Nebivolol Exerts Hepatoprotective Activity During CLP-Induced Sepsis by Modulating Oxidative Stress, Liver Regeneration, and AKT/MAPK Pathways in Rats
Abstract
:1. Introduction
2. Results
2.1. Nebivolol Impact on Serum ALT, AST, ALP, Albumin, and Total and Direct Bilirubin Levels
2.2. Nebivolol Impact on Hepatic Oxidative Stress (MDA, SOD, and GSH) Markers
2.3. Nebivolol Impact on Amounts of Hepatic TNF-a, IL-1b, IL-6, and IL-10
2.4. Nebivolol Impact on MMP2/9, VEGF, and NF-κB Gene Levels
2.5. Nebivolol Impact on p-AKT, p-p38, and p-JNK1/2 Expressions in the Liver
2.6. Nebivolol Impact on Hepatic Histopathological Changes
3. Discussion
4. Materials and Methods
4.1. Drugs and Chemicals
4.2. Experimental Model
4.3. Animals
4.4. Experimental Design
4.5. Sample Collection
4.6. Assessment of Serum Liver Biomarkers
4.7. Evaluation of Hepatic Oxidative Stress
4.8. Evaluation of Hepatic Cytokines Levels
4.9. Gene Expression Estimation
4.10. Western Blot Measurement
4.11. Histopathology of the Liver
4.12. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Bennett, S.R. Sepsis in the intensive care unit. Surgery 2015, 33, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.M.; Priestap, F.; Fisher, H.; Fowler, R.A.; Heyland, D.K.; Keenan, S.P.; Longo, C.J.; Morrison, T.; Bentley, D.; Antman, N.; et al. A prospective, observational registry of patients with severe sepsis: The Canadian Sepsis Treatment and Response Registry*. Crit. Care Med. 2009, 37, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Yu, M.; Chai, Y. Pathological alteration and therapeutic implications of sepsis-induced immune cell apoptosis. Cell Death Dis. 2019, 10, 782. [Google Scholar] [CrossRef]
- Canabal, J.M.; Kramer, D.J. Management of sepsis in patients with liver failure. Curr. Opin. Crit. Care 2008, 14, 189–197. [Google Scholar] [CrossRef]
- Kramer, L.; Jordan, B.; Druml, W.; Bauer, P.; Metnitz, P.G. Incidence and prognosis of early hepatic dysfunction in critically ill patients--a prospective multicenter study. Crit. Care Med. 2007, 35, 1099–1104. [Google Scholar] [CrossRef]
- Cheng, B.; Xie, G.; Yao, S.; Wu, X.; Guo, Q.; Gu, M.; Fang, Q.; Xu, Q.; Wang, D.; Jin, Y.; et al. Epidemiology of severe sepsis in critically ill surgical patients in ten university hospitals in China. Crit. Care Med. 2007, 35, 2538–2546. [Google Scholar] [CrossRef]
- Brun-Buisson, C.; Meshaka, P.; Pinton, P.; Vallet, B. EPISEPSIS: A reappraisal of the epidemiology and outcome of severe sepsis in French intensive care units. Intensive Care Med. 2004, 30, 580–588. [Google Scholar] [CrossRef]
- Angus, D.C.; Linde-Zwirble, W.T.; Lidicker, J.; Clermont, G.; Carcillo, J.; Pinsky, M.R. Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 2001, 29, 1303–1310. [Google Scholar] [CrossRef]
- Beyer, D.; Hoff, J.; Sommerfeld, O.; Zipprich, A.; Gaßler, N.; Press, A.T. The liver in sepsis: Molecular mechanism of liver failure and their potential for clinical translation. Mol. Med. 2022, 28, 84. [Google Scholar] [CrossRef]
- Yan, J.; Li, S.; Li, S. The role of the liver in sepsis. Int. Rev. Immunol. 2014, 33, 498–510. [Google Scholar] [CrossRef] [PubMed]
- Lopes-Pires, M.E.; Frade-Guanaes, J.O.; Quinlan, G.J. Clotting Dysfunction in Sepsis: A Role for ROS and Potential for Therapeutic Intervention. Antioxidants 2022, 11, 88. [Google Scholar] [CrossRef] [PubMed]
- Pang, Q.; Dou, L.; Pan, X.; Zeng, S.; He, J.; Xu, W.; Zeng, Y. Methylene chloride protects against cecal ligation and puncture-induced acute lung injury by modulating inflammatory mediators. Int. Immunopharmacol. 2010, 10, 929–932. [Google Scholar] [CrossRef] [PubMed]
- Song, G.Y.; Chung, C.S.; Chaudry, I.H.; Ayala, A. What is the role of interleukin 10 in polymicrobial sepsis: Anti-inflammatory agent or immunosuppressant? Surgery 1999, 126, 378–383. [Google Scholar] [CrossRef]
- Ruiz, S.; Vardon-Bounes, F.; Merlet-Dupuy, V.; Conil, J.-M.; Buléon, M.; Fourcade, O.; Tack, I.; Minville, V. Sepsis modeling in mice: Ligation length is a major severity factor in cecal ligation and puncture. Intensive Care Med. Exp. 2016, 4, 22. [Google Scholar] [CrossRef]
- Chavali, S.R.; Utsunomiya, T.; Forse, R.A. Increased survival after cecal ligation and puncture in mice consuming diets enriched with sesame seed oil. Crit. Care Med. 2001, 29, 140–143. [Google Scholar] [CrossRef]
- Wang, F.; Lei, X.; Zhao, Y.; Yu, Q.; Li, Q.; Zhao, H.; Pei, Z. Protective role of thymoquinone in sepsis-induced liver injury in BALB/c mice. Exp. Ther. Med. 2019, 18, 1985–1992. [Google Scholar] [CrossRef] [PubMed]
- Luo, K.; Long, H.; Xu, B.; Luo, Y. Apelin attenuates postburn sepsis via a phosphatidylinositol 3-kinase/protein kinase B dependent mechanism: A randomized animal study. Int. J. Surg. 2015, 21, 22–27. [Google Scholar] [CrossRef]
- Sun, N.; Wang, H.; Ma, L.; Lei, P.; Zhang, Q. Ghrelin attenuates brain injury in septic mice via PI3K/Akt signaling activation. Brain Res. Bull. 2016, 124, 278–285. [Google Scholar] [CrossRef]
- Liu, Y.; Shanley, T.P. MAP Kinase Phosphatase-1 and Septic Shock. J. Organ. Dysfunct. 2009, 5, 68–78. [Google Scholar] [CrossRef]
- Park, M.H.; Hong, J.T. Roles of NF-κB in Cancer and Inflammatory Diseases and Their Therapeutic Approaches. Cells 2016, 5, 15. [Google Scholar] [CrossRef] [PubMed]
- Sabra, R.T.; Abdellatef, A.A.; Abdel-Sattar, E.; Fathy, M.; Meselhy, M.R.; Hayakawa, Y. Russelioside A, a Pregnane Glycoside from Caralluma tuberculate, Inhibits Cell-Intrinsic NF-κB Activity and Metastatic Ability of Breast Cancer Cells. Biol. Pharm. Bull. 2022, 45, 1564–1571. [Google Scholar] [CrossRef] [PubMed]
- Alaaeldin, R.; Bakkar, S.M.; Mohyeldin, R.H.; Ali, F.E.M.; Abdel-Maqsoud, N.M.R.; Fathy, M. Azilsartan Modulates HMGB1/NF-κB/p38/ERK1/2/JNK and Apoptosis Pathways during Renal Ischemia Reperfusion Injury. Cells 2023, 12, 185. [Google Scholar] [CrossRef] [PubMed]
- Fawzy, M.A.; Maher, S.A.; El-Rehany, M.A.; Welson, N.N.; Albezrah, N.K.A.; Batiha, G.E.; Fathy, M. Vincamine Modulates the Effect of Pantoprazole in Renal Ischemia/Reperfusion Injury by Attenuating MAPK and Apoptosis Signaling Pathways. Molecules 2022, 27, 1383. [Google Scholar] [CrossRef] [PubMed]
- Mohyeldin, R.H.; Alaaeldin, R.; Sharata, E.E.; Attya, M.E.; Elhamadany, E.Y.; Fathy, M. LCZ696 attenuates sepsis-induced liver dysfunction in rats; the role of oxidative stress, apoptosis, and JNK1/2-P38 signaling pathways. Life Sci. 2023, 334, 122210. [Google Scholar] [CrossRef] [PubMed]
- Nazmy, M.H.; Abu-baih, D.H.; Elrehany, M.A.; Mustafa, M.; Aly, O.M.; El-Sheikh, A.A.K.; Fathy, M. Assessing the Antiproliferative Potential of a Novel Combretastatin A4 Derivative via Modulating Apoptosis, MAPK/ERK and PI3K/AKT Pathways in Human Breast Cancer Cells. FBL 2023, 28, 185. [Google Scholar] [CrossRef]
- Alaaeldin, R.; Hassan, H.A.; Abdel-Rahman, I.M.; Mohyeldin, R.H.; Youssef, N.; Allam, A.E.; Abdelwahab, S.F.; Zhao, Q.-L.; Fathy, M. A New EGFR Inhibitor from Ficus benghalensis Exerted Potential Anti-Inflammatory Activity via Akt/PI3K Pathway Inhibition. Curr. Issues Mol. Biol. 2022, 44, 2967–2981. [Google Scholar] [CrossRef] [PubMed]
- Toblli, J.E.; DiGennaro, F.; Giani, J.F.; Dominici, F.P. Nebivolol: Impact on cardiac and endothelial function and clinical utility. Vasc. Health Risk Manag. 2012, 8, 151–160. [Google Scholar] [CrossRef]
- Maffei, A.; Lembo, G. Nitric oxide mechanisms of nebivolol. Ther. Adv. Cardiovasc. Dis. 2009, 3, 317–327. [Google Scholar] [CrossRef]
- Gupta, S.; Wright, H.M. Nebivolol: A highly selective beta1-adrenergic receptor blocker that causes vasodilation by increasing nitric oxide. Cardiovasc. Ther. 2008, 26, 189–202. [Google Scholar] [CrossRef]
- Oelze, M.; Daiber, A.; Brandes, R.P.; Hortmann, M.; Wenzel, P.; Hink, U.; Schulz, E.; Mollnau, H.; von Sandersleben, A.; Kleschyov, A.L.; et al. Nebivolol inhibits superoxide formation by NADPH oxidase and endothelial dysfunction in angiotensin II-treated rats. Hypertension 2006, 48, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Mason, R.P.; Kalinowski, L.; Jacob, R.F.; Jacoby, A.M.; Malinski, T. Nebivolol reduces nitroxidative stress and restores nitric oxide bioavailability in endothelium of black Americans. Circulation 2005, 112, 3795–3801. [Google Scholar] [CrossRef] [PubMed]
- Münzel, T.; Gori, T. Nebivolol: The somewhat-different beta-adrenergic receptor blocker. J. Am. Coll. Cardiol. 2009, 54, 1491–1499. [Google Scholar] [CrossRef] [PubMed]
- Dejager, L.; Pinheiro, I.; Dejonckheere, E.; Libert, C. Cecal ligation and puncture: The gold standard model for polymicrobial sepsis? Trends Microbiol. 2011, 19, 198–208. [Google Scholar] [CrossRef]
- Abdelnaser, M.; Alaaeldin, R.; Attya, M.E.; Fathy, M. Hepatoprotective potential of gabapentin in cecal ligation and puncture-induced sepsis; targeting oxidative stress, apoptosis, and NF-kB/MAPK signaling pathways. Life Sci. 2023, 320, 121562. [Google Scholar] [CrossRef]
- Biswal, S.; Remick, D.G. Sepsis: Redox mechanisms and therapeutic opportunities. Antioxid. Redox Signal 2007, 9, 1959–1961. [Google Scholar] [CrossRef]
- Son, Y.; Cheong, Y.K.; Kim, N.H.; Chung, H.T.; Kang, D.G.; Pae, H.O. Mitogen-Activated Protein Kinases and Reactive Oxygen Species: How Can ROS Activate MAPK Pathways? J. Signal Transduct. 2011, 2011, 792639. [Google Scholar] [CrossRef]
- Fattahi, F.; Kalbitz, M.; Malan, E.A.; Abe, E.; Jajou, L.; Huber-Lang, M.S.; Bosmann, M.; Russell, M.W.; Zetoune, F.S.; Ward, P.A. Complement-induced activation of MAPKs and Akt during sepsis: Role in cardiac dysfunction. Faseb J. 2017, 31, 4129–4139. [Google Scholar] [CrossRef]
- Alaaeldin, R.; Eisa, Y.A.; El-Rehany, M.A.; Fathy, M. Vincamine alleviates intrahepatic cholestasis in rats through modulation of NF-kB/PDGF/klf6/PPARγ and PI3K/Akt pathways. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 7981–7994. [Google Scholar] [CrossRef] [PubMed]
- Makled, M.N.; El-Awady, M.S.; Abdelaziz, R.R.; Atwan, N.; Guns, E.T.; Gameil, N.M.; Shehab El-Din, A.B.; Ammar, E.M. Pomegranate protects liver against cecal ligation and puncture-induced oxidative stress and inflammation in rats through TLR4/NF-κB pathway inhibition. Environ. Toxicol. Pharmacol. 2016, 43, 182–192. [Google Scholar] [CrossRef]
- Aboyoussef, A.M.; Mohammad, M.K.; Abo-Saif, A.A.; Messiha, B.A.S. Granisetron attenuates liver injury and inflammation in a rat model of cecal ligation and puncture-induced sepsis. J. Pharmacol. Sci. 2021, 147, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, Q.; Wu, L.; Wang, Y. Nebivolol Alleviates Vascular Endothelial Insulin Resistance by Inhibiting Endoplasmic Reticulum Stress. Int. Heart J. 2023, 64, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Colak, S.; Gurlek, B.; Topcu, A.; Tumkaya, L.; Mercantepe, T.; Yilmaz, A. Protective effects of nebivolol on ovarian ischemia-reperfusion injury in rat. J. Obstet. Gynaecol. Res. 2020, 46, 2407–2416. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, E.A.; Kassem, H.H. Protective effect of nebivolol on doxorubicin-induced cardiotoxicity in rats. Arch. Med. Sci. 2018, 14, 1450–1458. [Google Scholar] [CrossRef] [PubMed]
- Seren, M.; Budak, B.; Turan, N.; Parlar, A.I.; Akar, F.; Ulus, A.T. Collaborative therapy with nebivalol and L-NAME for spinal cord ischemia/reperfusion injury. Ann. Vasc. Surg. 2008, 22, 425–431. [Google Scholar] [CrossRef]
- Ozawa, T.; Tani, H.; Anraku, Y.; Kita, S.; Igarashi, E.; Saga, Y.; Inasaki, N.; Kawasuji, H.; Yamada, H.; Sasaki, s.-I.; et al. Novel super-neutralizing antibody UT28K is capable of protecting against infection from a wide variety of SARS-CoV-2 variants. mAbs 2022, 14, 2072455. [Google Scholar] [CrossRef]
- Alaaeldin, R.; Abdel-Rahman, I.M.; Ali, F.E.M.; Bekhit, A.A.; Elhamadany, E.Y.; Zhao, Q.L.; Cui, Z.G.; Fathy, M. Dual Topoisomerase I/II Inhibition-Induced Apoptosis and Necro-Apoptosis in Cancer Cells by a Novel Ciprofloxacin Derivative via RIPK1/RIPK3/MLKL Activation. Molecules 2022, 27, 7993. [Google Scholar] [CrossRef]
- Koskinas, J.; Gomatos, I.P.; Tiniakos, D.G.; Memos, N.; Boutsikou, M.; Garatzioti, A.; Archimandritis, A.; Betrosian, A. Liver histology in ICU patients dying from sepsis: A clinico-pathological study. World J. Gastroenterol. 2008, 14, 1389–1393. [Google Scholar] [CrossRef]
- Capcha, J.M.C.; Moreira, R.S.; Rodrigues, C.E.; Silveira, M.A.D.; Andrade, L.; Gomes, S.A. Using the Cecal Ligation and Puncture Model of Sepsis to Induce Rats to Multiple Organ Dysfunction. Bio Protoc. 2021, 11, e3979. [Google Scholar] [CrossRef]
- Vandewalle, J.; Steeland, S.; Van Ryckeghem, S.; Eggermont, M.; Van Wonterghem, E.; Vandenbroucke, R.E.; Libert, C. A Study of Cecal Ligation and Puncture-Induced Sepsis in Tissue-Specific Tumor Necrosis Factor Receptor 1-Deficient Mice. Front. Immunol. 2019, 10, 2574. [Google Scholar] [CrossRef]
- Bi, J.; Cui, R.; Li, Z.; Liu, C.; Zhang, J. Astaxanthin alleviated acute lung injury by inhibiting oxidative/nitrative stress and the inflammatory response in mice. Biomed. Pharmacother. 2017, 95, 974–982. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, B.L.; Neumann, C.A. Redoxins as gatekeepers of the transcriptional oxidative stress response. Redox Biol. 2019, 21, 101104. [Google Scholar] [CrossRef] [PubMed]
- Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid. Med. Cell Longev. 2016, 2016, 1245049. [Google Scholar] [CrossRef]
- Toscano, M.G.; Ganea, D.; Gamero, A.M. Cecal ligation puncture procedure. J. Vis. Exp. 2011, 7, 2860. [Google Scholar] [CrossRef]
- Zhu, W.; Bao, R.; Fan, X.; Tao, T.; Zhu, J.; Wang, J.; Li, J.; Bo, L.; Deng, X. PD-L1 blockade attenuated sepsis-induced liver injury in a mouse cecal ligation and puncture model. Mediat. Inflamm. 2013, 2013, 361501. [Google Scholar] [CrossRef]
- Bauer, M.; Press, A.T.; Trauner, M. The liver in sepsis: Patterns of response and injury. Curr. Opin. Crit. Care 2013, 19, 123–127. [Google Scholar] [CrossRef]
- Till, G.O.; Hatherill, J.R.; Tourtellotte, W.W.; Lutz, M.J.; Ward, P.A. Lipid peroxidation and acute lung injury after thermal trauma to skin. Evidence of a role for hydroxyl radical. Am. J. Pathol. 1985, 119, 376–384. [Google Scholar]
- Maleki, E.; Sheibani, M.; Nezamoleslami, S.; Dehpour, A.R.; Takzaree, N.; Shafaroodi, H. Glatiramer acetate treatment inhibits inflammatory responses and improves survival in a mice model of cecal ligation and puncture-induced sepsis. J. Basic. Clin. Physiol. Pharmacol. 2021, 33, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Iyer, S.S.; Cheng, G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit. Rev. Immunol. 2012, 32, 23–63. [Google Scholar] [CrossRef]
- Wójcik, P.; Gęgotek, A.; Žarković, N.; Skrzydlewska, E. Oxidative Stress and Lipid Mediators Modulate Immune Cell Functions in Autoimmune Diseases. Int. J. Mol. Sci. 2021, 22, 723. [Google Scholar] [CrossRef]
- Crapo, J.D. Oxidative stress as an initiator of cytokine release and cell damage. Eur. Respir. J. 2003, 22, 4s–6s. [Google Scholar] [CrossRef] [PubMed]
- Colitti, M.; Stefanon, B.; Gabai, G.; Gelain, M.E.; Bonsembiante, F. Oxidative Stress and Nutraceuticals in the Modulation of the Immune Function: Current Knowledge in Animals of Veterinary Interest. Antioxidants 2019, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Allameh, A.; Niayesh-Mehr, R.; Aliarab, A.; Sebastiani, G.; Pantopoulos, K. Oxidative Stress in Liver Pathophysiology and Disease. Antioxidants 2023, 12, 1653. [Google Scholar] [CrossRef]
- Cichoż-Lach, H.; Michalak, A. Oxidative stress as a crucial factor in liver diseases. World J. Gastroenterol. 2014, 20, 8082–8091. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Lin, X.; Yan, C.; Yang, S.; Xu, Z. Tocilizumab attenuates acute lung injury in rats with sepsis by regulating S100A12/NLRP3. Am. J. Transl. Res. 2023, 15, 99–113. [Google Scholar]
- Gao, M.; Ha, T.; Zhang, X.; Wang, X.; Liu, L.; Kalbfleisch, J.; Singh, K.; Williams, D.; Li, C. The Toll-like Receptor 9 Ligand, CpG Oligodeoxynucleotide, Attenuates Cardiac Dysfunction in Polymicrobial Sepsis, Involving Activation of Both Phosphoinositide 3 Kinase/Akt and Extracellular-Signal-Related Kinase Signaling. J. Infect. Dis. 2013, 207, 1471–1479. [Google Scholar] [CrossRef]
- Yin, D.; Lin, D.; Xie, Y.; Gong, A.; Jiang, P.; Wu, J. Neuregulin-1β Alleviates Sepsis-Induced Skeletal Muscle Atrophy by Inhibiting Autophagy via AKT/mTOR Signaling Pathway in Rats. Shock 2022, 57, 397–407. [Google Scholar] [CrossRef]
- Kirtonia, A.; Sethi, G.; Garg, M. The multifaceted role of reactive oxygen species in tumorigenesis. Cell Mol. Life Sci. 2020, 77, 4459–4483. [Google Scholar] [CrossRef]
- Lingappan, K. NF-κB in Oxidative Stress. Curr. Opin. Toxicol. 2018, 7, 81–86. [Google Scholar] [CrossRef]
- Li, H.; Han, W.; Polosukhin, V.; Yull, F.E.; Segal, B.H.; Xie, C.M.; Blackwell, T.S. NF-κB inhibition after cecal ligation and puncture reduces sepsis-associated lung injury without altering bacterial host defense. Mediat. Inflamm. 2013, 2013, 503213. [Google Scholar] [CrossRef]
- Yue, J.; López, J.M. Understanding MAPK Signaling Pathways in Apoptosis. Int. J. Mol. Sci. 2020, 21, 2346. [Google Scholar] [CrossRef] [PubMed]
- Chagpar, R.B.; Links, P.H.; Pastor, M.C.; Furber, L.A.; Hawrysh, A.D.; Chamberlain, M.D.; Anderson, D.H. Direct positive regulation of PTEN by the p85 subunit of phosphatidylinositol 3-kinase. Proc. Natl. Acad. Sci. USA 2010, 107, 5471–5476. [Google Scholar] [CrossRef]
- López-Carballo, G.; Moreno, L.; Masiá, S.; Pérez, P.; Barettino, D. Activation of the phosphatidylinositol 3-kinase/Akt signaling pathway by retinoic acid is required for neural differentiation of SH-SY5Y human neuroblastoma cells. J. Biol. Chem. 2002, 277, 25297–25304. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Tang, F.; Wang, Z.; Qi, G.; Liang, X.; Li, B.; Yuan, S.; Liu, J.; Yu, S.; He, S. Upregulation of Akt/NF-κB-regulated inflammation and Akt/Bad-related apoptosis signaling pathway involved in hepatic carcinoma process: Suppression by carnosic acid nanoparticle. Int. J. Nanomed. 2016, 11, 6401–6420. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, T.; Lin, K.C.; Chang, C.C.; Hsia, C.W.; Manubolu, M.; Huang, W.C.; Sheu, J.R.; Hsia, C.H. Targeting MAPK/NF-κB Pathways in Anti-Inflammatory Potential of Rutaecarpine: Impact on Src/FAK-Mediated Macrophage Migration. Int. J. Mol. Sci. 2021, 23, 92. [Google Scholar] [CrossRef]
- Kim, I.; Moon, S.O.; Kim, S.H.; Kim, H.J.; Koh, Y.S.; Koh, G.Y. Vascular endothelial growth factor expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin through nuclear factor-kappa B activation in endothelial cells. J. Biol. Chem. 2001, 276, 7614–7620. [Google Scholar] [CrossRef]
- Reinders, M.E.; Sho, M.; Izawa, A.; Wang, P.; Mukhopadhyay, D.; Koss, K.E.; Geehan, C.S.; Luster, A.D.; Sayegh, M.H.; Briscoe, D.M. Proinflammatory functions of vascular endothelial growth factor in alloimmunity. J. Clin. Investig. 2003, 112, 1655–1665. [Google Scholar] [CrossRef]
- Taha, Y.; Raab, Y.; Larsson, A.; Carlson, M.; Lööf, L.; Gerdin, B.; Thörn, M. Vascular endothelial growth factor (VEGF)--a possible mediator of inflammation and mucosal permeability in patients with collagenous colitis. Dig. Dis. Sci. 2004, 49, 109–115. [Google Scholar] [CrossRef] [PubMed]
- van der Flier, M.; van Leeuwen, H.J.; van Kessel, K.P.; Kimpen, J.L.; Hoepelman, A.I.; Geelen, S.P. Plasma vascular endothelial growth factor in severe sepsis. Shock 2005, 23, 35–38. [Google Scholar] [CrossRef]
- Pickkers, P.; Sprong, T.; Eijk, L.; Hoeven, H.; Smits, P.; Deuren, M. Vascular endothelial growth factor is increased during the first 48 h of human septic shock and correlates with vascular permeability. Shock 2005, 24, 508–512. [Google Scholar] [CrossRef]
- Roderfeld, M. Matrix metalloproteinase functions in hepatic injury and fibrosis. Matrix Biol. 2018, 68-69, 452–462. [Google Scholar] [CrossRef] [PubMed]
- Bedossa, P.; Paradis, V. Liver extracellular matrix in health and disease. J. Pathol. 2003, 200, 504–515. [Google Scholar] [CrossRef]
- Lee, H.S.; Kim, W.J. The Role of Matrix Metalloproteinase in Inflammation with a Focus on Infectious Diseases. Int. J. Mol. Sci. 2022, 23, 10546. [Google Scholar] [CrossRef] [PubMed]
- DeLeve, L.D.; Wang, X.; Wang, L. VEGF-sdf1 recruitment of CXCR7+ bone marrow progenitors of liver sinusoidal endothelial cells promotes rat liver regeneration. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 310, G739–G746. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Wang, L.; Chiu, J.D.; van de Ven, G.; Gaarde, W.A.; Deleve, L.D. Hepatic vascular endothelial growth factor regulates recruitment of rat liver sinusoidal endothelial cell progenitor cells. Gastroenterology 2012, 143, 1555–1563.e2. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Maretti-Mira, A.C.; Wang, L.; DeLeve, L.D. Liver-Selective MMP-9 Inhibition in the Rat Eliminates Ischemia-Reperfusion Injury and Accelerates Liver Regeneration. Hepatology 2019, 69, 314–328. [Google Scholar] [CrossRef]
- Ersan, S.; Tanrısev, M.; Cavdar, Z.; Celık, A.; Unlu, M.; Kocak, A.; Kose, T. Pretreatment with nebivolol attenuates level and expression of matrix metalloproteinases in a rat model of renal ischaemia-reperfusion injury. Nephrology 2017, 22, 1023–1029. [Google Scholar] [CrossRef]
- Cavdar, Z.; Kocak, A.; Ural, C.; Afagh, A.; Ersan, S.; Ozbal, S.; Tatli, M.; Celik, A.; Arslan, S.; Cavdar, C. Role of p38 MAPK, Akt and NFκB in renoprotective effects of nebivolol on renal ischemia-reperfusion injury in rats. Biotech. Histochem. 2023, 98, 401–411. [Google Scholar] [CrossRef]
- Wanas, H.; El-Shabrawy, M.; Mishriki, A.; Attia, H.; Emam, M.; Aboulhoda, B.E. Nebivolol protects against cyclophosphamide-induced nephrotoxicity through modulation of oxidative stress, inflammation, and apoptosis. Clin. Exp. Pharmacol. Physiol. 2021, 48, 811–819. [Google Scholar] [CrossRef]
- Kim, Y.J.; Jang, S.K.; Kim, G.; Hong, S.E.; Park, C.S.; Seong, M.K.; Kim, H.A.; Kim, K.S.; Kim, C.H.; Park, K.S.; et al. Nebivolol Sensitizes BT-474 Breast Cancer Cells to FGFR Inhibitors. Anticancer. Res. 2023, 43, 1973–1980. [Google Scholar] [CrossRef]
- Fink, M.P. Animal models of sepsis. Virulence 2014, 5, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, A.; Saikia, P.P.; Dkhar, B.; Pyngrope, H. Anesthesia protocol for ear surgery in Wistar rats (animal research). Anim. Model. Exp. Med. 2022, 5, 183–188. [Google Scholar] [CrossRef]
- Sabra, R.T.; Bekhit, A.A.; Sabra, N.T.; Abd El-Moeze, N.A.; Fathy, M. Nebivolol ameliorates sepsis-evoked kidney dysfunction by targeting oxidative stress and TGF-β/Smad/p53 pathway. Sci. Rep. 2024, 14, 14735. [Google Scholar] [CrossRef]
- Nasr, A.M.; Rezq, S.; Shaheen, A.; Elshazly, S.M. Renal protective effect of nebivolol in rat models of acute renal injury: Role of sodium glucose co-transporter 2. Pharmacol. Rep. 2020, 72, 956–968. [Google Scholar] [CrossRef]
- Said, E.S.; Mohammed, A.H.; Ali, H.M.; Babiker, A.Y.; Alnughaymishi, R.; Althaqeel, N.Z.; Ahmed, A.S. Evaluation of hepatoprotective effect of Nebivolol and sodium copper Chlorophyllin on CCL4-induced hepatotoxicity in mice. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 1717–1728. [Google Scholar] [CrossRef] [PubMed]
- Sanaee, F.; Valente Neves, D.; Lanchote, V.L.; Jamali, F. Pharmacokinetics of nebivolol in the rat: Low oral absorption, loss in the gut and systemic stereoselectivity. Biopharm. Drug Dispos. 2013, 34, 312–320. [Google Scholar] [CrossRef]
- Naeem, A.G.; El-Naga, R.N.; Michel, H.E. Nebivolol elicits a neuroprotective effect in the cuprizone model of multiple sclerosis in mice: Emphasis on M1/M2 polarization and inhibition of NLRP3 inflammasome activation. Inflammopharmacology 2022, 30, 2197–2209. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zhao, W.; Hu, Z.J.; Ge, S.M.; Huo, Y.; Liu, L.X.; Gao, B.L. Protective effects and mechanisms of high-dose vitamin C on sepsis-associated cognitive impairment in rats. Sci. Rep. 2021, 11, 14511. [Google Scholar] [CrossRef]
- Bancroft, J.D.; Gamble, M. Theory and Practice of Histological Techniques; Elsevier Health Sciences: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Naiki-Ito, A.; Asamoto, M.; Naiki, T.; Ogawa, K.; Takahashi, S.; Sato, S.; Shirai, T. Gap junction dysfunction reduces acetaminophen hepatotoxicity with impact on apoptotic signaling and connexin 43 protein induction in rat. Toxicol. Pathol. 2010, 38, 280–286. [Google Scholar] [CrossRef]
Groups | Sham | Neb 10 | CLP | CLP/Neb 4 | CLP/Neb 10 | CLP/Vit C |
---|---|---|---|---|---|---|
Hepatocyte necrosis | 0 | 0 | 3 | 2 | 0 | 0 |
Vascular degeneration | 0 | 0 | 2 | 1 | 0 | 0 |
Inflammation (inflammatory cell infiltrations) | 0 | 0 | 2 | 1 | 1 | 1 |
Total scoring | 0 | 0 | 7 ### | 4 ** | 1 *** | 1 *** |
Genes | Primer Sequence (5′-3′) | Accession Number | |
---|---|---|---|
VEGF | Forward Reverse | GCCGTCCTGTGTGCCCCTAATG GTTCTATCTTTCTTTGGTCTGC | XM_032900650.1 |
MMP-2 | Forward Reverse | AGCTCCCGGAAAAGATTGAT CCAGAACTTGTCCCCAGAAA | NM_031054.2 |
MMP-9 | Forward Reverse | TCACTTTCCCTTCACCTTCG AGTTGCCCCCAGTTACAGTG | NM_031055.2 |
NF-κB | Forward Reverse | GTCTCAAACCAAACAGCCTCAC CAGTGTCTTCCTCGACATGGAT | NM_199267.2 |
β-actin | Forward Reverse | TGTCACCAACTGGGACGATA ACCCTCATAGATGGGCACAG | XM_039089807.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabra, R.T.; Bekhit, A.A.; Sabra, N.T.; Abd El-Moeze, N.A.; Fathy, M. Nebivolol Exerts Hepatoprotective Activity During CLP-Induced Sepsis by Modulating Oxidative Stress, Liver Regeneration, and AKT/MAPK Pathways in Rats. Stresses 2024, 4, 800-815. https://doi.org/10.3390/stresses4040053
Sabra RT, Bekhit AA, Sabra NT, Abd El-Moeze NA, Fathy M. Nebivolol Exerts Hepatoprotective Activity During CLP-Induced Sepsis by Modulating Oxidative Stress, Liver Regeneration, and AKT/MAPK Pathways in Rats. Stresses. 2024; 4(4):800-815. https://doi.org/10.3390/stresses4040053
Chicago/Turabian StyleSabra, Rahma Tharwat, Amany Abdlrehim Bekhit, Nourhan Tharwat Sabra, Nadia Ahmed Abd El-Moeze, and Moustafa Fathy. 2024. "Nebivolol Exerts Hepatoprotective Activity During CLP-Induced Sepsis by Modulating Oxidative Stress, Liver Regeneration, and AKT/MAPK Pathways in Rats" Stresses 4, no. 4: 800-815. https://doi.org/10.3390/stresses4040053
APA StyleSabra, R. T., Bekhit, A. A., Sabra, N. T., Abd El-Moeze, N. A., & Fathy, M. (2024). Nebivolol Exerts Hepatoprotective Activity During CLP-Induced Sepsis by Modulating Oxidative Stress, Liver Regeneration, and AKT/MAPK Pathways in Rats. Stresses, 4(4), 800-815. https://doi.org/10.3390/stresses4040053