iwata, K.; Wu, Q.; Ferdousi, F.; Sasaki, K.; Tominaga, K.; Uchida, H.; Arai, Y.; Szele, F.G.; Isoda, H. Sugarcane (Saccharum officinarum L.) Top Extract Ameliorates Cognitive Decline in Senescence Model SAMP8 Mice: Modulation of Neural Development and Energy Metabolism. Front. Cell Dev. Biol. 2020, 8, 573487. [Google Scholar] [CrossRef]
- Ji, J.; Flavel, M.; Yang, X.; Chen, O.C.Y.; Downey, L.; Stough, C.; Kitchen, B. A Polyphenol Rich Sugarcane Extract as a Modulator for Inflammation and Neurological Disorders. PharmaNutrition 2020, 12, 100187. [Google Scholar] [CrossRef]
- Deseo, M.A.; Elkins, A.; Rochfort, S.; Kitchen, B. Antioxidant Activity and Polyphenol Composition of Sugarcane Molasses Extract. Food Chem. 2020, 314, 126180. [Google Scholar] [CrossRef]
- Ji, J.; Yang, X.; Flavel, M.; Shields, Z.P.-I.; Kitchen, B. Antioxidant and Anti-Diabetic Functions of a Polyphenol-Rich Sugarcane Extract. J. Am. Coll. Nutr. 2019, 38, 670–680. [Google Scholar] [CrossRef]
- Feehan, J.; Prakash, M.D.; Stojanovska, L.; Flavel, M.R.; Kitchen, B.; Apostolopoulos, V. Immunomodulatory Properties of Polyphenol-Rich Sugarcane Extract on Human Monocytes. Biologics 2021, 1, 211–221. [Google Scholar] [CrossRef]
- Sawmiller, D.; Habib, A.; Li, S.; Darlington, D.; Hou, H.; Tian, J.; Shytle, R.D.; Smith, A.; Giunta, B.; Mori, T.; et al. Diosmin Reduces Cerebral Aβ Levels, Tau Hyperphosphorylation, Neuroinflammation, and Cognitive Impairment in the 3xTg-AD Mice. J. Neuroimmunol. 2016, 299, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Caprini, D.; Schwartz, S.; Lanza, E.; Milanetti, E.; Lucente, V.; Ferrarese, G.; Chiodo, L.; Nicoletti, M.; Folli, V. A Shearless Microfluidic Device Detects a Role in Mechanosensitivity for AWCON Neuron in Caenorhabditis elegans. Adv. Biol. 2021, 5, 2100927. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhao, N.; Chen, Y.; Zhang, D.; Yan, J.; Zou, W.; Zhang, K.; Huang, X. The Signaling Pathway of Caenorhabditis elegans Mediates Chemotaxis Response to the Attractant 2-Heptanone in a Trojan Horse-like Pathogenesis. J. Biol. Chem. 2016, 291, 23618–23627. [Google Scholar] [CrossRef]
- Sagasti, A.; Hobert, O.; Troemel, E.R.; Ruvkun, G.; Bargmann, C.I. Alternative Olfactory Neuron Fates Are Specified by the LIM Homeobox Gene Lim-4. Genes Dev. 1999, 13, 1794–1806. [Google Scholar] [CrossRef]
- Heydarian, D.; Flavel, M.; Munasinghe, M.; Almotayri, A.; Jois, M.; Thomas, J. Early Exposure to Polyphenol-Rich Sugarcane Extract (PRSE) Mitigates Aging While Enhancing Thermotolerance in C. elegans. J. Ageing Longev. 2024, 4, 15–27. [Google Scholar] [CrossRef]
- Chen, T.; Luo, S.; Wang, X.; Zhou, Y.; Dai, Y.; Zhou, L.; Feng, S.; Yuan, M.; Ding, C. Polyphenols from Blumea laciniata Extended the Lifespan and Enhanced Resistance to Stress in Caenorhabditis elegans via the Insulin Signaling Pathway. Antioxidants 2021, 10, 1744. [Google Scholar] [CrossRef]
- Hamilton, K.E.; Rekman, J.F.; Gunnink, L.K.; Busscher, B.M.; Scott, J.L.; Tidball, A.M.; Stehouwer, N.R.; Johnecheck, G.N.; Looyenga, B.D.; Louters, L.L. Quercetin Inhibits Glucose Transport by Binding to an Exofacial Site on GLUT1. Biochimie 2018, 151, 107–114. [Google Scholar] [CrossRef]
- Manzano, S.; Williamson, G. Polyphenols and Phenolic Acids from Strawberry and Apple Decrease Glucose Uptake and Transport by Human Intestinal Caco-2 Cells. Mol. Nutr. Food Res. 2010, 54, 1773–1780. [Google Scholar] [CrossRef]
- Liu, Y.-W.; Liu, X.-L.; Kong, L.; Zhang, M.-Y.; Chen, Y.-J.; Zhu, X.; Hao, Y.-C. Neuroprotection of Quercetin on Central Neurons against Chronic High Glucose through Enhancement of Nrf2/ARE/Glyoxalase-1 Pathway Mediated by Phosphorylation Regulation. Biomed. Pharmacother. 2019, 109, 2145–2154. [Google Scholar] [CrossRef]
- Oh, Y.; Jun, H.-S. Effects of Glucagon-Like Peptide-1 on Oxidative Stress and Nrf2 Signaling. Int. J. Mol. Sci. 2017, 19, 26. [Google Scholar] [CrossRef]
- Bayele, H.K.; Debnam, E.S.; Srai, K.S. Nrf2 Transcriptional Derepression from Keap1 by Dietary Polyphenols. Biochem. Biophys. Res. Commun. 2016, 469, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, C.; Chio, I.I.C.; Tuveson, D.A. Transcriptional Regulation by Nrf2. Antioxid. Redox Signal. 2018, 29, 1727–1745. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Perkins, J.T.; Hennig, B. EGCG Prevents PCB-126-Induced Endothelial Cell Inflammation via Epigenetic Modifications of NF-κB Target Genes in Human Endothelial Cells. J. Nutr. Biochem. 2016, 28, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Li, J.; Zhang, X.; Wang, L.; Zhang, W.; Yang, M.; Hou, C. Pomegranate Peel Polyphenols Inhibits Inflammation in LPS-Induced RAW264.7 Macrophages via the Suppression of TLR4/NF-κB Pathway Activation. Food Nutr. Res. 2019, 63, 3392. [Google Scholar] [CrossRef]
- Li, S.; Chen, Y.; Zhang, Y.; Lv, H.; Luo, L.; Wang, S.; Guan, X. Polyphenolic Extracts of Coffee Cherry Husks Alleviated Colitis-Induced Neural Inflammation via NF-κB Signaling Regulation and Gut Microbiota Modification. J. Agric. Food Chem. 2022, 70, 6467–6477. [Google Scholar] [CrossRef]
- Aparicio-Soto, M.; Redhu, D.; Sánchez-Hidalgo, M.; Fernández-Bolaños, J.G.; Alarcón-de-la-Lastra, C.; Worm, M.; Babina, M. Olive-Oil-Derived Polyphenols Effectively Attenuate Inflammatory Responses of Human Keratinocytes by Interfering with the NF-κB Pathway. Mol. Nutr. Food Res. 2019, 63, 1900019. [Google Scholar] [CrossRef]
- Porta-de-la-Riva, M.; Fontrodona, L.; Villanueva, A.; Cerón, J. Basic Caenorhabditis elegans Methods: Synchronization and Observation. J. Vis. Exp. 2012, 4019, e4019. [Google Scholar] [CrossRef]
- Margie, O.; Palmer, C.; Chin-Sang, I. C. elegans Chemotaxis Assay. J. Vis. Exp. 2013, 74, e50069. [Google Scholar] [CrossRef]
- Kauffman, A.; Parsons, L.; Stein, G.; Wills, A.; Kaletsky, R.; Murphy, C. C. elegans Positive Butanone Learning, Short-Term, and Long-Term Associative Memory Assays. J. Vis. Exp. 2011, 49, e2490. [Google Scholar] [CrossRef]
Total Polyphenols | 221 mg/g as Gallic Acid Equivalency (GAE) |
---|---|
Key polyphenols | |
Apigenin | 1.89 μg/g |
Luteolin | 5.30 μg/g |
Tricin | 27.40 μg/g |
Diosmin | 227.00 μg/g |
Syringic acid | 107.57 μg/g |
Chlorogenic acid | 74.29 μg/g |
Total flavonoids | 53.8 mg/g Catechin Equivalency (CE) |
Total antioxidant activity (Oxygen Radical Absorbance Capacity—ORAC 5.0) | 18,837 μmol Trolox Equivalency (TE) per gram |
ORAC against hydroxyl radicals | 13,785 μmol TE per gram |
ORAC against peroxyl radicals | 2336 μmol TE per gram |
ORAC against peroxynitrite | 255 μmol TE per gram |
ORAC against singlet oxygen | 2011 μmol TE per gram |
ORAC against superoxide anion | 450 μmol TE per gram |
Cellular antioxidant assay | 229.12 μmol Quercetin Equivalency (QE) per gram |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heydarian, D.; Flavel, M.; Munasinghe, M.; Jois, M.; Thomas, J. Improving Cognitive and Chemosensory Function in Caenorhabditis elegans Through Polyphenol-Rich Sugarcane Extract. Stresses 2024, 4, 816-826. https://doi.org/10.3390/stresses4040054
Heydarian D, Flavel M, Munasinghe M, Jois M, Thomas J. Improving Cognitive and Chemosensory Function in Caenorhabditis elegans Through Polyphenol-Rich Sugarcane Extract. Stresses. 2024; 4(4):816-826. https://doi.org/10.3390/stresses4040054
Chicago/Turabian StyleHeydarian, Deniz, Matthew Flavel, Mihiri Munasinghe, Markandeya Jois, and Jency Thomas. 2024. "Improving Cognitive and Chemosensory Function in Caenorhabditis elegans Through Polyphenol-Rich Sugarcane Extract" Stresses 4, no. 4: 816-826. https://doi.org/10.3390/stresses4040054
APA StyleHeydarian, D., Flavel, M., Munasinghe, M., Jois, M., & Thomas, J. (2024). Improving Cognitive and Chemosensory Function in Caenorhabditis elegans Through Polyphenol-Rich Sugarcane Extract. Stresses, 4(4), 816-826. https://doi.org/10.3390/stresses4040054