Transcriptomic and Physiological Meta-Analysis of Multiple Stress-Resistant Saccharomyces cerevisiae Strains
Abstract
:1. Introduction
2. Results and Discussion
2.1. Clustering Stress-Resistant Yeast Strains Based on the Transcriptomic Data
2.2. Clustering Stress-Resistant Yeast Strains Based on the Physiological Stress-Cross-Resistance Data
2.3. Clustering the Stress Factors Used in the Spot Assay, Based on the Physiologically Grouped Transcriptomic Data
3. Materials and Methods
3.1. Evolved Strains and Evolutionary Engineering Procedure
3.2. Whole Genome Transcriptomic Analysis
3.3. Stress-Resistance Estimation by Spot Assay and Formation of the Stress–Cross-Resistance Matrix
3.4. Differential Gene Expression (DGE) Analysis
3.5. Principal Component Analysis (PCA)
3.6. K-Means Clustering and the Elbow Method
3.7. Gene-Based Clustering by Pairwise Pearson’s Correlation Coefficients (PCC) Calculation
3.8. Comparison of the logFC Values of the Genes Between Clusters and Their Pathway Annotation
3.9. Spearman’s Rank Correlation Test
3.10. Pathway Enrichment Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Botstein, D.; Chervitz, S.A.; Cherry, J.M. Yeast as a model organism. Science 1997, 277, 1259–1260. [Google Scholar] [CrossRef] [PubMed]
- Cherry, J.M.; Adler, C.; Ball, C.; Chervitz, S.A.; Dwight, S.S.; Hester, E.T.; Jia, Y.; Juvik, G.; Roe, T.; Schroeder, M.; et al. SGD: Saccharomyces genome database. Nucleic Acids Res. 1998, 26, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Zabed, H.; Faruq, G.; Sahu, J.N.; Azirun, M.S.; Hashim, R.; Nasrulhaq Boyce, A. Bioethanol production from fermentable sugar juice. Sci. World J. 2014, 2014, 957102. [Google Scholar] [CrossRef] [PubMed]
- Parapouli, M.; Vasileiadi, A.; Afendra, A.-S.; Hatziloukas, E. Saccharomyces cerevisiae and its industrial applications. AIMS Microbiol. 2020, 6, 1. [Google Scholar] [CrossRef]
- Topaloğlu, A.; Esen, Ö.; Turanlı-Yıldız, B.; Arslan, M.; Çakar, Z.P. From Saccharomyces cerevisiae to ethanol: Unlocking the power of evolutionary engineering in metabolic engineering applications. J. Fungi 2023, 9, 984. [Google Scholar] [CrossRef]
- Attfield, P.V. Stress tolerance: The key to effective strains of industrial baker’s yeast. Nat. Biotechnol. 1997, 15, 1351–1357. [Google Scholar] [CrossRef]
- Terhorst, A.; Sandikci, A.; Whittaker, C.A.; Szórádi, T.; Holt, L.J.; Neurohr, G.E.; Amon, A. The environmental stress response regulates ribosome content in cell cycle-arrested S. cerevisiae. Front. Cell Dev. Biol. 2023, 11, 1118766. [Google Scholar] [CrossRef]
- Costa, A.C.T.; Russo, M.; Fernandes, A.A.R.; Broach, J.R.; Fernandes, P.M. Transcriptional Response of Multi-Stress-Tolerant Saccharomyces cerevisiae to Sequential Stresses. Fermentation 2023, 9, 195. [Google Scholar] [CrossRef]
- Butler, P.R.; Brown, M.; Oliver, S.G. Improvement of antibiotic titers from Streptomyces bacteria by interactive continuous selection. Biotechnol. Bioeng. 1996, 49, 185–196. [Google Scholar] [CrossRef]
- Çakar, Z.P.; Seker, U.O.; Tamerler, C.; Sonderegger, M.; Sauer, U. Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Res. 2005, 5, 569–578. [Google Scholar] [CrossRef]
- Çakar, Z.P.; Turanlı-Yıldız, B.; Alkım, C.; Yılmaz, Ü. Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties. FEMS Yeast Res. 2012, 12, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Garland, T.; Rose, M.R. (Eds.) Experimental Evolution: Concepts, Methods, and Applications of Selection Experiments; University of California Press: Berkeley, CA, USA, 2009. [Google Scholar]
- Sauer, U. Evolutionary engineering of industrially important microbial phenotypes. Adv. Biochem. Eng. Biotechnol. 2001, 73, 130–166. [Google Scholar]
- Turanlı-Yıldız, B.; Benbadis, L.; Alkım, C.; Sezgin, T.; Akşit, A.; Gökçe, A.; Öztürk, Y.; Baykal, A.T.; Çakar, Z.P.; François, J.M. In vivo evolutionary engineering for ethanol-tolerance of Saccharomyces cerevisiae haploid cells triggers diploidization. J. Biosci. Bioeng. 2017, 124, 309–318. [Google Scholar] [CrossRef]
- Tartık, M. Molecular Characterization of a Boron-Resistant Yeast Mutant Obtained by Evolutionary Engineering. Master’s Thesis, Istanbul Technical University, Graduate School of Science, Engineering and Technology, Maslak, Istanbul, Turkey, 2013. [Google Scholar]
- Sürmeli, Y.; Holyavkin, C.; Topaloğlu, A.; Arslan, M.; Kısakesen, H.I.; Çakar, Z.P. Evolutionary engineering and molecular characterization of a caffeine-resistant Saccharomyces cerevisiae strain. World J. Microbiol. Biotechnol. 2019, 35, 183. [Google Scholar] [CrossRef] [PubMed]
- Alkim, C.; Benbadis, L.; Yilmaz, U.; Cakar, Z.P.; François, J.M. Mechanisms other than activation of the iron regulon account for the hyper-resistance to cobalt of a Saccharomyces cerevisiae strain obtained by evolutionary engineering. Metallomics 2013, 5, 1043–1060. [Google Scholar] [CrossRef]
- Hacısalihoğlu, B.; Holyavkin, C.; Topaloğlu, A.; Kısakesen, H.I.; Çakar, Z.P. Genomic and transcriptomic analysis of a coniferyl aldehyde-resistant Saccharomyces cerevisiae strain obtained by evolutionary engineering. FEMS Yeast Res. 2019, 19, foz021. [Google Scholar] [CrossRef]
- Balaban, B.G.; Yılmaz, Ü.; Alkım, C.; Topaloğlu, A.; Kısakesen, H.I.; Holyavkin, C.; Çakar, Z.P. Evolutionary engineering of an iron-resistant Saccharomyces cerevisiae mutant and its physiological and molecular characterization. Microorganisms 2019, 8, 43. [Google Scholar] [CrossRef]
- Küçükgöze, G.; Alkım, C.; Yılmaz, Ü.; Kısakesen, H.İ.; Gündüz, S.; Akman, S.; Çakar, Z.P. Evolutionary engineering and transcriptomic analysis of nickel-resistant Saccharomyces cerevisiae. FEMS Yeast Res. 2013, 13, 731–746. [Google Scholar] [CrossRef]
- Holyavkin, C.; Turanlı-Yıldız, B.; Yılmaz, Ü.; Alkım, C.; Arslan, M.; Topaloğlu, A.; Kısakesen, H.I.; de Billerbeck, G.; François, J.M.; Çakar, Z.P. Genomic, transcriptomic, and metabolic characterization of 2-Phenylethanol-resistant Saccharomyces cerevisiae obtained by evolutionary engineering. Front. Microbiol. 2023, 14, 1148065. [Google Scholar] [CrossRef]
- Terzioğlu, E.; Alkım, C.; Arslan, M.; Balaban, B.G.; Holyavkin, C.; Kısakesen, H.İ.; Topaloğlu, A.; YılmazŞahin, Ü.; GündüzIşık, S.; Akman, S.; et al. Genomic, transcriptomic and physiological analyses of silver-resistant Saccharomyces cerevisiae obtained by evolutionary engineering. Yeast 2020, 37, 413–426. [Google Scholar] [CrossRef]
- Kocaefe-Özşen, N.; Yilmaz, B.; Alkım, C.; Arslan, M.; Topaloğlu, A.; Kısakesen, H.L.; Gülsev, E.; Çakar, Z.P. Physiological and molecular characterization of an oxidative stress-resistant Saccharomyces cerevisiae strain obtained by evolutionary engineering. Front. Microbiol. 2022, 13, 822864. [Google Scholar] [CrossRef] [PubMed]
- Arslan, M.; Holyavkin, C.; Kısakesen, H.I.; Topaloğlu, A.; Sürmeli, Y.; Çakar, Z.P. Physiological and transcriptomic analysis of a chronologically long-lived Saccharomyces cerevisiae strain obtained by evolutionary engineering. Mol. Biotechnol. 2018, 60, 468–484. [Google Scholar] [CrossRef] [PubMed]
- Horstmann, C.; Campbell, C.; Kim, D.S.; Kim, K. Transcriptome profile with 20 nm silver nanoparticles in yeast. FEMS Yeast Res. 2019, 19, foz003. [Google Scholar] [CrossRef] [PubMed]
- Singh, L.; Sharma, S.C.; Rai, J. Role of Hal5p protein kinase under ethanol stress in Saccharomyces cerevisiae. Appl. Biol. Chem. J. 2023, 4, 44–53. [Google Scholar] [CrossRef]
- Meena, R.C.; Kumar, N.; Nath, S.; Chakrabarti, A. Homologous recombination is activated at early time points following exposure to cobalt chloride induced hypoxic conditions in Saccharomyces cerevisiae. Indian J. Microbiol. 2011, 52, 209–214. [Google Scholar] [CrossRef]
- Hosiner, D.; Gerber, S.; Lichtenberg-Fraté, H.; Glaser, W.; Schüller, C.; Klipp, E. Impact of acute metal stress in Saccharomyces cerevisiae. PLoS ONE 2014, 9, e83330. [Google Scholar] [CrossRef]
- Valastyan, J.S.; Kraml, C.M.; Pelczer, I.; Ferrante, T.; Bassler, B.L. Saccharomyces cerevisiae requires CFF1 to produce 4-Hydroxy-5-Methylfuran-3 (2H)-One, a mimic of the bacterial quorum-sensing Autoinducer AI-2. mBio 2021, 12, 10–1128. [Google Scholar] [CrossRef]
- Dmowski, M.; Fijałkowska, I.J. Diverse roles of Dpb2, the non-catalytic subunit of DNA polymerase ε. Curr. Genet. 2017, 63, 983–987. [Google Scholar] [CrossRef]
- Cherry, J.M.; Hong, E.L.; Amundsen, C.; Balakrishnan, R.; Binkley, G.; Chan, E.T.; Christie, K.R.; Costanzo, M.C.; Dwight, S.S.; Engel, S.R.; et al. Saccharomyces Genome Database: The genomics resource of budding yeast. Nucleic Acids Res. 2011, 40, D700–D705. [Google Scholar] [CrossRef]
- Xia, H.; Shangguan, L.; Chen, S.; Yang, Q.; Zhang, X.; Yao, L.; Yang, S.; Dai, J.; Chen, X. Rapamycin enhanced the production of 2-phenylethanol during whole-cell bioconversion by yeast. Appl. Microbiol. Biotechnol. 2022, 106, 6471–6481. [Google Scholar] [CrossRef]
- Takano, J.; Kobayashi, M.; Noda, Y.; Fujiwara, T. Saccharomyces cerevisiae Bor1p is a boron exporter and a key determinant of boron tolerance. FEMS Microbiol. Lett. 2007, 267, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Kavakcıoğlu Yardımcı, B.; Mollaoğlu, Z. Antioxidant or pro-oxidant? The effects of boron compounds on Saccharomyces cerevisiae BY4741 strain. Prep. Biochem. Biotechnol. 2021, 51, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Levi, P. The Periodic Table; Rosenthal, R., Translator; Penguin Classics: London, UK, 2000. [Google Scholar]
- Kuranda, K.; Leberre, V.; Sokol, S.; Palamarczyk, G.; François, J. Investigating the caffeine effects in the yeast Saccharomyces cerevisiae brings new insights into the connection between TOR, PKC and Ras/cAMP signalling pathways. Mol. Microbiol. 2006, 61, 1147–1166. [Google Scholar] [CrossRef] [PubMed]
- Granek, J.A.; Kayıkçı, Ö.; Magwene, P.M. Pleiotropic signaling pathways orchestrate yeast development. Curr. Opin. Microbiol. 2011, 14, 676–681. [Google Scholar] [CrossRef]
- de Castro, P.A.; Savoldi, M.; Bonatto, D.; Barros, M.H.; Goldman, M.H.S.; Berretta, A.A.; Goldman, G.H. Molecular characterization of propolis-induced cell death in Saccharomyces cerevisiae. Eukaryot. Cell 2011, 10, 398–411. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, X.; Yang, B.; Wang, Y.; Li, Z.; Bao, X. Unravel the regulatory mechanism of Yrr1p phosphorylation in response to vanillin stress in Saccharomyces cerevisiae. Microb. Cell Fact. 2023, 22, 48. [Google Scholar] [CrossRef]
- Watcharawipas, A.; Watanabe, D.; Takagi, H. Sodium acetate responses in Saccharomyces cerevisiae and the ubiquitin ligase Rsp5. Front. Microbiol. 2018, 9, 2495. [Google Scholar] [CrossRef]
- Goston, K.; Jeong, E.K.; Lung, C.C.; Wang, S.S. The effect of salinity stress on cell count of Saccharomyces cerevisiae. Expedition 2016, 6. [Google Scholar]
- Saldaña, C.; Villava, C.; Ramírez-Villarreal, J.; Morales-Tlalpan, V.; Campos-Guillen, J.; Chávez-Servín, J.; García-Gasca, T. Rapid and reversible cell volume changes in response to osmotic stress in yeast. Braz. J. Microbiol. 2021, 52, 895–903. [Google Scholar] [CrossRef]
- Gonzalez, R.; Morales, P.; Tronchoni, J.; Cordero-Bueso, G.; Vaudano, E.; Quirós, M.; Novo, M.; Torres-Pérez, R.; Valero, E. New genes involved in osmotic stress tolerance in Saccharomyces cerevisiae. Front. Microbiol. 2016, 7, 218934. [Google Scholar] [CrossRef]
- Izawa, S.; Inoue, Y.; Kimura, A. Oxidative stress response in yeast: Effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae. FEBS Lett. 1995, 368, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Fedoseeva, I.V.; Pyatrikas, D.V.; Stepanov, A.V.; Fedyaeva, A.V.; Varakina, N.N.; Rusaleva, T.M.; Borovskii, G.B.; Rikhvanov, E.G. The role of flavin-containing enzymes in mitochondrial membrane hyperpolarization and ROS production in respiring Saccharomyces cerevisiae cells under heat-shock conditions. Sci. Rep. 2017, 7, 2586. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.-S.; Choi, W.; Son, J.; Lee, J.H.; Lee, H.; Lee, J.; Shin, S.C.; Kim, H.-W. Screening and Genetic Network Analysis of Genes Involved in Freezing and Thawing Resistance in DaMDHAR—Expressing Saccharomyces cerevisiae Using Gene Expression Profiling. Genes 2021, 12, 219. [Google Scholar] [CrossRef] [PubMed]
- Semchyshyn, H.M.; Abrat, O.B.; Miedzobrodzki, J.; Inoue, Y.; I Lushchak, V. Acetate but not propionate induces oxidative stress in bakers’ yeast Saccharomyces cerevisiae. Redox Rep. 2011, 16, 15–23. [Google Scholar] [CrossRef]
- Bleoanca, I.; Silva, A.R.C.; Pimentel, C.; Rodrigues-Pousada, C.; De Andrade Menezes, R. Relationship between ethanol and oxidative stress in laboratory and brewing yeast strains. J. Biosci. Bioeng. 2013, 116, 697–705. [Google Scholar] [CrossRef]
- Yasokawa, D.; Murata, S.; Iwahashi, Y.; Kitagawa, E.; Nakagawa, R.; Hashido, T.; Iwahashi, H. Toxicity of Methanol and formaldehyde towards Saccharomyces cerevisiae as assessed by DNA microarray analysis. Appl. Biochem. Biotechnol. 2009, 160, 1685–1698. [Google Scholar] [CrossRef]
- Lage, P.; Sampaio-Marques, B.; Ludovico, P.; Mira, N.P.; Mendes-Ferreira, A. Transcriptomic and chemogenomic analyses unveil the essential role of Com2-regulon in response and tolerance of Saccharomyces cerevisiae to stress induced by sulfur dioxide. Microb. Cell 2019, 6, 509–523. [Google Scholar] [CrossRef]
- Święciło, A. Cross-stress resistance in Saccharomyces cerevisiae yeast—New insight into an old phenomenon. Cell Stress Chaperones 2016, 21, 187–200. [Google Scholar] [CrossRef]
- Hirasawa, T.; Nakakura, Y.; Yoshikawa, K.; Ashitani, K.; Nagahisa, K.; Furusawa, C.; Katakura, Y.; Shimizu, H.; Shioya, S. Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray. Appl. Microbiol. Biotechnol. 2005, 70, 346–357. [Google Scholar] [CrossRef]
- Illarionov, A.; Lahtvee, P.-J.; Kumar, R. Potassium and sodium salt stress characterization in the yeasts Saccharomyces cerevisiae, Kluyveromyces marxianus, and Rhodotorula toruloides. Appl. Environ. Microbiol. 2021, 87, e03100-20. [Google Scholar] [CrossRef]
- Ren, M.; Li, R.; Han, B.; You, Y.; Huang, W.; Du, G.; Zhan, J. Involvement of the high-osmolarity glycerol pathway of Saccharomyces cerevisiae in protection against copper toxicity. Antioxidants 2022, 11, 200. [Google Scholar] [CrossRef] [PubMed]
- Frukh, A.; Liaqat, S.; Ahmad, A. Role of nitric oxide in abiotic stress. Nitric Oxide Plants A Mol. Dual Roles 2022, 42–58. [Google Scholar] [CrossRef]
- Reddi, A.R.; Jensen, L.T.; Culotta, V.C. Manganese Homeostasis in Saccharomyces cerevisiae. Chem. Rev. 2009, 109, 4722–4732. [Google Scholar] [CrossRef] [PubMed]
- Askari, S.H.; Ashraf, M.A.; Ali, S.; Rizwan, M.; Rasheed, R. Menadione sodium bisulfite alleviated chromium effects on wheat by regulating oxidative defense, chromium speciation, and ion homeostasis. Environ. Sci. Pollut. Res. 2021, 28, 36205–36225. [Google Scholar] [CrossRef]
- Çetin, H.; Çakar, Z.P.; Ülgen, K.O. Understanding the adaptive laboratory evolution of multiple stress-resistant yeast strains by genome scale modeling. Yeast 2022, 39, 449–465. [Google Scholar] [CrossRef]
- Jin, Y.H.; Dunlap, P.E.; McBride, S.J.; Al-Refai, H.; Bushel, P.R.; Freedman, J.H. Global transcriptome and deletome profiles of yeast exposed to transition metals. PLoS Genet. 2008, 4, e1000053. [Google Scholar] [CrossRef]
- Lawrence, C.W. Classical mutagenesis techniques. Methods Enzymol. 1991, 194, 273–281. [Google Scholar]
- Huber, W.; Carey, V.J.; Gentleman, R.; Anders, S.; Carlson, M.; Carvalho, B.S.; Bravo, H.C.; Davis, S.; Gatto, L.; Girke, T.; et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods 2015, 12, 115–121. [Google Scholar] [CrossRef]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- Davis, S.; Meltzer, P.S. GEOquery: A bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 2007, 23, 1846–1847. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis for Special Types of Data; Springer: New York, NY, USA, 2002; pp. 338–372. [Google Scholar]
- Ma, S.; Dai, Y. Principal component analysis based methods in bioinformatics studies. Brief. Bioinform. 2011, 12, 714–722. [Google Scholar] [CrossRef] [PubMed]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Shirkhorshidi, A.S.; Aghabozorgi, S.; Wah, T.Y.; Herawan, T. Big data clustering: A review. In Proceedings of the Computational Science and Its Applications–ICCSA 2014: 14th International Conference, Guimarães, Portugal, 30 June–3 July 2014; Proceedings, Part V 14. pp. 707–720. [Google Scholar]
- Ashabi, A.; Sahibuddin, S.B.; Salkhordeh Haghighi, M. The systematic review of K-means clustering algorithm. In Proceedings of the 2020 9th International Conference on Networks, Communication and Computing, Tokyo, Japan, 18–20 December 2020; pp. 13–18. [Google Scholar]
- Umargono, E.; Suseno, J.E.; Vincensius Gunawan, S.K. K-means clustering optimization using the elbow method and early centroid determination based on mean and median formula. In Proceedings of the 2nd International Seminar on Science and Technology (ISSTEC 2019), Yogyakarta, Indonesia, 25 November 2019. [Google Scholar]
- Berman, J.J. Indispensable tips for fast and simple big data analysis. Princ. Pract. Big Data 2018, 2, 231–257. [Google Scholar]
- Waskom, M.L. Seaborn: Statistical data visualization. J. Open Source Softw. 2021, 6, 3021. [Google Scholar] [CrossRef]
- McKinney, W. Data structures for statistical computing in python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; Volume 445, pp. 51–56. [Google Scholar]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0 fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Spearman, C. The proof and measurement of association between two things. Am. J. Psychol. 1904, 15, 72–101. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.-G.; Han, Y.; He, Q.-Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS J. Integr. Biol. 2012, 16, 284–287. [Google Scholar] [CrossRef]
Strain Name | Stress | Number of DE Genes | GEO Accession Query | References | ||
---|---|---|---|---|---|---|
Up | Down | Total | ||||
BA8 | Boron (H3BO3) | 535 | 468 | 1003 | GSE224764 | [15] |
CAF905-2 | Caffeine | 970 | 1007 | 1977 | GSE124452 | [16] |
CI25E | Cobalt (CoCl2) | 206 | 99 | 305 | GSE39185 | [17] |
BH13 | Coniferyl aldehyde | 886 | 932 | 1818 | GSE119240 | [18] |
B2 | Ethanol | 83 | 73 | 156 | GSE78759 | [14] |
B8 | Ethanol | 149 | 96 | 245 | GSE78759 | [14] |
8C | Iron (FeCl2) | 306 | 315 | 621 | GSE61317 | [19] |
SRM11 | Starvation * | 853 | 889 | 1742 | GSE99041 | [24] |
M9 | Nickel (NiCl2) | 443 | 420 | 863 | GSE50985 | [20] |
H7 | Oxidative (H2O2) | 1098 | 1194 | 2292 | GSE184952 | [23] |
C9 | 2-Phenylethanol | 797 | 817 | 1614 | GSE59353 | [21] |
2E | Silver (AgNO3) | 877 | 886 | 1763 | GSE143335 | [22] |
Category | ORF | Gene Name | Fold Change | Pathway | Category | ORF | Gene Name | Fold Change | Pathway |
---|---|---|---|---|---|---|---|---|---|
Cluster 1 (Long-lived strain and Silver-resistant strain) | |||||||||
CS. Up | YJR104C | SOD1 | 2.29 | Peroxisome | Up | YLR142W | PUT1 | 8.05 | Arginine and proline |
YDL142C | CRD1 | 2.42 | Glycerophospholipid | YER020W | GPA2 | 2.87 | Meiosis | ||
YLR240W | VPS34 | 2.25 | Inositol phosphate | YLR102C | APC9 | 2.56 | Cell cycle | ||
YDL215C | GDH2 | 2.67 | Arginine biosynthesis | ||||||
YER170W | ADK2 | 2.3 | Purine | YLR356W | ATG33 | 3.52 | Mitophagy | ||
YIL098C | FMC1 | 2.5 | Mitophagy | YIL007C | NAS2 | 2.97 | Proteasome | ||
YBR018C | GAL7 | 4.73 | Galactose | Down | YJL148W | RPA34 | 0.22 | RNA polymerase | |
YDL004W | ATP16 | 2.64 | Oxidative phosphorylation | YHL001W | RPL14B | 0.36 | Ribosome | ||
YLR344W | PRL26A | 0.4 | Ribosome | ||||||
CS. Down | YGR119C | NUP57 | 0.42 | Nucleocytoplasmic transport | YLR448W | RPL6B | 0.33 | Ribosome | |
YDR395W | SXM1 | 0.38 | YER171W | RAD3 | 0.4 | Basal transcription factors | |||
Cluster 2 (Two ethanol-resistant (B2 and B8) strains and Cobalt-resistant strain) | |||||||||
Up | YPR194C | OPT2 | 7.1 | - | Down | YFR053C | HXK1 | 4.78 | Glycolysis/Gluconeogenesis |
YJL212C | OPT1 | 2.85 | - | YGR248W | SOL4 | 2.93 | Pentose-phosphate | ||
YHR214W-A | - | 11.79 | - | YDR258C | HSP78 | 3.91 | Longevity-regulating | ||
YAR068W | 10.29 | - | YML100W | TSL1 | 4.27 | Starch and sucrose | |||
Cluster 3 (Iron-resistant strain and Nickel-resistant strain) | |||||||||
CS. Up | YHR071W | PCL5 | 3.77 | Autophagy | Up | YJR130C | STR2 | 3.36 | Cysteine and methionine |
YGL224C | SDT1 | 2.51 | Nicotinate and nicotinamide | YCL030C | HIS4 | 2.42 | Histidine | ||
Down | YKL068W | NUP100 | 0.43 | Nucleocytoplasmic transport | |||||
CS. Down | YNR024W | MPP6 | 0.41 | RNA degradation | YOR143C | THI80 | 0.43 | Thiamine metabolism | |
YNL050C | - | 0.43 | - | YDR339C | FCF1 | 0.44 | Ribosome biogenesis | ||
Up | YGL180W | ATG1 | 2.95 | Autophagy | |||||
Cluster 4 (Boron-resistant strain and 2-phenylethanol-resistant strain) | |||||||||
CS. Up | YIL042C | PKP1 | 2.33 | - | Up | YKL096W-A | CWP2 | 3.37 | - |
YDL023C | - | 2.62 | - | YGL088W | 8.43 | - | |||
YML099W-A | - | 2.40 | - | YJL141C | YAK1 | 2.37 | - | ||
YCL004W | PGS1 | 2.09 | Glycerophospholipid | YDR173C | ARG82 | 2.56 | Inositol phosphate | ||
YMR069W | BUD19 | 2.28 | - | YCL057C-A | 2.30 | - | |||
YJL188C | NAT4 | 2.17 | - | Down | YKL218C | SRY1 | 0.43 | - | |
YNL179C | - | 2.41 | - | YJR057W | CDC8 | 0.41 | Pyrimidine | ||
CS. Down | YJL202C | - | 0.49 | - | YOL014W | 0.29 | - | ||
YCR102C | - | 0.40 | - | YOL064C | MET22 | 0.44 | Sulfur | ||
YLR126C | - | 0.45 | - | YBR294W | SUL1 | 0.15 | - | ||
Cluster 5 (Caffeine-resistant strain and Coniferyl aldehyde-resistant strain) | |||||||||
CS. Up | YMR161W | HIJ1 | 2.32 | Protein processing in ER | Up | YPR094W | RDS3 | 8.82 | Spliceosome |
YGR281W | YOR1 | 4.21 | ABC transporters | YOR153W | PDR5 | 14.81 | ABC transporters | ||
YMR158W | MRPS8 | 2.83 | Ribosome | YKL006C-A | SFT1 | 6.78 | SNARE interactions in vesicular transport | ||
YMR230W | RPS10B | 2.8 | Ribosome | YDR377W | ATP17 | 6.95 | Oxidative phosphorylation | ||
YOR103C | OST2 | 3.85 | N-Glycan biosynthesis | YDR011W | SNQ2 | 6.88 | ABC transporters | ||
CS. Down | YLR059C | REX2 | 0.48 | Ribosome biogenesis | Down | YFR034C | PHO4 | 0.2 | Cell cycle |
YDL138W | RGT2 | 0.41 | Meiosis | YPL058C | PDR12 | 0.35 | ABC transporters | ||
YNL220W | ADE12 | 0.42 | Purine metabolism | YGR108W | CLB1 | 0.13 | MAPK signaling pathway | ||
YHL004W | MRP4 | 0.46 | Ribosome | YDL205C | HEM3 | 0.46 | Porphyrin metabolism | ||
YDL084W | SUB2 | 0.43 | Nucleocytoplasmic transport | YDR352W | YPQ2 | 0.37 | Efferocytosis |
Category | Stress Factor | Reference |
---|---|---|
Metals/Heavy metals | Cobalt(II) chloride (CoCl2) | [28] |
Nickel(II) chloride (NiCl2) | ||
Silver nitrate (AgNO3) | ||
Aluminum chloride (AlCl3) | ||
Manganese(II) chloride (MnCl2) | ||
Chromium(III) chloride (CrCl3) | [35] | |
Boric acid (boron is a metalloid) (H3BO3) | ||
Magnesium chloride (MgCl2) | ||
Ammonium iron(II) sulfate | ||
Copper(II) sulfate (CuSO4) | ||
Pleiotropic drug | Caffeine | [36] |
Rapamycin | [37] | |
Coniferyl aldehyde | [18] | |
Propolis | [38] | |
Vanillin | [39] | |
Osmotic stress | Sodium acetate | [40] |
Sodium chloride | [41] | |
Potassium chloride | [42] | |
Sorbitol | [43] | |
Oxidative stress | Hydrogen peroxide | [44] |
Heat stress | [45] | |
Freeze–thaw stress | [46] | |
Acetic acid | [47] | |
Ethanol | [48] | |
Methanol | [49] | |
2-Phenylethanol | [21] |
Category | ORF | Gene Name | Fold Change | Pathway | Category | ORF | Gene Name | Fold Change | Pathway |
---|---|---|---|---|---|---|---|---|---|
Cluster A (Methanol, Acetic acid, Magnesium chloride) | |||||||||
CS. Up | YJR148W | BAT2 | 2.09 | Cysteine and methionine | Up | YHR200W | RPN10 | 2.2 | Proteasome |
YNL241C | ZWF1 | 2.15 | Pentose-phosphate | YOR185C | GSP2 | 2.66 | Ribosome biogenesis | ||
YOL038W | PRE6 | 2.02 | Proteasome | YNL333W | SNZ2 | 3.11 | Vitamin B6 metabolism | ||
YER143W | DDI1 | 2.62 | - | YFL059W | SNZ3 | 3.06 | Vitamin B6 metabolism | ||
YGL126W | SCS3 | 2.58 | - | YPR193C | HPA2 | 2.63 | D-Amino acid metabolism | ||
CS. Down | YDR020C | DAS2 | 0.43 | Pyrimidine metabolism | Down | YDR321W | ASP1 | 0.42 | Ala, Asp & Glu metabolism |
YDR382W | RPP2B | 0.48 | Ribosome | YLR060W | FRS1 | 0.45 | Aminoacyl-tRNA biosynt * | ||
YBR189W | RPS9B | 0.42 | Ribosome | YKL106W | AAT1 | 0.32 | Arginine biosynthesis | ||
YBR048W | RPS11B | 0.45 | Ribosome | YOL140W | ARG8 | 0.40 | Arginine biosynthesis | ||
YIL104C | SHQ1 | 0.47 | - | YJL088W | ARG3 | 0.44 | Arginine biosynthesis | ||
Cluster B (Caffeine, Rapamycin, Coniferyl aldehyde) | |||||||||
CS. Up | YNL073W | MSK1 | 2.24 | Aminoacyl-tRNA biosynt * | Up | YER073W | ALD5 | 2.6 | Glycolysis/Gluconeogenesis |
YIL125W | KGD1 | 2.11 | Citrate (TCA) cycle | YDR298C | ATP5 | 2.63 | Oxidative phosphorylation | ||
YOR142W | LSC1 | 2.31 | Citrate (TCA) cycle | YAR015W | ADE1 | 2.31 | Purine metabolism | ||
YNL220W | ADE12 | 2.22 | Purine metabolism | YLR432W | IMD3 | 2.73 | Purine metabolism | ||
YGR060W | ERG25 | 2.58 | Steroid metabolism | YFR034C | PHO4 | 3.62 | Cell cycle | ||
CS. Down | YKL073W | LHS1 | 0.40 | Protein processing in ER | Down | YKL079W | SMY1 | 0.33 | Endocytosis |
YGL070C | RPB9 | 0.35 | RNA polymerase | YJL034W | KAR2 | 0.41 | Protein export | ||
YNL006W | LST8 | 0.44 | Autophagy | YBR101C | FES1 | 0.36 | Protein processing in ER | ||
YER117W | RPL23B | 0.33 | Ribosome | YOR234C | RPL33B | 0.39 | Ribosome | ||
YOR096W | RPS7A | 0.37 | Ribosome | YOR159C | SME1 | 0.40 | Spliceosome | ||
Cluster D (Copper, Sodium Chloride) | |||||||||
CS Up | YJL071W | ARG2 | 2.12 | Arginine biosynthesis | CS Down | YKL141W | SDH3 | 0.39 | Citrate (TCA) cycle |
YJL148W | RPA34 | 2.6 | RNA polymerase | YDR178W | SDH4 | 0.4 | Citrate (TCA) cycle | ||
YDR450W | RPS18A | 2.18 | Ribosome | YLR284C | ECI1 | 0.41 | Nucleocytoplasmic transport | ||
YMR093W | UTP15 | 2.45 | Ribosome biogenesis | YBR018C | GAL7 | 0.27 | Galactose metabolism | ||
YML060W | OGG1 | 2.42 | Base excision repair- | YIL162W | SUC2 | 0.30 | Galactose metabolism | ||
Cluster E (Manganase(II) chloride, Ammonium iron(II) sulfate, Chromium(III) chloride, Boric acid, Ethanol, 2-phenylethanol, Sodium acetate) | |||||||||
Up | YDR322C-A | TIM11 | 2.69 | Oxidative phosphorylation | Down | YHL028W | WSC4 | 0.26 | - |
YLR080W | EMP46 | 2.60 | Protein processing in ER | YDR222W | - | 0.33 | - | ||
YDR363W-A | SEM1 | 2.75 | Proteasome | YIR032C | DAL3 | 0.35 | Purine metabolism | ||
YEL070W | DSF1 | 3.06 | Fructose and mannose metabolism | YFR055W | IRC7 | 0.33 | Cysteine and methionine metabolism | ||
YCR097W | HMRA1 | 2.64 | Meiosis | YBR092C | PHO3 | 0.37 | Thiamine metabolism |
Strains | 2E | 8C | BA8 | BH13 | B2 | B8 | C9 | CI25E | CAF905-2 | H7 | M9 | SRM11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Stress Factor | ||||||||||||
Acetic acid | 0 | 0 | 0 | 0 | 1 | 1 | 0 | −1 | −1 | 0 | −1 | 0 |
Aluminum chloride (AlCl3) | 0 | 0 | −1 | −1 | 0 | 0 | −1 | −1 | −1 | −1 | −1 | 1 |
Ammonium iron(II) sulfate | −1 | 1 | 1 | −1 | 1 | 1 | −1 | 1 | −1 | 1 | 1 | 0 |
Boric acid (H3BO3) | −1 | 0 | 1 | −1 | 1 | 1 | −1 | −1 | −1 | 0 | 0 | 1 |
Caffeine | −1 | 0 | 0 | 1 | 0 | 0 | 0 | −1 | 1 | 0 | −1 | 0 |
Chromium(II) chloride | −1 | 1 | 0 | −1 | 1 | 0 | 0 | 1 | −1 | 1 | −1 | 0 |
Cobalt(II) chloride (CoCl2) | 1 | 1 | 0 | 0 | 1 | 1 | −1 | 1 | 0 | 1 | 1 | 0 |
Coniferyl aldehyde | −1 | −1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | −1 | 0 |
Copper(II) sulfate (CuSO4) | 1 | 0 | 0 | −1 | −1 | 0 | 0 | 0 | −1 | 1 | −1 | 1 |
Ethanol | −1 | 0 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | 0 | −1 | 1 |
Freeze–thaw | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | −1 | 1 |
Hydrogen peroxide (H2O2) | 0 | 0 | 1 | −1 | 0 | 0 | 1 | −1 | −1 | 1 | −1 | −1 |
Magnesium chloride (MgCl2) | −1 | 0 | 0 | 0 | 1 | 1 | 0 | −1 | −1 | 0 | −1 | 0 |
Manganese(II) chloride (MnCl2) | −1 | 1 | 1 | −1 | 1 | 1 | 1 | 1 | −1 | 1 | 1 | 0 |
Methanol | −1 | 0 | 0 | −1 | 1 | 1 | 0 | −1 | −1 | 0 | −1 | 0 |
Nickel(II) chloride (NiCl2) | −1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
2-Phenylethanol | −1 | 1 | 1 | −1 | 1 | 1 | 1 | 1 | −1 | 0 | −1 | 1 |
Potassium chloride (KCl) | 0 | −1 | 1 | −1 | −1 | −1 | −1 | −1 | −1 | 0 | −1 | 0 |
Propolis | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | −1 | −1 |
Heat stress | 0 | −1 | 1 | −1 | −1 | −1 | 1 | 1 | −1 | 1 | −1 | 1 |
Rapamycin | 0 | 0 | 0 | 1 | 0 | 0 | 0 | −1 | 1 | 0 | −1 | 0 |
Silver nitrate (AgNO3) | 1 | 0 | 0 | −1 | 0 | 1 | −1 | −1 | 0 | 0 | −1 | 0 |
Sodium acetate | −1 | 1 | 0 | −1 | 1 | 1 | −1 | 0 | −1 | 1 | −1 | 0 |
Sodium chloride (NaCl) | −1 | 0 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 1 | −1 | −1 |
Sorbitol | 0 | 1 | 0 | 1 | 1 | 1 | 0 | −1 | −1 | 1 | −1 | 0 |
Vanillin | 0 | 0 | 0 | 0 | 1 | 1 | 0 | −1 | 0 | 0 | −1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özel, A.; Topaloğlu, A.; Esen, Ö.; Holyavkin, C.; Baysan, M.; Çakar, Z.P. Transcriptomic and Physiological Meta-Analysis of Multiple Stress-Resistant Saccharomyces cerevisiae Strains. Stresses 2024, 4, 714-733. https://doi.org/10.3390/stresses4040046
Özel A, Topaloğlu A, Esen Ö, Holyavkin C, Baysan M, Çakar ZP. Transcriptomic and Physiological Meta-Analysis of Multiple Stress-Resistant Saccharomyces cerevisiae Strains. Stresses. 2024; 4(4):714-733. https://doi.org/10.3390/stresses4040046
Chicago/Turabian StyleÖzel, Abdulkadir, Alican Topaloğlu, Ömer Esen, Can Holyavkin, Mehmet Baysan, and Zeynep Petek Çakar. 2024. "Transcriptomic and Physiological Meta-Analysis of Multiple Stress-Resistant Saccharomyces cerevisiae Strains" Stresses 4, no. 4: 714-733. https://doi.org/10.3390/stresses4040046
APA StyleÖzel, A., Topaloğlu, A., Esen, Ö., Holyavkin, C., Baysan, M., & Çakar, Z. P. (2024). Transcriptomic and Physiological Meta-Analysis of Multiple Stress-Resistant Saccharomyces cerevisiae Strains. Stresses, 4(4), 714-733. https://doi.org/10.3390/stresses4040046